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Abstract-The application of the finite element method to the first-order form of the neutron transport 
equation is reviewed. The general theoretical foundation of the finite element application is summarized, 
including a derivation of the weak form, a discussion of the treatment of all boundary conditions as natural 
boundary conditions and a few remarks concerning convergence.. Results of the 1-D application are presented 
including a description of the discontinuous phase-space finite elements. The 2-D application is discussed and 
its application to the classic ray effect problem is examined. It is concluded that the finite element method does 
alleviate the ray effect but at the considerable expense of computational time and memory requirements. To 
address this concern, a new ‘segmentation’ scheme for the 2-D application is described. This scheme yields 
satisfactory results for the ray effect problem while reducing the computational cost by nearly an order of 
magnitude. Finally a few remarks are presented concerning the time-dependent application and the paper 
concludes with some general comments concerning the overall application of the finite element method to the 
first-order equation and comparison with alternative methods. 

1. INTRODUCTION 

The finite element method is the name commonly 
applied to the expansion of the solution to a set of 
partial differential equations in a set of local basis 
functions. Either variational or weighted residual 
methods are then used to arrive at a sparse matrix 
representation of the original problem. This method 
has received considerable attention over the past 
decade as a promising alternative to conventional 
techniques such as spherical harmonics or discrete 
ordinates for solving the transport equation. 

The finite element method was first applied in the 
mid-1950s to a variety of problems in structural 
mechanics. Since that time finite element methods have 
been developed for such diverse areas as fluid 
mechanics, heat transfer and neutron diffusion. The 
success of the finite element method may be partially 
attributed to its versatility for treating quite general 
classes of partial differential equations. However, it also 
presents decided advantages for handling complex, 
irregular geometries, and its firm theoretical found- 
ation in approximation theory guarantees the 
convergence of the approximate solution in most cases 
of interest. 

The application of the finite element method to 
transport problems has been a relatively recent venture. 
A variety of approaches have been studied, such as finite 
element expansions in both the space and angle 
variables for both the traditional (non-self-adjoint) and 

the even- and odd-parity second-order forms of the 
transport equation. These methods may be described as 
phase-space finite element methods as opposed to the 
hybrid scheme, wherein finite element techniques are 
used for the spatial variables and conventional discrete 
ordinates are used for the angular variables. In general, 
none of the phase-space finite element efforts have 
resulted in a ‘production-level’ finite element transport 
code to rival discrete ordinates codes or the combined 
finite element-discrete ordinates codes ; however, 
research in this area is continuing at a rapid pace. Of 
particular note is the extensive research directed at 
applying phase-space finite element methods to the 
second-order form of the transport equation by a 
number of research groups. 

In this paper, our attention will be directed at phase- 
space finite element methods for transport problems 
based on the first order (conventional) form of the 
transport equation. We begin with a brief discussion of 
the theoretical formulation of the method, including 
error and convergence. rate estimates. We review past 
efforts on applications to both one- and two- 
dimensional problems, including a summary of results 
comparing computational efficiency and numerical 
accuracy of these methods when compared to other 
approaches. We also review the effort associated with a 
more recent ‘segmented’ algorithm that holds promise 
for improving computer run times and storage 
requirements for multidimensional problems. As will 
be noted in the following discussion, the issue of 
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computational efficiency is a critical one for the 
eventual success of finite element methods for solving 
the first-order transport equation. A brief discussion of 
the solution of time-dependent problems will also be 
given. Finally we will conclude with several remarks 
concerning the comparison between the first- and 
second-order form finite element methods and more 
conventional approaches based on discrete ordinates. 

2. THEORETICAL FOUNDATIONS 

2.1. General background 

The basic procedure involved in applying finite 
element methods is quite simple. First the problem 
domain including the boundary is partitioned into a 
number of non-overlapping adjacent cells, called ‘Rnite 
elements’. The solution is expanded in a finite set of 
basis functions defined on each individual cell in terms 
of a set of parameters (the expansion coefficients) 
associated with the nodes, which may be discrete points 
on the element boundaries or points within the element 
domain. Generally the nodal parameters are chosen to 
be the value of the solution and/or its derivatives at the 
node. Adjacent elements are then related to each other 
through the nodal parameters, a fact which serves to 
enforce continuity conditions across element boun- 
daries. Choosing the basis functions to be polynomials 
defined on local regions consisting of only a few finite 
elements results in a piecewise polynomial expansion of 
the solution. There are several options for developing 
the set of simultaneous algebraic equations to 
determine the expansion coefficients. Once these have 
been obtained, standard techniques can be employed to 
solve the matrix equation for the expansion coefficients. 
This method offers such a variety of approaches, 
starting with the shapes of the finite elements, to the 
form chosen for the trial functions, to the method 
selected for setting up and solving the matrix equation, 
that a wide number of science and engineering 
applications can be considered. 

Mathematically, the finite element method cor- 
responds to choosing an appropriate approximation 
subspace and expanding the unknown solution in a set 
of basis functions that span the approximating 
subspace. It is theoretically demonstrable for many 
situations that the finite element solution is as ‘close’ to 
the actual solution as any other member of the 
approximating subspace. It is in fact the projection of 
the actual solution onto the approximating subspace. 
By choosing successively large subspaces (i.e. refining 
the mesh) one can guarantee convergence of the finite 
element solutions to the actual solution. 

The finite element method can be implemented either 
via variational or weighted residual techniques. For 

self-adjoint problems, it is attractive to implement the 
method by minimizing an appropriate functional (most 
commonly the Ritz or Roussopoulos) using trial 
functions defined on the finite element subspace. 
Requiring the functional to be stationary results in a 
matrix equation for the expansion coefficients. A 
second approach is the class of weighted residual 
methods in which an integral form of the original 
equation is developed. In the most common form 
known as the Galerkin method, weight functions are 
chosen that correspond to the basis functions defining 
the approximate solution. By using the local basis 
functions, both methods yield sparse matrix systems 
which are often banded in such a way that 
computational and storage advantages can be realized. 

For the case of a self-adjoint system such as the one- 
speed diffusion equation, both variational and 
weighted residual methods are equivalent. However 
since the first-order form of the transport equation is 
not self-adjoint, there is no available extremum 
variational principle. We have no choice but to apply 
the finite element method to the solution of the weak or 
integral law form of this equation. 

We will now briefly review the theoretical 
formulation of the finite element method as applied to 
the first-order transport equation. This review will 
include a description of the transport equation, the 
derivation of its equivalent weak or integral law form, 
comments on the treatment of boundary conditions 
and some remarks concerning error estimates and 
convergence rates. This section is based to a large extent 
on the earlier work of Ukai (1972) and subsequent 
works by Martin (1976) and Martin and Duderstadt 
(1977). 

2.2. Integral law (weak) form of the transport equation 

Let us first consider the derivation of the integral law 
corresponding to the first-order transport equation, 
assuming time-independence and the one-speed 
approximation 

= c cUYZ&,Q1’*QQ(r,&)+S(r,Q (1) 
J4X 

subject to a specified angular flux on the incoming 
boundary 

Qk,, fil = Qdr,. @, fi - 4 < 0 (2) 
where r, is a point on the boundary. We introduce the 
following notation for convenience : 

R = spatial domain 
47~ = angular domain 
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V = phase-space domain R x 4x 
8R = boundary of R 

r = boundary of V = R x 4x 
T* = outgoing (or ingoing) boundary (i.e. all 

(r, a) E r such that fi * 6% 2 0). 

We will also need to introduce the space of allowable 
solutions (the ‘energy’ space) 

and the following inner products and norms associated 
with H, : 

(f; d = 
is 

dr dSl.f(r, If21g(r, fi) (3) 
V 

CL s> + = 
I 

dS da I fi * $I _f(rs, sE)g(r,, fi) (5) 
r* 

llfllo = WP2 (6) 
llfll 1 = Cuf)+(wvfP’2. (7) 

The weak or integral law form of equation (1) is 
obtained by multiplying equation (1) by an arbitrary 
$(r,fi)E H, and integrating over the phase-space 
domain V. An integration by parts then yields surface 
integrals into which the boundary condition equation 
(2) is included. The resultant weak or integral law 
formulation may then be stated : 

Find a function Q(r, fi) E HE such that for all 
+(r, fi) e HE 

= (Sti)+<Q,,ti)- (8) 
It is readily demonstrated that equation (8) and the 

original partial dilTerential equation plus boundary 
conditions, equations (1) and (2), are equivalent. 

2.3. Boundary conditions 

The boundary condition Q = Q. on I+ is included in 
the integral law equation (8). It will be naturally 
satisfied by thesolutionQ(r,Sl),even though wedidnot 
explicitly require the entire solution space HE to satisfy 
it. This is an example of a natural boundary condition. 
Such boundary conditions are not imposed directly on 
the space of trial functions, but rather result as a 

consequence of the integral law itself. If we had not 
employed an integration by parts, then we would have 
had to restrict our allowable space of trial functions to 
those Q E H, that also satisfied the boundary condition 
Q = Q. on r-. This latter situation is known as 
essential boundary conditions, because they are 
imposed on the space of trial functions. 

The derivation ofnatural boundary conditions using 
an integration by parts is a general feature of finite 
element methods. For the first-order transport 
equation, all boundary conditions may be treated as 
natural boundary conditions. That is, one simply 
substitutes the expression for Q on r- into the surface 
term 

If the boundary conditions are implicit, one substitutes 
the relation between Q on r- to Q on r+ into (Q, $). 
This feature will become more evident when we 
consider the specific case of one-dimensional plane 
symmetry in Section 3. 

2.4. The approximate integral law 

The integral law is now in a form that is amenable to 
approximation by way of the finite element method. 
That is, rather than attempting to find a solution Q(r, f&) 
of equation (8) in the space HE, we seek a solution 
Q”(r,@ E S” such that equation (8) is satisfied for all 
tih(r,h) ES”. Here his a parameter that depends on the 
mesh spacing to be used in the approximate solution 
and Sh is a specially constructed subspace of H, with 
basis functions $f(r,h), i = 1,2,. . . , N, where N is the 
dimension of Sh (typically the number of nodes in the 
mesh). Here it is important to note that the basis 
functions are local in the sense that 

is non-zero only when the nodes i and j are close 
together. 

When we restrict ourselves to this subspace, we arrive 
at an approximate form of the integral law: find 
Q”(r,&) E Sk such that for all @(r, a) E Sh, 

-(Qh&*Wh)+ <Q’,V)+ +WQb,tih) 

= (S,tih)+(Qo,@-. (10) 
SinceShis finite dimensional and Qh E Sh, we can expand 
Q” in the basis functions for Sh, 

Q’Yr, fi) = 5 4j@@.@ (11) 
j=I 
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and it is sufhcient to require equation (10) to hold for all 
@(r,h), i = 1,2 ,..., N to ensure that equation (10) is 
valid for all tih(r, ii) E S* : 

If we take the summation outside the integrals, we 
arrive at the matrix system 

where 

A4=S (12) - - 

4j = -($$fi.VJI:)+ (@, $:) 

+ (KICI$ JIT) 

si = (S, $9 (13) 

9 = col(&, 42,. . . , CM 

where the inner product notation of equation (3) has 
been utilized. 

At this point we might note that the construction of 
the subspace S* has not entered the discussion, and 
equation (10) could very well be applicable to any 
Galerkin formulation. However, the choice of a finite 
element basis considerably simplifies the calculation. 
More importantly, this choice results in convergence to 
the actual solution as the mesh spacing is refined 
(h + 0). That is, if Q(r, fi) is the actual solution, then 

F; Q’tr, f4 --, Q(r, f4 

(in some suitable measure or norm). 

2.5. Convergence of thefinite element solution 

In general, if the finite element method is applied to a 
second-order, self-adjoint operator, it can be shown 
(Strang and Fix, 1973) that the L, error E in the 
approximate solution Q*(r), l/Z ES 

[S 
d3r IQ(r)- Q’W12 1 

is less than the L, error for any other approximation 
that can be formed within the finite element subspace Sh 

[S 

l/2 
d3r IQ(r) - Qh(r)12 1 [I < d3r IQ(r)- xh(r)l ’ (14) 1 112 

for all p E Sh. 

But the finite element subspaces of most interest consist 
of piecewise polynomials. Therefore we can appeal to 
approximation theory to ascertain the degree to which 
the space of piecewise polynomials S* can approximate 

an arbitrary function f(r). In particular, if f(r) has a 
square-integrable gradient over the domain R, there 
exists an approximation fh(r) E Sk such that 

[S 1 l/2 d3r If(r) -f “WI 2 f Ch’+’ (15) 

where h is the mesh spacing, k the degree of the 
piecewise polynomials, and C is a constant independent 
of h or k. For example, k = 1 for linear piecewise 
polynomials, and therefore for this case 

LI 1 l/2 d3r If(r) -f “WI 2 < Ch2 (16) 

But from equation (14) we know that Q”(r) is at least as 
close to the true solution Q(r) as this particular 
approximation. Therefore 

is 

112 d3r IQ@) - QhW12 1 < Ch’+’ (17) 

and as h + 0, we conclude that Qh(r) + Q(r) (in the L, 
measure) with O(hkC’) convergence. 

The above remarks, however, do not apply to the 
first-order transport equation. Ukai (1972) has proven 
a weaker estimate for the L2 error in the approximate 
solution, 

IIQ-Q’llo G IIQ-x~III (18) 

for arbitrary f E Sk. From approximation theory we 
know there exists a xh E S* such that 

/IQ--x’lli G Ch’ 
which immediately yields the error estimate 

(1% 

IIQ-Q’llo G Chk (20) 
which is O(h) less than the corresponding error estimate 
given above in equation (17) for the second-order, self- 
adjoint case. However, numerical results obtained by 
Martin (1975) substantiate the following convergence 
for the error in the approximate solution of this 
equation 

[jj 1 l/2 
d’r & IQ@, a) - Q”(r, @I2 < Chk+ ‘. (21) 

Y 

Therefore the finite element method yields the ‘best’ 
possible solution from the space of allowable trial 
functions. Since approximation theory tells us that the 
space of piecewise polynomials is capable of 
approximating the unknown solution to any degree of 
accuracy, we are assured that the finite element solution 
will be at least as accurate. 
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3. ONEDIMENSIONAL PLANE SYMMETRY 

3.1. Derivation of thefinite element equations 

To illustrate the finite element approach, we will 
consider the one-dimensional transport equation in 
plane geometry. For simplicity, we will consider the 
problem of a homogeneous slab on the interval 
O<x<l 

L 21+1 
a$ + %(xX2(x,/4 = c - 

( ) I=0 2 

I 
1 

x ~dWh4 WP, W)Q(x, 14 + Sk 4 (22) 
-1 

subject toreflecting(symmetry)boundaryconditionsat 
x = 0, 

Q&4/4 = Q(4 -14 (23) 

and a specified incoming flux at x = 1, 

Q(LP) = QOWP < 0 (24) 

In this case our space HE becomes 

(25) 
and once again we choose a subspace ShcHE and 
expand the solution to the 1-D analog of the 
approximate integral law, equation (lo), in terms of the 
basis functions of S” : 

Q'(x~P) = 5 4jtij(x,PJ (26) 
j=l 

Substituting equation (26) into the 1-D approximate 
integral law then yields the following system of 
albegraic equations 

jc,Aij4j=Si, i= 1,2,...,N (27) 

where 

A, = - 

I 
1 

x !G(x, P~~dP) dZJl:fXv /.W&‘). 
-1 

Therefore the finite element method has led to a system 
of algebraic equations that can be solved by standard 
methods for the expansion coefficients di. 

The detailed steps leading from equation (22) to 
equation (27) are similar to the general case discussed 
above and may be found in Martin and Duderstadt 
(1977). It should be noted however that the inclusion of 
the reflecting boundary condition into the integral law 
was performed in the direction of neutron motion by 
eliminating the incoming flux in favor of the outgoing 
flux : 

Q@,P) = Q&t -A P > 0. (28) 
It has been observed (Martin and Duderstadt, 1977) 
that eliminating in the other direction yields completely 
erroneous results and it is important to ‘follow the 
neutrons’, which is a basic tenet of discrete ordinates 
methods. 

3.2. Construction of thejnite element subspace 

To illustrate how to construct a suitable finite 
element subspace Sh, we provide specific details for one- 
dimensional plane geometry. In general, the finite 
element method is employed in a nodal fashion. That is, 
the expansion coefficients for the solution are nodal 
parameters that are typically the value of the solution 
or one of its derivatives at a node of the space-angle 
mesh. It is common to use Lagrange interpolation 
polynomials over each local mesh or finite element. The 
values of the solution at the nodes are the expansion 
coefficients, hence the unknowns in the system of 
equations. We could also employ Hermite inter- 
polation polynomials on a given finite element mesh ; 
however, in this case each node would include 
additional parameters representing the values of both 
the solution and its derivatives. Lagrange finite element 
schemes typically result in continuity of the solution 
everywhere in the mesh, although derivatives are 
generally discontinuous across interelement boun- 
daries. Hermitian schemes typically result in continuity 
of one or more partial derivatives everywhere in the 
mesh. 

Since. the transport equation is only of first order, one 
can expect at most continuity of the angular flux. Even 
this may be too restrictive for the angular variable. 
Therefore the use of Lagrangian elements that preserve 
continuity in the solution but not its derivatives would 
appear to be a proper choice for transport problems. 
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Lagrangian elements may be determined for a specific 
element type or formulated for multidimensional 
elements in terms ofdirect products oftwo or more one- 
dimensional Lagrangian basis functions. 

The more general method is to shape the basis 
functions to the particular element. For example, a 
triangular element with three nodes can uniquely 
represent a linear polynomial over a two-dimensional 
surface, with each node contributing a piece of data. 
That is, a general linear polynomial in two variables 
p(x, y) = a,+a,x +a,y requires the value of three 
parameters to be uniquely determined. If the values of 
the solution at the nodes of a triangle are taken to be the 
three parameters, the linear polynomial is uniquely 
determined within the triangle. With Lagrangian 
elements, where the nodal parameters are the value of 
the unknown solution, a convenient basis for a triangle 
consists of three linear polynomials, each of which is 
unity at one node and zero at the other nodes. This will 
result in the expansion coefficients being identical to the 
value of the solution at the nodes. This concept of 
choosing a basis consisting of functions that are unity at 
a particular node and zero at all other nodes is typical of 
Lagrangian elements, and it is used for the direct 
product basis functions in our following discussion. 

For multidimensional elements one can also 
formulate basis functions that are direct products of 
simple one-dimensional basis functions. For example, 
the one-dimensional plane geometry basis functions 
could be written as the product of space and angle 
functions 

A convenient consequence of the direct product basis 
functions is that the components of the matrix elements 
A, are separable into products of spatial and angular 
integrals. For example, the contribution to A, in 
equation (27) due to the streaming term becomes s 0 1 dx s -1 1 dplu(rjg= 

s 

1 dx dlLdx) 
0 7 9jxtx) 

where ix is the x node corresponding to node i. This 
greatly simplifies the calculation of the integrals 
because the spatial and angular integrals may be 
performed independent of one another. 

Although the ranges of integration of the integrals in 
A are given over the full spatial and angular ranges, in 
fact the local definition of the basis functions greatly 
reduces the range ofintegration, and the components of 
A, generally vanish if nodes i and j are not adjacent (for 
linear elements). There is one notable exception, 

however. The scattering contribution to A 

is a product ofintegrals ofbasis functions rather than an 
integral of a product of basis functions. Therefore 
scattering couples all the angular nodes (although the 
spatial coupling is unaffected). This would be expected 
on physical grounds since there is a finite probability of 
scattering from one direction to another. 

One can define higher order basis functions, either as 
a higher-order polynomial over a general element such 
as a triangle or as a direct product of higher-order one- 
dimensional polynomials. To construct higher-order 
elements, one introduces additional nodes (e.g. one 
additional node for quadratic basis functions) and 
defines the higher-order polynomials over several 
nodes (vs two nodes for linear elements). This results in 
the coupling of nodes that would not be coupled by 
linear elements. This is not a concern with angular 
elements because all nodes are coupled by scattering in 
any event. But this increased coupling does present 
severe problems if higher-order elements are used in 
space. 

Although the matrix elements are relatively simple to 
compute analytically, the sheer number of integrals for 
even moderate sized problems forces one to simplify the 
work even further. For example, all integrals can be 
performed on the standard interval [ - 1, + l] by 
Gaussian quadrature, then mapped into the particular 
mesh interval by a simple linear transformation. 

3.3. Discontinuous basis functions 

In plane geometry it is well known that the transport 
equation may have discontinuities in the angular flux at 
).J = 0, at interfaces, or at boundaries. We can handle 
this discontinuity by generalizing the finite element 
method to include discontinuous basis functions. 
Continuity in the angular variable is not required 
during the derivation of the integral law in Section 3.1, 
since the transport equation in plane geometry has no 
angular derivatives. Therefore the use of discontinuous 
angular elements is simply a matter of constructing 
basis functions that are discontinuous at p = 0 (for 
plane geometry) and being careful to evaluate the 
integral in a piecewise fashion. This is easily 
accomplished by splitting the basis function at p = 0 
into two basis functions, one for p = O- and the other 
for p = O+. Thus there is a double node at p = 0. For a 
multidimensional problem where two angles are 
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needed, one can use direct product basis functions of 
these discontinuous one-dimensional functions. 

The situation for the spatial domain is somewhat 
different, since the exact solution to the transport 
equation must be continuous. Yet even here there may 
be situations at which the solution exhibits a near 
discontinuity. For example, the simple problem of a 
strong source of neutrons in a strong absorber 
surrounded by a vacuum will result in an angular flux 
with nearly discontinuous spatial dependence at the 
vacuum boundaries. To more adequately approximate 
this behavior using finite element methods, one can 
proceed as with the angular variable and simply 
construct discontinuous basis functions at the desired 
spatial positions, thus allowing the approximate 
solution to be discontinuous. However, the presence of 
the spatial derivative in the streaming term necessitates 
care when the transport equation is integrated over the 
spatial domain. That is, the integration across the 
discontinuity will yield surface terms which must be 
carefully incorporated into the integral law. 

The basic idea, the details of which may be found in 
(Martin and Duderstadt, 1977) is to split up the integral 
over the physical domain into integrals over domains 
which are separated by the assumed discontinuities. 
This is done prior to the integration by parts, which to 
be valid requires continuity of the flux within the range 
of integration. Integrating over the separate domains 
by parts then yields interface terms at the dis- 
continuities. These interface terms are then treated in a 
fashion similar to the treatment of the reflecting 
boundary conditions discussed above-continuity of 
the angular flux is imposed in the direction of neutron 
motion at the interface, 

Q(x,',cl)=QGGv~h P>O 
Q(X,,PL)=Q(-G,P,, P<O 

(30 

where we have assumed that X, is the discontinuity. 
The result is a matrix element I, 

x LH-G 9 d - m, > PII 

which is additive to the earlier matrix element A, 
defined in equation (27). As with the imposition of 
reflecting boundary conditions, we have observed that 
imposing continuity of the angular flux in the direction 
opposite to neutron motion yields erroneous results. 

Since the space of trial functions Sh is no longer 
continuous at the specified spatial discontinuity, but 
continuity in the direction of particle travel is imposed 
within the integral law, the net result is that continuity 
of the angular flux in the direction of particle motion 
appears as a natural interface boundary condition. 
Although there was no need to mention it earlier, our 
earlier formulation treated continuity of the angular 
flux as an essential boundary condition because 
continuity was imposed on the space Sh by construction 
of the basis functions. Therefore, the discontinuous 
basis function scheme allows more flexibility for the 
approximate solution to match the actual solution. 

3.4. Numerical results 

Numerical results for the 1-D plane geometry 
application have been previously reported (Martin, 
1975; Martin, 1976; Martin and Duderstadt, 1977) and 
are summarized below. 

1. The convergence rate@ measured by the L, error) 
for the source problem has been shown on the basis of 
numerical experiments to be O(h&+‘) where h is the 
mesh area and k the degree of the finite element. To the 
authors’ knowledge this rate has yet to be proven 
theoretically. 

2. Eigenvalue convergence rates for linear elements 
appear to be 0(h3), which appears to be consistent with 
the 0(/t*) rate observed for the flux error. The use of 
discontinuous angular elements at p = 0 is essential in 
order to obtain this convergence rate in that the use of 
continuous elements resulted in a marked loss in the 
convergence rate. 

3. For 1-D eigenvahte problems, the finite element 
method is competitive with conventional discrete 
ordinates codes for accuracy and computational 
efficiency. 

4. The prediction of criticality eigenvalues for 
anisotropicscatteringslabs has been performed and the 
results indicate that the finite element method works 
quite well, even with extremely thin slabs. 

5. For problems characterized by extreme hetero- 
geneities, such as the well-known four region slab 
problem devised by Reed (1971), the finite element 
method yields excellent results and substantiates the 
use of discontinuous spatial elements for problems with 
strong material discontinuities. 

4. TWO-DIMENSIONAL REtXANGULAR 

TRANSPORT 

The application of phase-space finite element 
methods to the 2-D first-order transport equation has 
been investigated by Yehnert (1978). The following 
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discussion summarizes the results of that effort, 
including conclusions concerning the accuracy and 
efficiency of the finite element method as well as its 
ability to mitigate the ray effect. 

4.1. Derivation of thejnite element equations 

Phase-space finite elements can be readily extended 
to two-dimensional domains. For the purpose of this 
discussion, neutron transport in the rectangular 
coordinate system of Fig. 1 will be treated, where the 
assumption of translational symmetry in the z- 
direction has been exploited to yield a two-dimensional 
problem. We will also assume, without loss of 
generality, symmetry in the azimuthal angle about 
rp = II. The angular domain is chosen as p = cos(0) = 
[- 1, l] and cp = [0,x]. The first-order neutron 
transport equation in this coordinate system becomes : 

P% + flcos v$ + U~,Y)QCGY,P,~~) 
L 21+1 1 

= S(x, y, P? d + ,& F %Xx, Y) 
J 

W (x) 
-1 

5 

P 

x 64 drp’ i KkW, cp’)Xk(fiLt cp)Q(x, Y, ~‘3 4) 
0 k=O 

(33) 
+ boundary conditions. 

The integral law is obtained in the manner discussed 
in Section 2.2 above by application ofthe inner product 
( , I& to equation (33) where $ is a member of Ha(V). 
Integration by parts converts the streaming operator 
term to : 

Fig. 1. Coordinate system for 2-D geometry. 

4.2. Construction offinite element subspace 

The set of basis functions are chosen as finite element 
functions constructed on the discretized domain of the 
problem. By choosing Lagrange basis functions, the 
unknowns in equation (36) are the approximate 
angular flux at the nodes of the discretized domain. In 
this study, the subspace was formed from the direct 
product of rectangular polynomials in space and angle. 
The rectangular bilinear and biquadratic polynomials 
are : 

-2j-)j-;ldlrpj; dv Q(O,y,~,cp)~(O,y,~,O- dVJ1-;IT ~0s P Q(x,~,re)~ 

+2rdx r’ dp,,&$” 
I? 

dv ~0s cp Q(x,b,~,rp)lCl(x,b,~r,rp)-2 r c 
1 

dx 
JO J-l Jo 

where the spatial domain is the rectangular region of 
Fig. 2. Other terms of the integral law similarly follow. 

The Galerkin weighted residual method follows the 
expansion of the angular flux in terms of functions that 
constitute a basis for a subset of HE(V) : 

Q(x,Y,P,~P) = i 4j$i(X,yv~~d. (35) 
j=* 

The set of simultaneous equations for 4j are obtained 
by allowing the arbitrary function I&V) to assume the 
identities of members of { $ j} : 

i= 1,2 ,.,., N. (36) 

Jo J-1 

s x 

dp $-? dp cos cp ti(x, O)Q(x, 0) (34) 
0 

bilinear : b, +b,x+b,y+b,xy 
biquadratic : ci + cZx + c,y + c,xy + c5x2 

+c,y2+c,xy2+c~x2y+cgx2y2. (37) 
These rectangular polynomials are themselves con- 
structed from the tensor product of one-dimensional 
polynomials. 

Discontinuous angular elements may be constructed 
by placing additional nodes on the grid in those 
directions corresponding to fi* 2, = 0. For the physical 
domain of Fig. 2, these directions are cp = x/2 at the Cl 
and C3 edges, and p = 0 at edges C2 and C4. 
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Fig. 2. Physical domain for 2-D geometry. 

4.3. Construction of the coeficient matrix and source 
vector 

The coefficient matrix is assembled by performing the 
phase-space integration over the streaming, scattering 
and removal terms. Since the basis functions are local, 
the only non-zero terms are those whose basis functions 
have overlapping support. The sparse system that 
results can, with proper indexing ofnodes, be converted 
into a block-banded matrix. Each block in this 
structure represents the interaction between nodes of 
the y, p and cp directions. The block bandwidth of the 
coefficient matrix is 21, + 1 where I, is the order of the 
basis functions in the x-direction. 

The matrix is off-diagonally dominant and non- 
symmetric due to the influence of the streaming and 
scattering terms. For instance, consider the evaluation 
of a typical streaming integral term : 

(38) 

For a uniform mesh spacing h, the derivative d$Jdy 
has, for linear basis functions, the value l/h in the mesh 
to the left of the node, and - l/h in the mesh to the right 
of node,. In all diagonal terms, where i = j, this leads to 
an exact cancellation of the integrals over the two 
meshes[y,_ i, yi] and [yi, yi+ J. On theoff-diagonal, the 
integration of equation (38) is performed over one 
mesh, either l-y-1, yi] of [yi, yi+,], so there is no 
cancellation. However, the opposite signs in d$/dy 

leads to an antisymmetric matrix. Furthermore, the 
derivatives are proportional to l/h, so that as h -+ 0 the 
streaming terms lead to offdiagonal domination of the 
matrix. 

The source vector for the matrix equation is also 
calculated by phase space integration. For instance, 
internal sources are approximated by an expansion in 
terms of the same set of basis functions used to represent 
the angular flux : 

s(x7 Y, Cp) = $ sircIAx9 Y, A 9). (39) 
i=l 

The inner product of this term with the basis set yields 
its contribution to the source vector. Similarly, the 
incoming boundary flux term will consist of a line 
integral in space along the edge of the problem domain, 
plus an angular integration over all incoming angles 
associated with the corresponding spatial boundary. 

Spectral reflection can be treated in the Galerkin 
finite element method with the aid of physical insight. 
The neutrons at a reflecting boundary which leave the 
system at a point r in the direction a reappear at the 
same spatial point, but with a new direction &, which 
has the same angle with respect to the plane 
perpendicular to the reflecting boundary and passing 
through the original direction h Fortunately in the 
coordinate system and rectangular region of Fig. 2, only 
one of the angular variables changes along any one side 
of the boundary. 

Consider the case of reflection on the line x = 0. The 
boundary terms associated with the integration by 
parts of the streaming inner product term : 

(40) 

are : 

Reflection is taken into account by changing ,u -+ - p in 
the second term of equation (41) to obtain : 

-2j; dq JyI 4w/; dyQ@ty,~>cp) 

x cw4 Y, PV d - Jl(O, Y, - P7 441. (42) 

The angular flux may now be expanded in a set of basis 
functions : 

Q(O,Y,P,V) = E +iti(lxX,Y,P,cP). (43) 
i=l 
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Thus reflection can be handled within the standard 
Galerkin finite element method provided the interac- 
tion between basis functions and the reflecting 
boundary is properly treated. 

4.4. Solution procedures 

Two different solution strategies were proposed for 
this matrix equation, block LU-decomposition and 
blockSOR. These block methods were chosen to 
minimize the storage requirements for the coefficient 
matrix. The computer code FTRAN2 (Yehnert, 1978) 
was developed to test the two numerical methods. The 
direct solution technique proved to be most accurate. 
As expected, decreased scattering and larger mesh size 
tended to improve the convergence of the block-SOR 
method. 

Elimination methods such as block LU- 
decomposition have large storage requirements, even 
when most of the matrix is stored on disk tile, and long 
execution times. The segmentation algorithm to be 
discussed in Section 5 can substantially reduce these 
penalties. 

An artificial solution was constructed to test the 
capabilities of FTRAN2. This was done by finding an 
expression for the internal source for a specific 
functional form of the angular flux in the transport 
equation. These studies clearly demonstrated the 
expected improvement in solution accuracy as both the 
spatial and angular mesh were refined. Increased 
convergence to the analytical solution was also 
observed as the order of the angular finite elements was 
increased. The results indicated that the code is a bit 
more accurate at a specified incoming angular flux 
boundary than at a reflecting boundary. However, this 
difference is reduced with mesh refinement. 

4.5. Solution on a ray-eflect domain 

The ray effect is a direct consequence of solving the 
neutron transport equation along discrete rays or 
directions, as in the discrete ordinates method. Briggs et 
al. (1975) have shown that the ray effect is mitigated by 
numerical approximations which transform the 
hyperbolic system with its accompanying ‘charac- 
teristics’ into an elliptical system with no charac- 
teristics. Since the second-order transport equation was 
employed in that study, it was possible to show 
analytically that the coefficients of the second-order 
terms yielded a characteristic polynomial equation 
which had no real roots and was thus elliptical. 

The present application of the finite element method 
employs the first-order form of the transport equation, 
so a corresponding analytical study of the ray effect was 
not possible. However, some appeal can be made to 

physical arguments to illustrate how the ray effect is 
reduced in the finite element method. 

In the Galerkin approach, the transport equation is 
weighted by trial functions having a piecewise 
polynomial shape on local regions in the phase-space, 
and then integrated over all space and angle. This 
process yields a matrix equation in which the source 
vector accounts for all sources in the phase-space 
through the interaction of the source interpolation 
function with the piecewise polynomial trial functions 
on each finite element. Also, the matrix itself accounts 
for all of the geometrical and material detail in phase 
space through the interaction of polynomials in the flux 
expansion with the trial functions on each finite 
element. There are no characteristic directions to 
integrate along, and no particular neutron paths to 
follow. The streaming operator is in a sense ‘smeared 
over a range of directions within an angular finite 
element instead of evaluated along one direction. This 
results in mitigation of the ray effect at some expense in 
accuracy, depending on how well the trial functions can 
approximate the angular dependence. We are always 
assured that by increasing the order of the basis 
polynomials, and by decreasing the mesh spacing of the 
finite elements, we can effect uniform convergence to 
the exact solution. 

The ray effect has been studied for the classic problem 
shown in Fig. 3. The region consists of a material with 
uniform total cross section Z, = 0.75 and uniform 
scattering cross section &. The scattering ratio, defined 
as c = Z&, has been allowed to vary between 0 and 1 
for the purposes of this study. The material contains a 
square flat source in one corner of the region. As shown, 
both reflecting and vacuum boundary conditions are 
used. 

Studies on this domain indicated that refinement of 
the angular mesh was necessary to eliminate the ray 

2- 

I- 

o- 0 

Y VACUUM 

z, =Q. 75 

c = q/c, 

S=I.O 

I 

REFLECTING 

Fig. 3. Domain for ray-effect problem. 
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effect. It was found that the shape of the angular flux is 
badly misrepresented when too few angular nodes are 
used to interpolate it, especially at the edge of a source 
or strong absorber where it may be rapidly varying. The 
integration of the angular flux produces a distorted 
scalar flux tantamount to a ray effect. Minimal 
refinement of the angular domain (from a 3 x 3 
rectangular mesh to a 5 x 5) provided a reasonable 
representation for the angular flux. 

On the refined angular mesh, the scalar flux profdes 
were in good agreement with comparable FENT 
(Miller et al., 1973) calculations. FENT is a two- 
dimensional phase-space finite element code based on 
the second-order transport equation. Results from 
discrete ordinates codes such as TWOTRAN-II 
(Lathrop and Brinkley, 1973) and TRIDENT (Seed et 
al., 1977) were markedly inferior even with ray-effect 
mitigating options employed. The scalar flux profiles 
obtained with these four codes are compared in Fig. 4. 
FTRAN2 was run on a 7 x 7 spatial mesh using 
biquadratic angular elements. A finer spatial mesh was 
used in the other calculations. 

With respect to the other three codes, the time and 
storage required to eliminate the ray effect using 
FTRAN2 were unreasonable. If the application of 
phase space finite elements to the first-order transport 
equation is to result in a production level code, it is 

1.52 
0 TWOTRAN LSe 1 
. TRIDENT cs,, 
0 FENT 

--- FTRANP 

I.20 
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;i 
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tn 

072 

0.56 

Fig. 4. Scalar flux pro&s for ray-e&% problem. (c = 4) 

necessary to abandon the block L&decomposition 
method in favor of a more efEcient numerical method. 

5. SEGMENTATION SOLUTION MJTIWOD 

5.1. Description of the algorithm 

One promising numerical approach is a segmented 
technique similar to the interface current methods used 
to obtain integral transport solutions. Segmentation 
entails the division of the spatial domain into a coarse 
mesh. Upon a fine mesh contained in each coarse-mesh 
segment, the standard Gale&in finite element method 
is employed. A series of small matrix equations results : 

where M is the number ofcoarse-mesh segments and Nk 
is the number of fine-mesh nodes in the kth segment. 

The interface angular fluxes couple adjoining 
segments by serving as natural incoming boundary 
conditions. They are included in the source vector $. 
The algorithm proceeds by repeated solution of 
equation (44) until convergence is achieved, beginning 
with estimates for the unknown interface fluxes. 
Convergence can be expedited by updating, in a Gauss- 
Seidel fashion, the terms of the source vectors 
containing the coupling flux to make maximum use of 
the most recent results. 

5.2. Eficiency of the segmented algorithm 

The set of coefficient matrices A’, k = 1,. . . , M are 
LU-factored during the initial global iteration. Their 
decomposed forms are stored on disk for convenient 
retrieval during the subsequent iterations for use in 
back-solves. The number of operations required to 
factor the set ofcoefficient matrices is much less than the 
computational cost of decomposition for the single 
matrix defined on the entire domain. For example, the 
matrix of coefficients constructed from rectangular 
elements on a phase-space domain divided into X2 
spatial nodes and Uz angular nodes requires X4U6 
operations for factorization. However Sz segments with 
(X/S)’ spatial nodes will only require S’(X/S)4U6 
operations for factorization. Similar reduction in the 
number of back-solve operations and the storage 
requirements result from segmentation. 

Efficency will also be greatly improved if, as is often 
the case, only a few of the segment coefficient matrices 
are unique. This will occur if segments are located in 
regions of identical material properties, possess the 
same line-mesh structure, and have the same type of 
boundary conditions (reflecting or non-reflecting). 

Like a discontinuity in the finite element subspace, a 
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segment interface represents a decoupling of the 
interaction between neighboring elements through the 
construction of double nodes at the juncture. Spatial 
discontinuities are useful in representing the angular 
flux at regions of material discontinuity, as discussed in 
Section 2.4 for the 1-D case. However, they increase the 
number of unknowns, and the efficiency of the 
segmented algorithm will be somewhat offset by this 
increased cost. 

5.3. Convergence of the segmented algorithm 

The approximate integral law for the segmented 
algorithm assumed the form (the subspace parameter h 
is suppressed) : 

+ E (Qi,Jli>rh - z (Qj, ICliho = (%‘I’) (45) 
i,j=l i.j=l 

where 

and 

Q,$eSh~& 

Qi= Q(& X f8 
$i=d'(R, X 6) 

A two-dimensional test of the segmented approach 
was performed on the domain of Fig. 3. A code, 
SEGMENT2, was developed using rectangular 
segments and rectangular finite elements. Satisfactory 
results showing the elimination of the ray effect were 
obtained. As expected, the computational costs for 
SEGMENT2 were substantially less than FTRAN2. 
The algorithm was still somewhat more costly than 
other transport codes to implement. For instance, the 
relative costs of the four codes 

FTRAN2/SEGMENT2/TRIDENT/FENT 

i.e., Qi and tii are confined to segmental support 

lY’,$ = out-going boundary of ith segment at i-j 
interface 

r,< = in-coming boundary of ith segment at i-j 
interface. 

scaled at 40 : 7 : 3 : 1. The TRIDENT case was run with 
the more expensive ray-effect mitigation option that 
transformed the discrete ordinates equations into 
spherical harmonic equations. Except for FENT, the 
four codes solved for the angular flux. The 
computational cost of SEGMENT2 were not unduly 
exorbitant and it may be possible to further increase its 
efficiency. 

The last two terms on the 1.h.s. of equation (45) result 
from performing the global integration by parts on the 
streaming term across segment interfaces. 

The iteration process is represented by a series of 
IQ’, Q2, . . .v Q”, . . .} that satisfy the M equations : 

-(Q"+',n.V~)+(KQ"+',~)+(Q"+',~),+ 

The memory requirements of SEGMENT2 were 
also much less than those for FTRANZ Indeed, if the 
number of unique segments characterizing a given 
domain is constant, the memory storage required 
remains fixed as the mesh is refined. (Actually some 
additional memory is required to store the larger 
number of segment solution vectors, but this increase is 
minor.) While large problems are not constrained by 
memory allocation, they are computationally limited 
by the large number of back-solves required. One way 
of improving the efficiency ofthe back-solve operations 
is to implement the code on a vector processor machine. 

If Q” + ’ is sequentially computed as 

Q;+l,Q;+‘,...,~~l; 6. TIME-DEPENDENT TRANSPORT PROBLEMS 

then each equation of equation (46) is the same type as 
equation (lo), for which a unique solution is assured. 
Hence each Q” ’ ’ is uniquely obtained. 

Preliminary work by Luskin (1980) has indicated 
that the series Q”’ l will converge. An expression for the 
convergence rate of segmented phase-space finite 
elements has not yet been developed. 

The finite element method in x -p phase-space can 
be combined with a Crank-Nicholson time- 
differencing scheme to solve the time-dependent 
transport equation. The application of the finite 
element method is quite similar to that for time- 
independent problems. The Galerkin integral law is 
applied to the first-order transport equation using 

5.4. Computational results 

The convergence properties of this algorithm were 
first explored by Lorence and Martin (1979) in the 1-D 
four region problem of Reed (1971). Results in excellent 
agreement with FTRAN calculations were obtained in 
a moderate number of iterations, even with tight 
pointwise convergence criteria on the angular flux. 
Even more important for the utility of this algorithm, it 
was found that the accuracy ofthe converged result was 
independent of the chosen starting value for the 
interface angular fluxes. 
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time-dependent expansion coefficients. General boun- 
dary conditions (vacuum, reflecting, or specified 
incoming flux) are included as natural boundary 
conditions. Applying the Crank-Nicholson scheme to 
the resulting differential equations yields the algebraic 
system 

where 4”‘) is the angular flux at time t,, At is the timestep 
(t. = nAt), D is the speed, and F(“) is the known source 
term due to any incoming fluxes or volumetric sources 
at time r,. Conveniently the matrix K is identical to the 
matrix of coefficients for the steady-state case. This 
matrix equation is easily solved by initially factoring 
M +uAt/2M into its LU decomposition and then 
backsolving for #“” ‘) at each time step. 

This method has been incorporated by Martin (1976) 
into the code FTRAN and applied to a variety of time- 
dependent transport problems in I-D plane geometries. 
Detailed comparisons were made with the 1-D time- 
dependent code TIMEX (Hill and Reed, 1976) which 
uses a finite element treatment of the spatial variable 
and a discrete ordinates treatment of angle. The range 
of problems studied included neutron pulse propaga- 
tion, various incoming source options, and decaying 
flux problems both in the presence and absence of 

6.300 

T*O 

4.722 

scattering and absorption. Run times were found to be 
comparable and numerical agreement was quite good. 

It has been well established that the phase-space 
finite element methods do not sutTer from the ray effects 
that plague discrete orginates methods. This advantage 
carries over to the time-dependent problems (even in 
1-D) since discrete ordinates codes such as TIMEX 
exhibit a ‘time-dependent ray effect’. To illustrate, we 
consider the propagation in a void ofa gaussian shaped 
pulse for which the initial angular distribution is 
isotropic in the forward @> 0) directions and zero in 
the backward 01 < 0) directions. A discrete ordinates 
code will propagate the individual angular fluxes along 
the x-axis with the correct velocities pu. However, this 
propagation of the discrete angular modes with 
different velocities results in their spatial separation 
with time and consequently leads to a totally fallacious 
scalar flux, which is illustrated in Fig. 5 (Mehlhorn, 
1977). 

FTRAN avoids this difficulty since the finite element 
angular nodes are coupled, even in the absence of 
scattering. The inherent flexibility in choosing the 
angular flux mesh in FTRAN leads to a further 
mitigation of this ‘ray’ effect for the same number of 
discrete directions by allowing the user to place more 
nodes in the direction of propagation. This advantage 
of the finite element methods in supressing the time- 
dependent ray effect can be clearly seen in Fig. 5. We 
conclude that the phase-space finite element method 
presents an attractive approach to the solution of the 
time-dependent transport equations. 

lniml angular flux 
distribution 

9 fX,P,O) = ; 
-(a-lh25 pa0 

PC0 

T.3.0~ 
Y * I cm s-1 

At -0.1~ 
Ax = 0.25cm 

3 

= 

B 

3.145 

8 
VI 

1.567 TRAN I6 ongulor nodes) 

-0.010 
0.000 1400 2.600 4.200 5.600 

Distance 

Fig. 5. Scalar flux profiles for time-dependent problem. 
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7. CONCLUSIONS 

The successful application of the finite element 
method to the first order neutron transport equation 
has been demonstrated for 1-D and 2-D geometries. 
While not competitive with conventional methods for 
solving the transport equation, such as the highly 
optimized production level discrete ordinates codes, 
the finite element method has proven to be feasible and 
does offer some advantages, including the alleviation of 
the ray effect in multidimensional geometries. The 
major disadvantage of the finite element method 
involves the need to solve a large matrix equation 
directly. This is mitigated by the segmented algorithm 
described in this paper. This method allows the direct 
solution of smaller pieces of the matrix equation. This 
effort is continuing, and we expect further improvement 
in computing efficiency as this work progresses. 

Another area deserving of further attention involves 
time-dependent transport applications. Our pre- 
liminary results indicate a considerable advantage of 
phase-space finite element methods over discrete 
ordinate-finite element methods with respect to the 
‘time-dependent ray effect’, which may be observed in 
1-D geometries. 

There are important advantages and disadvantages 
that should be considered in weighing the relative 
merits of applying phase-space &rite element methods 
to the first- or second-order form of the transport 
equation. The principal advantages of the second-order 
approach include the reduction of the problem domain 
due to symmetry and the positive-definite, symmetrical 
matrix that results due to the self-adjointness of the 
second-order equation. This latter advantage allows 
one to utilize iterative methods to solve the resultant 
matrix equation. However, the solution of the first- 
order equation does have some advantages. First, it 
provides the angular flux as a solution, which cannot be 
obtained from the even-parity flux alone. (If the odd- 
parity equation is solved, then this advantage 
disappears.) The treatment of anisotropic scattering to 
any order is a minor concern with the first-order 
method. It merely changes the matrix elements, the 
calculation of which takes a negligible amount of time. 
This is not true for the second-order equation, where 
inclusion of anisotropic scattering is a difficult 
extension from isotropic scattering. 

Overall, we consider that first conclusions concem- 
ing first-order vs second-order methods are premature, 
particularly when one notes the significant amount of 
effort that is underway to develop further each of these 
methods. However, it can be concluded that neither 
method compares favorably at the present with discrete 
ordinates methods except in those situations in which 
the ray effect is significant and must be eliminated. 
Hence it is important to continue research into both 
first- and second-order methods, seeking to make them 
more competitive with discrete ordinate methods for 
production code applications. 
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