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Determination of Beach Sand Parameters
Using Remotely Sensed Aircraft Reflectance Data
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and
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An algonthm was developed which determines the mieralogy, moisture, and grain size of beach sands based on the
hemuspherical reflectance in 17 discrete spectral bands The bands chosen range between 040 and 25 um, a
wavelength range practical for existing multispectral remote sensing technology The sand spectra on which the
mineralogy, moisture, and gramn-size algorithm (MOGS) 15 based were obtamed from laboratory spectrophotometric
measurements Selected spectral bands are used 1n a vector-length-decision framework to determine the mineralogical
class of the input sand Multiple linear regressions are then used, within a given mineralogical class, to determine the
moisture and gramn size of the sand The predictive results of the MOGS algorithm are very encouraging When tested
on 70 of the sand reflectance spectra from which 1t was denived, the correlation of actual to predicted moisture and
gramn size was 96% and 88%, respectively The MOGS algorthm has been successfully tested using aircraft
multispectral scanner data collected over the Lake Michigan shoreline The algonithm correctly identified gross
mineralogy and predicted gramn size to withm 009 mm of measured values Some difficulties were encountered n
predicting high beach-sand moistures, probably due to the increasing non-Lambertian nature of sand as the moisture

content of the sand increased

Introduction

Dunng the past ten years, remote sens-
ing has been proven capable of delineat-
ing outcrop hithologies, a procedure often
carried out 1n the early stages of mineral
exploration. Typically, remote-sensing
spectral data are compared to those in a
reference hbrary containing laboratory-
acquired spectral data of 1ndividual
munerals and rocks Through the use of a
computer, correlations are made between
the reference and remote-sensing spectra
m an attempt to identify the surface
materal (Vincent, Thomson, and Watson,
1972).
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In this investigation, beach sands were
analyzed with the mtent of determining
not only mineralogy but also moisture
and grain size These three parameters
are of mterest from both geological and
engineermg powmnts of view. The mean
grain size at a reference point on a beach
1s a fundamental characteristic of the
beach. Studies have indicated that mean
grain size 1s related to beach face slope
(Komar, 1976), water percolation and
permeability and ease of grain movement
(Komar, 1977, Zenkovich, 1967, Huntley
and Bowen, 1975, Fraser and Hester,
1977, Self, 1977). These factors play a
major role in determining whether a beach
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will be erosional or depositional under
different wave conditions (Madsen and
Grant, 1976, Swart, 1976).

Additionally, recogmtion of these three
sand parameters would also allow the
identification of beach mineral deposits
based on grain size and mineralogy. Since
beaches are formed by intense erosion of
the parent matenals, more resistant mn-
erals tend to be preserved and con-
centrated while others are dissipated. De-
pending on the ongin of the sand, these
resitdual minerals may be of economic
value

In order to determine the mineralogy,
moisture, and gran size of a given sand, a
two-stage vector-length-decision and mul-
tiple hnear regression approach was used
This entailled the breakdown of mineral-
ogy wnto five categones. Each category
was then analyzed for moisture content
and gramn size using predictive multiple
linear regressions based on selected spec-

tral bands

Background

The theoretical basis for the work pre-
sented 1n this paper was developed over a
penod of approximately ten years. Studies
have been made towards understand-
ing the effects that grain size, moisture
coating, and mumneralogy of particulates
have on reflected radiation from beach
sands It was shown by Emshe (1966) and
Aronson et al., (1967) that reflected radia-
tion from beach sand 1s a function of. the
wavelength of the radiation, the optical
constants of the medium, 1.e., n (refrac-
tive index) and k (index of absorption),
the particulate grain size, the packing
density, and the roughness of the surface.
Hunt and Vincent (1968) used reflectance
data based on ground laboratory samples
to mmprove the work of Aronson et al The
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model of Hunt and Vincent also accounted
for volume scattenng of reflected radia-
tion 1n sand particles.

Leu (1977) working at the Environ-
mental Research Institute of Michigan
(ERIM) collected beach sands (from
Delaware) and measured their reflectance
in the laboratory in the 0.4-2.5 pm range
using a Cary 14 laboratory spectropho-
tometer. (The Cary 14 spectrophotometer
1s a device which 1s capable of digitally
recording the reflectance spectrum of a
surface i the 0.35—2.5 pm range ) Leu
then used multiple hnear regression to
correlate reflectance values 1 discrete
reflectance bands to moisture and grain
size. Leu’s work showed promise, but his
regressions did not work when beach sand
reflectance values other than those from
Delaware beaches were used This mdi-
cated the meralogy of a beach sand
strongly affects its reflectance spectra and
that the effects of mineralogy must be
understood before moisture and grain-size
prediction algonthms can be run

In order to understand fully the effects
of changes in mineralogy, moisture, and
grain size on the spectral reflectance of
beach sand, a sand-reflectance model was
used. The model, an adaptation of the
Swts radiative transfer vegetation canopy
model, 1s known as AQUASAND (Suats,
1972). It uses, as mputs, the reflectance
and transmittance for each mineral com-
prising the beach sand (1e, quartz,
feldspar, magnetite, etc.). In addition, n-
put to the model includes the sand grain
size, the void space n the sand, and the
moisture profile as a function of depth
By varying these mput parameters insight
was gamed into the effect of physical
changes on the bulk sand reflectance

Using the information obtained from
AQUASAND (Shuchman et al., 1978)
the mineralogy, moisture, and grain-size
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(MOGS) algonthm was developed using
reflectance spectra measured on a Cary
14 spectrophotometer. These spectra
ranged from 035-2.5 pm, an interval
practical for existing remote sensing tech-
nology. The MOGS algonthm was eval-
uated both on the reflectance spectra from
which 1t was derived and on spectra col-
lected following the algonthm develop-
ment. In addition, digital images of grain-
size distribution were developed from
actual multispectral scanner data

Development of the MOGS Algorithm

The procedure of developing an algo-
rithm to predict mineralogy, moisture, and
gran size of beach sands was divided into
three segments. First, a data base of sand-
reflectance values was selected from
which to build the algorithm, second, the
necessary equations were developed, and
third, the algonthm was evaluated using
actual remotely sensed aircraft data.

All of the equations that make up the
MOGS algonthm are based ultimately on
81 laboratory-measured reflectance spec-
tra of beach samples obtammed from a
Cary 14 spectrophotometer operated by
ERIM. The sand samples were collected
from five diverse beach types located n
various coastal areas of the continental
Umited States between June 1974 and
October 1978 The use of a large range of
sand types was deemed necessary to give
the MOGS algorithm a wide field of ap-
plicability The mean grain size (diame-
ter), moisture content, and approximate
location of each beach sand sample used
in the development of the MOGS algo-
nthm are given 1n Table 1.

From inspection of both the AQUA-
SAND-generated and empurical spectra, 1t
became apparent that mineralogy had by
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far the greatest influence on the reflec-
tance spectra. So great 1s this influence
that it tends to mask the more subtle
features of changes in grain size and, to a
much lesser extent, moisture.

In order to achieve the fine detail
needed for the classification of moisture
and grain size while still maintaining the
apphcability to a large range of mineralo-
gies, a two-stage procedure was estab-
lished in the development of the MOGS
algorithm (Fig 1). The furst stage entails a
breakdown of sand muneralogy into dis-
crete classes. Within each class, second-
stage multiple hnear regressions were used
to denve the moisture and gramn-size
information. Using this method the sec-
ond-stage regressions do not have to
account for the large spectral effects of
muneralogy charactenstic of diverse beach
sands. This division increased the accu-
racy and predictive ability of the moisture
and gramn-size regression equations con-
siderably.

In order to determine which spectral
regions would best be able to differentiate
and predict the parameters of interest,
the AQUASAND beach sand model was
used. By varying the model input param-
eters 1n a logical fashion 1t was possible to
predict which regions of the spectrum
yielded the most useful information These
spectral regions were then used in the
MOGS algonthm to predict the parame-
ters of interest Because the MOGS algo-
nthm 1s to be used on arcraft-collected
multispectral scanner (MSS) data, all the
mput spectral data were divided into 17
spectral “bands” which are feasible (dic-
tated by atmospheric transmittance) for
implementation using existing MSS tech-
nology (Table 2). In any given portion of
the MOGS algonthm only a subset of
these 17 bands were used, as will be
shown later
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TABLE 1 The Mean Gram Sizes and Moisture Con- TABLE 1 (contmued)
tents of the 81 Sand Samples Used m the Develop- MOISTURE MEAN GRAIN
ment of the MOGS Algonthm Samples are given by SanpID* CoNTENT (%) SiZE (mm)
mineralogical class
H2 50 032
MOoISTURE MEAaN GRAIN H3 100 032
Sanp I D * ConTENT (%) Si1zE (mm) H4 150 032
A2 294 035 He 250 040
A3 150 037 H7 300 040
A5 113 043 H9 00 017
A8 334 032 H10 150 022
A7 131 035 HI11 100 032
A8 249 038 H12 50 040
A9 88 044 MX1 250 022
Al0 297 043 MX2 00 022
Bl 210 040 MX3 100 022
B2 24 6 076 MX4 150 022
B3 142 (0 46 MX5 30 0 022
B4 979 088 MX6 350 022
B> 110 0863 MX7 200 022
B6 190 095 MX8 50 022
BT 68 071 MX9 160 022
BS 249 076 MX10 40 022
B9 69 071 MX11 100 022
B10 213 071 MX12 290 022
B1l 200 081 Cl 00 ~1X1X025
B1S 340 069 C2 100 ~1X1X025
B13 60 055 C3 50 ~1X1X023
Bl4 310 083 C4 200  ~1X1x025
Bl5 180 067 C5 150 ~1Xx1X025
Bl16 320 057 C6 300 ~1X1X025
B17 180 056 C7 250 ~1X1X025
B18 230 065 Cc8 400 ~1X1X025
B19 30 094 C9 500 ~1xX1X025
B20 230 060
Ml 50 036 *A=Indian River Inlet, Delaware
M2 150 036 B =Delaware Bay, Delaware
M3 250 036 M=Michigan Coasthne (Sleeping Bear State Park,
M4 300 036 Petosky State Park, Mason—Oceana County Line,
M5 50 041 Pentwater State Park, and Muskegon State Park)
M6 150 041 H=South Beach and Glen Eden Beach Oregon
M7 00 023 Coastline
M8 00 029 MX =Panama City, Flortda (Gulf of Mexico)
M9 00 041 C=Manne Carbonate, Flornida Keys
M10 00 036
Ml11 100 023
MI12 250 023
M13 300 023
M14 100 041 The prediction of mineralogy
M15 200 041
M16 150 023 Rather than attempting to predict the
;"4“7 220 028 mdividual mineral components of the dif-
Mig 2 8 g gé ferent sands 1t was decided that grouping

Hl1 00 032 the sands into homogeneous types would
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Flow diagram of the MOGS algonthm

TABLE 2 The 17 Spectral Bands Used m the  he more productive. As such, five groups

Development of Moisture and Gram Size Re-

gression Equations

were defined which, for the most part,

BanDp NUMBER

WAVELENGTH RANGE (pm)

corresponded with the geographic loca-
tion of collection of the data base sam-

—
O WO ~1dU e N

1
12
13
14
15
16
17

043-047
047-049
049-051
051-053
053-0 56
0 56-0 59
059-063
063-067
070-075
075-080
080-090
090-100
100-110
110-120
120-135
150~185
210-250

ples. The five mineralogical classes are as
follows:

1. Iron-stamed Atlantic coast type
(A,B),

2. Iron-stained Michigan type (M),

3 Non-ron-stamned pure quartz type
(MX),

4 Heavy mneral (dark sand) type
(H),

5. Carbonate type (C).

Typical spectra of these five minera-
logical categones 1s given m Shuchman et
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al. (1978) To disciminate the five miner-
alogical classes a mmimum-vector-length
decision framework was used The con-
cept 1s developed as follows. Suppose that
there are two points, A and B, located in
two-dimensional space. The distance, or
vector length, L, from A to B can be
expressed m terms of the X and Y loca-
tions of points A and B as

1/2

(1)

Thus 15, of course, related to the Pythag-
orean Theorem. Now suppose we have a
p-dumensional system with A and B
located 1n each dimension. The vector
length can be expressed as

L:[(XA—XB)2+(YA_YB)2]

L=(él(X,A~X,B)2)I/2, @)

where X,, 1s the location of pomnt A m
the ith dimension and X, 5 1s the location
of pont B in the ith dimension.

This rationale can be used to classify
some pomnt, T, as being the member of
one of n classes (A,,j=1,n), by finding
the mimmum vector length from T to A,
(=1, n). In other words T 1s saxd to be a
member of the class which is closest to 1t,
on the average, across all p dimensions.
The mimimum vector length 1s defined as

P
(3)

Notice that Eq. (3) has no provision for
vanability in the n classes, therefore, L
1s chosen as being the shortest hnear vec-
tor length. If each class has the same
vanability associated with it this causes

=1, ,n
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no difficulty. In this experiment, how-
ever, there were considerable differences
mn vanabihty between the classes so that a
modification of Eq. (3) had to be made
The standard dewviation (SD) was used to
modify the distance between T and A,
related to each dimension thus removing
the effects of vanabihty from each class.
This normalized minimum distance equa-
tion 1s expressed as

where SD,, 1s the standard deviation asso-
ciated with the jth class in the ith dimen-
sion.

In the apphcation of this method to the
classification of mineralogy, the “dimen-
sions’ are spectral bands or ratios of
spectral bands and the “classes” are
mineralogical types. Eight spectral bands
(Table 3) and all possible umque ratios of
those spectral bands were used to classify
the mineralogical type of an input sand as
one of five categones. The object was to
make each category as homogeneous as
possible so that the moisture and grain-size
regressions which followed would be sen-
sitive to small scale spectral changes.

The prediction of moisture and grain size

Using the AQUASAND model, we
found that information related to mois-
ture content of sands 1s best denived from
the spectral region beyond 1.0 pm. This
1s the result of the spectral reflectance of
sand 1n this region being reduced by ab-
sorption 1n proportion to the amount of
water present. (Exceptionally lugh spec-
tral absorption is noted near 1.4 and 1.9
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TABLE 3 The Eight Spectral Bands Used 1n the
Breakdown of Beach Mineralogy into One of Five
Categortes In addition to these eight bands all
unique ratio combinations were also used

Banp NUMBER

1 043-047
047-049
051-053
053-0 56
059-063
080-090
090-10
10-11

WAVELENGTH RANGE (pm)

o ~1 O UL WD

pm.) Although the spectral reflectance in
these regions 1s highly correlated to mois-
ture we did not consider them smce
atmospheric absorption prohibits their use
by an airborne sensor

Changes 1n grain size seem to manifest
themselves most clearly in the shorter
wavelengths (0.4-0.7 pm). Gran-size n-
formation 1s gamned by hght bemng re-
flected from sand grains below the surface
through surface grams. The transmttance
through the surface gramns is reduced by
internal scattering and absorption of the
particle. Since both of these factors are
dependent on thickness, the bulk reflec-
tance of a sand 1s dependent to some
degree on the grain size. Theoretically, a
coarse-graimned sand should have a lower
reflectance than a fine-grained sand of the
same mineralogical composition, sur-
face frosting, and with similar moisture
content. According to our measurements
this appears to be the case.

This gran-size phenomenon can be
confounded 1n two ways. First, if there 1s
no scattering or absorption within the
grains (1 e., a perfectly clear matenal at all
wavelengths) there can be no attenuation.
Fortunately, even i our purest quartz
sands there were enough impunties and
inclusions to give some attenuation Sec-
ond, the sand grains may be opaque and
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thus attenuate too much light. This ap-
pears to be the case n the heavy mineral
and carbonate beaches. Most of the bulk
reflectance for these two types was the
result of surface reflectance and essen-
tially none from hight transmitted through
the surface grains from below. We were
unable to create accurate grain-size equa-
trons for these types.

Utihzing the physical phenomena dis-
cussed above we are able to develop
multiple hnear regression equations for
predicting moisture m all five mineralogi-
cal classes and grain size for three of the
five mineralogical classes. The basis for all
the regressions, except one, was the sam-
ple group corresponding to a given
mineralogical class. The single exception
was the grain-size equation corresponding
to a pure quartz beach. Our samples
within this type consisted of a single gramn
size (0.22 mm) and, as such did not
provide an adequate basis for regres-
sion equations. For this case, we used
AQUASAND-generated spectra to simu-
late a wide range of grain sizes 1n order to
add grain-size vanability to the data set

Seventeen spectral bands between 0.4
and 2.5 pm were chosen for use in the
regressions (Table 2). Within the 17
bands, only those which were predicted
by the AQUASAND model to be most
informative were used. In this way we
could be reasonably certain that the re-
gression equations would respond the cor-
rect parameter and thus yield accurate
predictions. The predictive equations to-
gether with the associated standard errors
(SE), and coefficient of variation ( R2) are
given 1n Table 4.

In summary, the MOGS algorithm rep-
resents (see Fig 1) a computer-controlled
package of equations. The input 1s a set of
17 spectral reflectance bands obtamed
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TABLE 4 Multiple-Linear-Regression Equations for the Prediction of Moisture and Gramn Size The equations are

histed by mineralogical class Gramn size 1s in mm

A Iron-stamed quartz® — Atlantic coast
Predicted moisture % =67 964 —65 046 (

SE=+3 08%, R®=0888

Band 16 )
Band 14

Predicted gram size =6 87— 3 4634 (Band 7)1/ +0 0300 (Band 1)+0 01672 (Band 15)

SE= =0 13 mm, R%2=0603
B Iron-stained quartz—Michigan coast

Predicted moisture % =260 149 —49 961 (
SE= 2 56%, R? =0 970

Band 11

Ba.nd16)_2226 (Ba.nd17)

Band 1

Predicted grain size =0 6405—0 0152 (Band 5)—0 0047 (Band 17)

SE= 0055 mm, R>=0558
C Non-Iron-stamned quartz

Predicted Motsture %= 127 02—63 159 ( Band 16 ) —64065 (

Band 15
SE==212%, R2=0971

Predicted gramn size=1 158-2 328 (Band 10)+0 3201 (

SE and R? not apphcable
D Carbonate
Band 14

Predicted moisture % =596 28 —642 ( Band 17

SE= =4 09%, R2=0879 No gramn-size equation
E Heavy mmeral

Predicted moisture % =19 284 +11 194 (
Band 17
SE= +409%, R2=0879 No gramn-size equation

Band 14 )_

Band 15 )
Band 14

Band 7
Band 1

) +0 2858 (Band 10)

)— 1081 (Band 14)+0 1538 (Band 17)

1081 (Band 14)+0 1538 (Band 17)

#Iron-stained quartz was determined by visual examination under stereomicroscope

from an unknown sand. Based on these
bands, the sand is classified as being a
member one of five mineralogical types.
Depending on the mineralogical type,
the approprnate moisture and grain-size
(where applicable) equations are applied
to the data. The output from the MOGS
algonthm 1s the predicted mineralogical
class, the predicted moisture, and the pre-
dicted grain size.

Test Results of the MOGS on Laboratory
Spectra

The MOGS algonthm was first tested
on 70 of the 81 samples from which 1t
was denved and the results were very
promusing. Eleven samples were dis-
carded because therr gran sizes were
abnormally large or percentage of mois-
ture was maccurate. The classification of

mineralogy was 99% + correct. The over-
all correlation of predicted to actual mois-
ture was 96% (significant at the 0.001
level) and the overall correlation of
predicted to actual gramn size was 88%
(sigmficant at the 0.001 level). However,
testing any equation or algorithm on the
samples from which 1t was derived 1s not
conclusive. For this reason the MOGS
algonthm was tested on several other
beach sand samples which were indepen-
dently collected and spectrally measured
following the algonthm construction.
These results are given i Table 5. In
each case, the MOGS algonthm selected
a mineralogy which allowed the moisture
and gramn-size regression to operate cor-
rectly The independent test yielded an
actual moisture to predicted moisture cor-
relation of 0.95 (significant at the 001
level) The prediction of grain size was n
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TABLE 5 Comparnison of Actual Parameters to Predicted Classifications by the MOGS Algonthm Samples used
here were collected independently of those on which the algonthm 1s based

MEaN
SAMPLE MINERALOGY MoisTure (%) GRAIN S1ZE (mm)
(mm)
AcTuAL  PREDICTED AcTuaL PREDICTED % DIFFERENT AcTuaL PREDICTED DIFFERENT

MICH1 MICH 377 256 —-121 026 028 4002
MICH2 MICH 32 37 +05 028 030 +002
MICH3 MICH 03 00 -03 025 032 +007
MICH4 MICH 121 160 +39 023 029 +006
MICHS MICH 150 127 —23 025 030 +005
MICH6 MICH 280 26 2 —-18 028 029 +001

no case more than 007 mm different
from the actual grain size.

Test of the MOGS Algorithm on MSS
Data

The next logical test for the MOGS
algonthm was to evaluate 1t on actual
multispectral scanner (MSS) data. Such
an mvestigation was carrnied out using
aircraft data obtamned from the ERIM-
MSS. The ERIM-MSS (Hasell et al, 1974)
1s an optical scanning device, 1e, 1t re-
cewves signals continuously while the
sensor mstantaneous field of view (IFOV)
moves over the fhght path scanning the
terrain  The MSS 1s a passive device,
meaning 1t senses energy onginating from
the sun and reflected from the terrain.
The data from the MSS used 1n this anal-
ysis covered 12 discrete spectral bands
the 0.4-2.5 um region of the electromag-
netic spectrum (see Table 6)

Field test

Multispectral Scanner data were col-
lected over three test sites along the
Michigan shoreline; Muskegon State Park,
Pentwater State Park, and Mason—Oceana
(M-0) County hne. The fhght, part of an
ERIM fhght test for a NASA and NOAA
program, took place on 1 November 1978

TABLE 6 Spectral Bands
Used by ERIM-MSS for Test-
mg the MOGS Algorithm

Banp
NUMBER RANGE ()
1 040-044
2 043-046
3 045-049
4 048-053
5 051-057
6 054-063
7 060-072
8 066-084
9 078-11
10 12-14
11 15-18
12 20-26

under clear skies between 1:00 and 2:00
PM.

Comcident with the fly-over, the fol-
lowing ground truth survey was carned
out at the Pentwater test site.

1. Sand samples were collected to
confirm grain size and moisture
conditions at the time of fhight, and

2  Reflectance panels (black and gray)
were placed on the beach and radi-
ance and wrradiance spectral mea-
surements obtained.

Additionally, three sand samples were
taken at the M—O County lhne site and
two sand samples obtamned along with a
reflectance measurement at the Muske-
gon State Park test site
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The Michigan beach test was the first
test of the MOGS algonthm on actual
MSS data. The bands available on the
ERIM-MSS (M7) as 1t presently func-
tions necessitated a change in the band
classification using the MOGS algonthm.
The algonthm was changed to handle a
total of 12 instead of 17 bands. This was
simply done by truncating the five bands
from the algorithm not available on the
ERIM-MSS (M7). The resulting predic-
tions of mineralogy using 12 instead of 17
were not affected. Using only five bands
and ten ratios, the algorithm classified the
mineralogies very well. This indicates that
the use of eight bands and 26 ratios, as in
the ongmal algorithm, 1s probably over
precision. In addition, the M7 bands give
very nearly the same predictions for mois-
ture and gran size for the Michigan
beaches as the 17 bands which were used
to develop the onginal equations.

Aircraft MSS data reduction

Table 6 hsts the 12 channels of MSS
data used 1n the Michigan tests. These
channels (as mentioned previously) were
selected as being very close to the chan-
nels used in the development of the
MOGS algonthm. The nine channels cor-
responding to the shorter wavelengths
ubihzed a photomultipher detection sys-
tem while the three longer wavelength
channels used an InSb detector. The data
were recorded digitally on a High Density
Digatal Tape (HDDT) for later computer
processing,.

Using an ERIM computer video dis-
play, the exact location of the test sites
were determined and the data for all three
test sites were transferred to a computer-
compatible tape (CCT) for use on the
University of Michigan AMDAHL 470
computer system (MTS). Rather than
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converting all the data, only an area 100
pixels on either side of the test site was
recorded for each test site. Each pixel for
the test data (600 m altitude) 1s ap-
proximately a 1.5 m square The use of
only 100 pixels on either side of the test
site negated having to correct the aircraft
data for scanning angle effects of the
sensor

Using the generated CCT on MTS,
gray maps (computer-generated images)
were produced to ascertain the exact areas
from which the sand samples were col-
lected. Upon specific location of the sam-
ple areas wathin the test site, the actual
digital values obtammed by the remote
sensor were extracted. The data values
obtained from MTS corresponding to the
sample areas were then tabulated and
“calibrated” This was accomplished by
using an MTS module to extract the
calibration values related to each scan
line which contained a sample point. The
“blackbody” calibration value was sub-
tracted from the sample value for each
sample to normalize the data. We found
essentially no vanability between scan
lines 1n terms of the calibration values.

Concurrent with the data extraction,
the sand samples obtamned from the test
site were measured for reflectance using
the Cary 14 spectrophotometer. The sig-
nal values obtained from the scanner data
were then plotted against the appropnate
band reflectance, as measured with the
Cary 14, to achieve a signal value to
reflectance transfer curve For some
reason, probably related to the non-
Lambertian nature of objects in the scene,
the relationship did not appear to be
strictly hinear i all bands. This nonlhinear-
1ty appears to be most pronounced for the
near nfrared spectral bands which use
the InSb detector. In addition, the reflec-
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tance calibration panels which were de-
ployed at the Pentwater Site do not plot
well with the sand values. This means
that, in this case, the panels were not
particularly useful in cahbrating the MSS
system to values of reflectance. Our final
signal-value-to-surface reflectance calibra-
tion was accomplished using the reflec-
tance of a few sand samples (four) plotted
agamnst the MSS digital signal value. The
digital values of other areas on the beach
were then altered to reflectance using
these curves. Thus the ERIM-MSS (M7)
recerved radiance value was converted to
a reflectance value using this techmque.

Aircraft test results

The test results using the aircraft
scanner data are encouraging (Table 7).
The correlation (R) of predicted to actual
moistire content 1s 0.91 (sigmificant at
the 0.01 level) and the prediction of grain
s1ze 1s, In no case, greater than 0.09 mm
different from the actual grain size. The
predicted grain sizes shown in Table 7
are all larger than the actual measured
gramn size. The statistical analysis on the
sand samples used to create the Michigan
grain-size regression equation showed the
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sands to be moderate to well sorted (1.e,
low standard deviation of grain size) but
exhibiting a negative skewness 1n almost
all cases This negative skewness, indica-
tive of a coarse fraction, could have bi-
ased the gramn-size prediction algornthm
and caused the larger than actual predic-
tion of grain size to result.

The moisture prediction appears par-
ticularly poor for high mosture contents.
This 1s most likely the result of wet sand
at the test sites exhibiting bidirectional
dependencies (1.e., a fallure to behave 1n a
Lambertian manner). These bidirectional
characteristics are enhanced at low sun
angles and are not accounted for by the
MOGS algorithm. Although the fhght took
place at 1.30 EST the sun was only 38°
above the horizon on November 1.

A laboratory experiment was conduct-
ed to quantify the effects of bidirectional
dependencies of wet sand. Figure 2 shows
the laboratory set-up used to conduct the
test. The sand was spread evenly m a
70X70 cm tray to a depth of 25 cm
IMlumination was provided by a 200-uW
projector lamp whose beam was optically
collimated to provide a highly directional
source (1€, =~6°) The detector used was

TABLE 7 Comparison of Actual Parameters to Predicted Classifications by the MOGS Algorithm
The sand spectra used here were collected by the ERIM-MSS

SAMPLE MINERALOGY MoisTure (%) GRAIN S1ZE (nm)
mm
ACTUAL PrEDICTED ACTUAL PREDICTED % DIFFERENT AcTtuaL PRrEDICTED DIFFERENT
Pentwater MICH 223 121 —102 025 032 +007
Pentwater MICH 10 00 -10 023 028 +005
Pentwater MICH 80 101 +19 022 025 +003
Pentwater MICH 280 169 —111 026 035 +009
Pentwater MICH 50 22 —23 024 026 +002
M-0O Line MICH Not measured 029 032 +006
M-0 Line MICH Not measured 027 036 +009
M-0O Line MICH Not measured 029 037 +008
Muskegon MICH Not measured 025 030 +005

State Park
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a Coherent Optics power meter which
utihzed a silicon detector. The aperture of
the detector was reduced using baffles
such that an area approximately 5 cm
square on the sand surface was sensed. To
avoid having the detector head shadow-
mg the sand 1t was offset such that it was
viewing at an angle of 23° from the verti-
cal As s shown in Fig 2, the lamp was
moved through several angles from nor-
mal to the sand surface to nearly parallel
with 1t At each angle the flux to the
detector was measured and recorded.

According to theory, if a surface 1s
perfectly Lambertian then the exitance
from the surface should decrease with the
cosine of the angle of incidence. There-
fore the exitance observed at any 1l-
lumination angle should be equal to the
exitance with the lumination normal to
the surface multiphed by the cosine of the
angle of interest. Using this relationship, a
useful measure of the Lambertian nature
of a matenal 1s

R A SHUCHMAN AND D K REA

where R 1s the measure of Lambertian
nature, M, 1s the exitance observed at
llummation angle § and M, 1s the exi-
tance observed wiath the illummation
normal to the surface. For a perfectly
Lambertian material R should be 10 for
all & If R 1s less than 1.0 then less flux 1s
being reflected at angle 6 than was ex-
pected, and if R 1s greater than 1.0 the
reverse 1s true

Using the expernnmental design just de-
scribed, two sand conditions were 1n-
vestigated. dry sand and sand with ~25%
moisture As can be seen in Fig 3(a), dry
sand 15 quite Lambertian n character at
angles up to 60° ncident (30° above the
honzon). The sun angle during the
Michigan test fhight was approximately
52° mcident indicating the exitance from
dry sand was ~84% of that expected
from a Lambertian maternial. This 15
fact quite good for this incidence angle
although a more nearly normal incidence
angle (higher sun) would have been de-
sirable

The wet sand [Fig. 3(b)] exhibits strong
bidirectional properties indicative of a

"Collimated" Source

FIGURE 2 Experiment set-up used to determme Lambertian properties

of sand
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semispecular surface. The raw data indi-
cates a very high exitance at 0° incidence
followed by a rapid fall off at other inci-
dence angles relative to that observed for
dry sand. The implication 1s that there 1s
a specular return at 0° mncident—a very
non-Lambertian charactenstic, for such a
case the assumption of a Lambertian
surface does not hold. Note from Fig. 3
that for sun angle =15° from zenmith wet
and dry sands decreased in reflectance
approximately the same amount and
therefore mimmize non-Lambertian ef-
fects. It should be noted that the gonio-

1.3
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metnc study described was not a spectral
study but rather used a hight source that
ranges the visible and 1s weighted to the
infrared.

In summary, the Cary 14 Spectropho-
tometer makes a reflectance measurement
that 1s hemsphencal, 1.e., the reflectance
properties whether bidirectional, Lamber-
tian, or diffuse have little bearing on the
reflectance that 1s sensed. Conversely, the
MSS only ntercepts radiation which 1s
reflected n a certain direction as opposed
to the diffuse sensing of a spectrophotom-
eter For an MSS, this sensing 1s normal
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FIGURE 3 (a) Dry sand case (b) Wet sand case
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B 015-025 mm B 025-040 mm HBes >040 mm

(©

FIGURE 4 Digital imagery, generated by the MOGS algorthm showing the distribution of
moisture and gramn size on Pentwater Beach (Pentwater State Park, Michigan) White areas are either
unclassified regrons or open water Lighter shade indicates higher moisture content (a) Moisture
distnbution 1mmage (b) Gran-size distribution 1mage (c) Panchromatic aenal photograph
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to the sensed surface at the center of the
scan and progressively more obhque to-
ward the edges of the scan The type of
fllumination 1s highly vanable ranging
from diffuse with an overcast sky to nearly
specular on a clear sunny day. In the
former case, the geometry 1s much hke
that of a spectrophotometer 1in reverse—
diffuse source and specular sensing Be-
cause of reciprocity the apparent reflec-
tance as derived from MSS data, 1gnonng
path radiance factors, should be exactly
the same as the reflectance sensed by a
spectrophotometer Thus, to mimmize
bidirectional reflectance, future aircraft
fhights should be made during complete
muidaltitude (3000 m) cloud cover or sunny
skies with the sun close to the zenith
(summer sun) as indicated from Fig. 3

Applying the same moisture and grain-
size equations used 1n the previous analy-
s1s, the entire Pentwater State Park beach
on a pixel-by-pixel basis (in this case 15
mXxX15 m) was classified with respect
to grain size and moisture content The
two MOGS-generated digital maps (see
Fig. 4) show the predicted moisture and
gramn-size distribution on the beach at
Pentwater. Also mncluded on Fig. 4 15 a
panchromatic aerral photograph take
comcident with the MSS data. The ground
truth measurements taken at the time of
fight correlate well with these images.
Figure 4 helps to demonstrate how an
entire sandy coasthne might be analyzed
mn respect to moisture, grain size, and
gross mineralogy using a small subsection
as calibration

Conclusion

The development of the MOGS algo-
rithm has demonstrated the feasibility
of obtaming quantitative moisture and
gramn-size information from the spectral
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reflectance of beach sands. The de-
termination of grain size 1s dependent on
the sand grans being neither opaque nor
perfectly clear.

The two stage nature of the MOGS
algonithm 1s directly responsible for its
broad applicability without loss of detail.
By separating the muneralogical types
prior to the prediction of moisture and
grain size much of the vanability which
could easily hide small scale changes 1s
removed. The use of a vector-length dis-
criminant function to classify mineralogy
worked extremely well in this application,
since 36 different dimensions could be
evaluated simultaneously. A multistage
approach involving multiple classification
techniques 1s a powerful tool, one which
may be very useful in many areas of
remote sensing.

The Lake Michigan field test has fur-
ther demonstrated the MOGS algonthm’s
apphcability to remotely sensed field data
Gramn size was predicted to within 0 09
mm mean diameter of the actual size
while beach moistures below 20% were
accurately predicted In all cases, the
computer algorithm correctly identified
the Michigan beach mineralogy as being
a predominately iron-stamed quartz—
feldspar beach.
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