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Abstract-The theory of interacting continua is applied to the problem of diffusiion of a fluid through a 
non-linear elastic layer and a hollow sphere. Using methods which are by now standard in continuum 
mechanics expressions and restrictions are derived from a thermodynamic standpoint for the partial 
stresses for the fluid and solid and the diffusive body force. In order to obtain detailed solutions to specific 
boundary value problems a choice of a particular form for the free energy function for the mixture is made 
based on statistical theory. To simplify the problem, we assume that the fluid in question is ideal. The 
difficulties inherent to a clear definition of the boundary conditions for the partial stresses are overcome by 
the use of the Flory-Huggins equation. Two specific examples are considered. The first is the problem of 
diffusion through a stretched layer and second is diffusion through a spherical shell. Results of the 
numerical solution enable the construction of the pressure difference-flux relations, which have been shown 
to be in good agreement with experimental data. 

I. INTRODUCTION 

IN THE classical approaches to the study of diffusion of a fluid through a solid, such as Fick’s 
law[l] and Darcy’s law[2], the solid is often assumed to be rigid, thereby obscuring the 
interaction between the solid and the fluid. Since polymeric solids in diffusion situations 
undergo large deformations [3,4], an improved theory is needed. A general theory of interacting 
continua, i.e. mixtures, based on modern continuum mechanics which would be applicable to 
such diffusion problems, has been proposed. A presentation of the theory as it stands today can 
be found in the review articles by Bowen[5] and Atkin and Craine[6]. 

In the applications of the theory to date, (Crochet and Naghdi[71, Mills and Steel[8], 
Atkin[9]) constitutive equations having a general form of free energy function and unspecified 
material dynamical parameters are employed. Results are presented in analytic form so that 
solution details which can be related qualitatively or quantitatively to experimental results are 
lacking. Consequently, there is only a general picture of the behavior predicted by the theory of 
interacting continua. 

The purpose of this investigation is to provide detailed solutions of problems involving the 
diffusion of a fluid through a non-linear eiastic solid using a constitutive equation based on 
realistic material properties. In Section 2, the notation and kinematic quantities are defined and 
the relevant field equations are presented. Restrictions based on the Clausius-Duhem inequality 
for the constitutive equations of a mixture of an isotropic non-linear elastic solid and a 
Newtonian fluid are presented in Section 3. A specific form of the Helmholtz free energy 
function, developed from kinetic theory (Treloar[lO]), is introduced and the corresponding 
reductions in the general constitutive equation are obtained in Section 4. 

In considering the swelling of an homogeneous body, it is not possible to determine a unique 
swollen state if only the total stress is specified. However, if the body is assumed to be in a 
saturated equilibrium state, one can gainfully employ the Flory-Huggins equation (Treloar[ IO]) 
to determine this unique swollen condition. This equation is introduced in Section 5. 

The analysis in Sections 3 and 4 are for a mixture of an isotropic non-linearly elastic solid and 
a Newtonian fluid. In order to reduce the number of unknown material moduli and hence 
simplify the computational aspects of our investigations in the remainder of the analysis, we 
restrict out attention to a mixture of a non-linear elastic solid and an ideal fluid. The 
corresponding solutions for the more general case of a Newtonian fluid will be done in a 
separate work. 
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Sections 6 and 7 treat the pressure-induced steady state diffusion of an ideal fluid through a 
uniformly stretched isotropic non-linear elastic layer. Section 8 treats the diffusion of an ideal 
fluid through a non-linear elastic hollow sphere. Each problem is governed by a non-linear 
differential equation having non-linear algebraic boundary conditions for which numerical 
solutions are obtained. In the first example comparison of numerical and experimental results 
leads to the determination of a material dynamic parameter and the verification of a computed 
ceiling flux. The layer problem is also solved using a modified Fick’s law, which contains one 
constant to be determined by comparison with experimental results. 

2.NOTATION. BASIC EQUATIONS 

A mixture of two continua, which are in motion relative to each other, is considered. The 
relative motion is caused by fluid S, diffusing through a solid S,. At an arbitrary time t, it is 
assumed that at each place in the region of space occupied by the mixture two particles are 
situated, one belonging to each constituent. Kinematics and balance equations must be stated 
for each constituent. 

Kinematics and notation 
Let the motion of the mixture be referred to a fixed system of rectangular Cartesian 

coordinates. Let X and Y denote reference positions for typical particles of S, and S2, 
respectively. Positions of these particles at time t are denoted, respectively, by 

x = x,(X, t), y = x*w, t). 

We assume that these motions are one-to-one, continuous, and invertible and that the bodies 
under consideration occupy the same position at time t. 

Components of various kinematic quantities associated with S, and S, at point x = y are 
denoted as follows 

Si S2 

Velocity vector dxl 
“=dt 

dxz 
“=dt. 

Acceleration vector 
Velocity gradient tensor 
Rate of deformation 

tensor 
Voritcity tensor 

f 
L rz. 
D G. 

r A. 

The deformation gradient tensor for the solid S, is F = J,,/JX. The densities of S, and S, at 
time t, measured per unit volume of the mixture, are pl and p2, respectively. The mean velocity 
of the mixture and the total density of the mixture are defined respectively by 

PW = PI” + pzv, 

P=PI+Pz. 

(1) 

(2) 

Basic equations 
In this section we review briefly the balance laws for mixtures which will be employed time 

and again during the course of this analysis. 

(i) Balance of mass (continuity equation) 
We assume throughout that there is no process of interconversion of masses of S, and S,. 

The appropriate form of the mass balance equation for the solid is 

PI det F = plo, (3) 
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where plo is the mass density of the solid before forming the mixture. The appropriate equation 
for the fluid ist 

2 t div (pzv) = 0. (4) 

(ii) Balance of linear momentum 
It is assumed that constituents S, and S, each has a partial stress tensors for S, and S,, 

respectively, u + 71 be the total stress tensor, and b be the diffusive body forces vector. If there 
are no external body forces, then the equations of motion for S, and S2, respectively reduce to 

div u-b = p,f, (5) 

div P t b = p2g. (6) 

(iii) Balance of moment of momentum 
This condition states that the total stress tensor is symmetric, i.e. 

atn=aTtnT, (7) 

but that the partial stresses are not necessarily symmetric. 

(iv) Entropy production hequality 
Let Ui, ni and Ai denote, respectively, the internal energy, entropy and Helmholtz free 

energy function, all per unit mass of Si, i = I, 2. If S, and S2 are assumed to have the same 
temperature T > 0, then let 

pll= PIllI +p27723 

&=U,--Tq,(a=1,2), 

PA=p,A,+pzAz=p(LI-Trl). 

The assumed form of the Clausius-Duhem inequality for the mixture is 

P+ EtT$-prt Tdiv ; LO 
0 

(8) 

where 

where 

$ = div (~1 W’ + ~217~~‘) 

u’=u-w 

v’=v-w. 

The radiant heat supply r is defined through 

pr = Plrf + p2r2, 

where rl and r2 are the radiant heating associated with S, and S2 respectively. At this point we 
note[l2] that by setting 

tLet Cl and Cl, denote the reference configuration and the configuration of the body at time 1, respectively. For a 
function defined on RX R and 0,.x R, we use V and grad to represent the partial derivative with respect to R and CJ,, 
respectively. Also we denote by (3 and ( ), the partial derivative with respect to R. The divergence operator related to 
grad is denoted by div. 
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where 
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4, = p,(A, - AL 42 = pAAz - A), 4, + d2 = 0. (9) 

eqns (5)-(7) become div 6 -h = p,f 

div ti + 6 = pzg 

a+* =a+* 

(10) 

(v) Surface conditions 
Let t and p be surface traction vectors taken by S, and S,, respectively, at a surface element 

whose unit outer normal is n. The surface conditions are 

t = uTn, p = 9rTn. 

3.CONSTITUTIVE EQUATION 

Incompressibility condition 
The concept of incompressibility as introduced by Mills[l3] for a binary mixture of 

Newtonian fluids can be used for any type of non-interconverting constituents. 
We assume that S, is an incompressible elastic solid and S, is an incompressible Newtonian 

fluid. When separate, let S, and S, have constant densities plo and pzo, respectively. We shall 
assume that the motion of the mixture is such that it meets the following combinational 
volumetric law, namely the volumes of the constituents are additive. Their current densities pI 
and p2, per unit volume of the mixture, then define the total density of the mixture by eqn (2). 

Under this assumption Mills[l4] has shown that the current densities satisfy the following 
equations, where the latter two were obtained by combining eqns (2) and (I I) 

.Pl+P?= 1, 

PI0 P20 
(11) 

p, = PlO(P20 - P) 

( pzo- PI0 

p2 = P2o(P - PIO) 

P?O--PI0 . 
(12) 

Equation (1 I) imposes a constraint on the motions of the continua which leads to the 
introduction of an indeterminate scalar into the constitutive equations. 

Constitutive assumptions 
We need constitutive assumptions for A, q, 6, 6, ii, &, 42 and q to characterize the type of 

fluid and sohd which interact. Since we consider a mixture of an elastic solid and a Newtonian 
fluid, we shall assume that all the constitutive functions depend on the following variables. 

F, p2, VF, grad p?, T, grad T, u, v, L and M. 

Following Crochet and Naghdi[7], we write the partial stresses and diffusive force as sums 
of a statical and a dynamical part, i.e. 

where 9, 6” and is depend on the statical variables and I?‘, ii, bd together with A, 7, & and 
the heat flux vector depend on all the variables. At this juncture it would be more convenient 
for the purposes of presentation to resort to the usual Cartesian index notation. Based on the 
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energy balance law and the application of the Clausius-Duhem inequality, a procedure which is 
by now standard leads to the following relations 

a A 

Fk = - P2aFiiaA,p,___-_ aA aP2 P ab4 
axk aF, a2 axk PI0 axk’ 

(14) 

where A reduces to 

and p is an indeterminate scalar arising from the use of the constraint eqn (I I). The dynamic 
parts of the partial stress, and diffusive body force satisfy the reduced entropy inequality, 

s&jdik t f(dilfik t a&](rik -A,) t 6f(uk - uk) -i 

x [qk + TbI?lIbk - wk) •t p272(vk - wx))l$ z O, (19 
k 

where ( ) or [ ] around subscripts denote the symmetric and skew symmetric parts of the 
tensors, respectively. 

Following arguments based on the restrictions due to the principle of material objectivity, as 
presented in[7], we conclude that the constitutive functions can depend upon the velocities of 
the constituents only through the relative velocity Ui - Vi, upon the velocity gradient only 
through rate of deformation tensors fij and dij and the relative vorticity tensor Tij - Aii, and 
upon the deformation gradient only through Bij = Fki * & If we assume both solid and fluid are 
initially isotropic with a center of symmetry, then the constitutive functions depend on Fii 
through C’ij * & 

We assume that the dynamical parts of the partial stresses and diffusive force depend 
linearly on the dynamical variables 

e$j) = rldkk'%j t 2pldij + bfkkhj + 2/-b./ij, 

'f&j = 'Ydkkhj t2P3dij f Yd.fkk&j + 2/hfij, 

at?] = - T[ij] - -d - - Cl(l?ij - Aij), 

6; = C& - ok). 

(16) 

All the coefficients are functions of pI, p2 and r 
It then follows from (15) that 

(17) 
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Under the assumption of isotropy, the free energy function A can be written in terms of an 
integrity basis for C’ij as 

where 

Note that eqns (3), (I 1) and (18) 

(19) 

so that A reduces to 

A = AU,, 12, ~2, V. (20) 

Combining (8), (13), (14), (16), (18) and (20), we obtain expressions for the partial stresses 

b =ti,b”+~d 
k dx, k k 

(21) 

(22) 

(23) 

where cl and c2 have been redefined so that they vanish with pl or p2. 

4. FREE ENERGY EQUATION 

In order to evaluate the partial stresses and diffusive forces, an expression for the free 
energy function AU,, I*, Z3, p2, T) is needed. 

For application to problems where various swollen states may be encountered, it would 
seem preferable to choose the reference state as the unstrained unswollen state. We use the 
following free energy function for use in swelling[lO], 

where R is the gas constant, T is absolute temperature and M, is the molecular weight between 
cross-links. 
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As presented, the free energy expression A does not depend explicitly on p2 as in eqn (20). 
This is introduced by substituting from eqn (19) to give 

A=K[&-3+ln[l-E)]. 

By eqns (21~(24) 

uki= s,i~l_P~S*+2pKcki+Y,d,6xi+2p,dki 

(24) 

(25) 

+2Pjdki + y4fpp~ki+2bfki+ Cl(rki- Aki)r (26) 

(27) 

5. SWELLING 

In any diffusion problem the rubber will significantly increase its dimensions as fluid is 
absorbed. Adkins was the first to consider swelling using constitutive equations of the theory of 
mixtures [ 141. He considered an isotropic elastic cube surrounded by an ideal fluid undergoing 
uniform swelling with no surface traction and no constraint of incompressibility. Two equations 
for the stretch ratio A of the block of rubber, density pI of the solid and density p2 of the fluid 
were obtained from the expressions for total stress and conservation of mass for the solid, eqn 
(3). Under these conditions, it is not possible to uniquely determine the swollen condition, 
namely the new dimensions of the block A and densities pI and p2. However, if the swollen 
state is a saturated state, then the Flory-Higgins equation {[lo]} 

( t, t t2 t t3 
3 

tps 
> 

$=ln(l-V)tYt*v t 2 ~[f(A:+A:tA:)t;], (28) 
c 

where Y = 1;u2 = (AlA2A3)-‘, provides the additional condition for determinacy. 
In this equation, R, T and MC, were defined in Section 4, VI is the molar volume of the fluid; 

ps is the hydrostatic pressure of the surrounding fluid, and A is a constant depending on the 
particular rubber and fluid. 

As a short example of its use consider the uniform swelling of a cube. Given t, = t2 = t3 and 
the hydrostatic pressure pl, we need to find pI, p2 and A = A, = A2 = Aj. From eqn (28) we find A 
or u = l/A3. From eqn (3), piA = plo, we obtain pI and from eqn (I 1) we obtain p2. 

If swelling occurs with the constraint that A, = A2 are held fixed while A3 varies, the 
corresponding equation is 

VI PI0 VI (t3+pS)~=In(l-v)t~+AV2t~ VA:-; . 
( > 

(29) 

6. DIFFUSION OF AN IDEAL FLUID THROUGH A NONLINEAR ELASTIC LAYER 

We examine the steady-state diffusion of an ideal fluid in the direction normal to the surface of 
an isotropic non-linear elastic layer. The layer is under uniform all-round extension or compression 
and has a pressure difference on its surfaces. Figure 1 shows the current state of the layer. We refer 
to the plane z = h as the upstream surface and z = 0 which is fixed to a rigid porous plate as the 
downstream surface. Experimental results [ 151 show that in these problems the relation between 
the flux and the pressure difference is non-linear. For the problem considered here for materials 
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IlliZ1 IJ 

z=h 
Pressure=qh 

Fig. I. Configuration for the current state of the fluid-layer mixture. 

which obey the constitutive assumptions of the preceding sections, a relationship between the flux 
and pressure difference is found which compares favorably with available experimental results. 
Since we restrict our attention to the diffusion of an ideal fluid we set the following material 
parameters to be zero in eqns (25) and (26): yi = pi = 0, i = 1,2, 3,4. 

The motion of the fluid and deformation of the solid are referred to a common Cartesian 
cordinate system. The initial position of a particle of the solid is at (X, Y, 2) and its current 
position is (x, y, z), where the two systems coincide. The plate is bounded in the undeformed 
state by the plane surfaces 2 = 0 and 2 = ho. Its deformation is defined by 

x=/ix, y=AY, 2=2(Z), 

where A is a constant. Letting a prime denote differentiation with respect to the vertical 
coordinate 2, the components of the left Cauchy-Green strain tensor and its invariants are 

CII = C** = A*, (233 = (Z’)*, Cij = 0 (i+ j), 

1, = 2A2 t (z’)*, I2 = 2A4 t (z’)4, Zj = A4(z’)*. 
(30) 

The velocity field of the fluid is given by 

VI = vp = 0, v3 = v(z). (31) 

The continuity equation for the solid, eqn (3), becomes 

A’z’p, = plo. (32) 

In terms of the volume fraction of the solid v and observing that AJ = z’, eqn (32) gives 

Y = (A’AJ’ = (A*z’)-’ (33) 

The continuity eqn (4) for the fluid implies immediately that the flux is independent of z 

p2v = F(constant). (34) 

By eqns (25)-(27), (30)-(32), we obtain the following expressions for the partial stresses and 
diffusive force 

c~,,=q~=~,-p~+2pKA* 
PI0 ’ 

(35) 

g33 = NW)* - p f. •t 41 (36) 

T,,=,22=Kpp’o~_i!+-~ 
P2OPI Pzo ” 

(37) 
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n33=KpLm_Pz.p-~, 
’ PZOPI P20 

Pii = 7rii = 0, if i # j 

The equations of motion in this problem reduce to the following forms 
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(38) 

(39) 

(41) 

where we have neglected inertial effects because the flow is assumed to be slow. Adding eqns 
(41), and (41), one obtains that 

033 t 7r33 = N (constant), (42) 

i.e. the total stress vector on planes perpendicular to the z direction is independent of z. 
Substituting eqns (36) and (40) into the first of eqns (41), we get 

2Kp’(z’)2f2K(2p+p,)z’z”-p’eL+~Kp;+a~~ovr’=0. 
PI0 P20 

(43) 

Substituting eqns (36) and (38) into eqn (42), we get 

2pK(z’)* + Kp &@Z - p20p1 P = N. (44) 

Note that eqn (44) contains the unknown scalar p explicitly. Equations (32), (34), (43) and (44) 
are four equations for unknowns p, pl, p2, p, z, v and F. 

Since we are interested in the distribution of the fluid along the thickness of the plate, we 
write p and pl in terms of p2 using eqn (12) as follows 

where 

Pi = PkJ20 - P2h p = p,o-p*p2, (45) 

pm, p*-Plo-P20~ 

P20 P20 

Next, by eqns (32) and (1 I), we get p2, pi, and v’ in terms of z(Z), i.e. 

Pzo 2 I 
I, 

Pz=Atz’(X 2 -113 Pi=P2o 
h ;2’)2. 

2 

v=_Fp;=_ Fz”A * 
Pi pzo(A*z’ - l)** 

Substituting eqns (45)-(47) into eqn (43), we get 

(46) 

(47) 

(48) 

(49) 
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Combining eqns (44~(48) we obtain an expression for p 

P = f( i 
A22 - 1 
~ pm- P*P~O h2zt ) 

(2fz’)Z f AZ,? - I) - N. 

Substituting p from eqn (SO) into eqn (49) and introducing the non-dimensionalization 

we obtain a non-linear second order ordinary differential equation for z(Z). 

f = _ aF ho ZP* ~~(~+2i’[2p+(l-?P*~~] 

-&[(4i’+1+--p’s)-(2(i’)?fI’i’-I) (51) 

P” 
‘hz(r’)2 

We solve the above equation numerically. 
In eqn (51) the stretch ratio in the plane of the layer A can be prescribed. If the fluid and the 

solid are chosen, then plo, p20, and hence 6 and p* are known, but the constant (Y, which appears 
in the dynamic part of bi in eqn (27) and depends on the constituents of the mixture, is not. In 
evaluating K, which appears in the free energy function A in eqn (24), the gas constant R and 
absolute temperature T are well known physical quantities. According to[ IO], Me, the molecular 
weight of rubber between cross-links, can be found by many experimental methods. Paul[lS] 
indicated one method to determine the mole of cross-links per unit volume, which can be used 
to calculate MC, because MC equals the density of rubber/moles per unit volume. As for (Y, there 
are no existing data which we can use. For this reason, we will compute solutions for different 
values of LY and then compare with experimental results. The details of how (Y is determined 
will be discussed later. 

If upstream pressure is qhr and downstream the layer is fixed to a rigid porous plate, then the 
boundary conditions are 

Z(O) = 0, (52) 

and by eqn (42) 

N = - q,,. (53) 

We assume that the membrane has swollen with a fixed in-plane stretch ratio. The upper 
surface has reached an equilibrium state satisfying the Flory-Huggins eqn (20). Under the 
steady diffusion process, new fluid particles enter as present fluid particles leave. It is assumed 
that this flow does not change the equilibrium state. Substituting tj = N = - qh and pJ = qh into 
eqn (29) and using eqn (33), the following equation is obtained for v(h), the degree of swelling 
at r=h 

(54) 

Denoting the solution of eqn (54) by v*, eqn (33) then gives a direct boundary conditons for 
the integration of eqn (51). 
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Numerical integration of eqn (51) gives 5’(.?). This can then be directly integrated, using 
boundary condition eqn (52) to give the deformation function Z(2> for the layer. By eqn (47) 
the variation of fluid density p2(a can be calculated. In order to get the difference between 
upstream and downstream pressures, we use the Flory-Huggins eqn (29) for the downstream 
surface Z = 0 

(- qntqo)~= In(l- v(O))+ v(0) txv*(O)t*(p$jj-F). 
c 

(56) 

The volume fraction of the solid in the mixture on the downstream surface v(0) is obtained 
from the numerical solution for Z’(.?$ and eqn (33). Equation (56) is solved for 40, the 
downstream pressure. 

For computational purposes, the membrane is taken as rubber and the fluid as toluene. The 
material constants are obtained from Paul and Ebra-Lima[lS]: plo= 0.862gm/c.c, pzo = 
0.869gmlc.c V, = 106 c.c/mole, MC = 9151 gmlmole and x = 0.425. The gas constant R = 
8.317 x lo’dyne-cm/mole-“K. Taking room temperature to be 30°C then T = 303.16”K. The 
initial membrane thickness was ho = 1 mm. 

Equation (51) was numerically integrated using a fourth order Runge-Kutta method. Equa- 
tions (54) and (56) were solved by Newton’s method. Denote (&~~lp~~K) by u*. Because the 
constant a is unknown, eqn (51) was solved using a number of different values for a*. As the 
flow is defined to be in the negative z-direction, eqn (34) implies F < 0. Hence, in eqn (51), we 
let a* = -0.5, -1.0,. . . Matching, at a pressure difference qh - q. of 100 psi and A = 1 .O, the 
computed flux-pressure difference curve with the experimental results obtained in[lS], the 
value (Y = 2164gm/day-cm was selected. The flux-pressure difference graph shown in Fig. 2 
was constructed using this value of a. 

Case 1. A = 1.0. Tbe experimental data obtained by Paul and Ebra-Lima[lS] is for this case 
of an unstretched layer. Solution of eqns (51) and (54) give v(h) = v* = 0.3516 and I’(h) = 
(v*)-’ = 2.8236. 

Case 2. A = 1.1. The corresponding boundary conditions from eqns (51) and (54) are 
v(h) = 0.32015 and Y(h) = 2.5814. 

14. I I I I I I I I I 

I 

12. 

2. 

0 100 2w 300 400 500 600 700 000 900 1,ooo 
PRESSURE DIFFERENCE, PSI 

Fig. 2. Comparison of flux-pressure difference relations predicted by (ai mixture theory (b) Fick’s law and 
(c) experimental results. 
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Figure 2 shows that the results derived with A = I .O and the experimental results of Paul and 
Ebra-Lima1151 match closely. Furthermore, Paul’s results indicate the existence of a ceiling 
flux, that is a maximum flux independent of the pressure difference. An important result of the 
theory is that it also predicts a ceiling flux which here is given by CX* = 11.2. The existence of 
the ceiling flux arises as follows. The value v(h) is fixed for all values of cy*. As a* increases, 
v(0) approaches the value one (Fig. 4) cy* has a finite value at the physical limit value Y(O) = 1, 
which corresponds to the absence of fluid at Z = 0. In the swelling equation, as Y(O) approaches 
one, the pressure difference q,, - q. approaches infinity. Thus, flux approaches a finite value as 
qh - q. becomes large. 

We note from Fig. 3 that stretching increases flux through the membrane. The expression 
for a* shows that for a given pressure difference the flux is inversely proportional to the layer 
thickness. Figure 4 shows that when the flux is small, the fluid density variation along the 
thickness is almost linear, as would be expected. For large flux, there is a sharp density 
variation near Z = 0 with h(O) approaching zero, as discussed above. Figure 5 shows that the 

100 zoo 300 400 500 600 Too 000 900 1,aoa 1,100 

PRESSURE DIFFEILNCE, PSI 

Fig. 3. Effect of stretching on the flux-pressure difference relation 

AL=l. AL= 3. Al=& I 
- 

AL= a Fh,/PfoK 

1 I I I 

.O .2 4 .6 .8 1. 

DIMENSIONLESS COORDINATE, Z/h, 

Fig. 4. Variation of fluid density through layer thickness for various values of flux. 
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I I I I 1 1 I 

200 400 600 800 5o(K1 1,200 1,400 1,600 

PRESSURE DIFFERENCE, PSI 

Fig. S. Variation of deformed thickness with pressure difference. 

thickness decreases as the pressure difference increases. Since Fig. 3 shows existence of a 
ceiling flux, these results can be interpreted as representing membrane compaction[l6] asso- 
ciated with the limit state. 

7. ANALYSIS USING FICK’S LAW 

It would be tempting to approach diffusion problems such as the one considered here, by 
using the apparently analytically simpler Fick’s law [ 11 approach which is commonly treated as 
the basic law or constitutive equation for the diffusion process. In such an approach the 
constitutive equation for the partial stresses, diffusive body force and the equations of motion 
are replaced by Fick’s first law]11 . 

where p2 and p are the current mass densities of the fluid and the mixture, C2 = (pulp) is the 
mass fraction of fluid in the mixture, D > 0 is the diffusivity, ui is the ffuid velocity vector, and 
wi is the mean velocity vector of the mixture delined in eqn (I). In fact there is a substantial 
body of literature in chemical engineering where such an approach is used. Of course, the use 
of eqn (57) as the governing equation would not be totally appropriate for the problem in 
question. The diffusivity D in eqn (57) should be taken as some non-linear function of the 
deformation of the layer. However, in the absence of any rational mechanism for choosing a 
specific function for D, as a first attempt we select D to be a constant. We find in this section, 
by carrying out an analysis based on eqn (57) that such an approach with 0 being a constant 
leads to results which are at odds with those obtained from mixture theory. Of course, a 
di~usion theory based on a Fick’s law approach can be derived as a special case of mixture 
theory, wherein the results obtained by using it would be compatible with those obtained from 
mixture theory. But in this case one would not obtain eqn (57) as the form of Fick’s law with 
the diffusivity D being a constant. In this analysis we shall not concern ourselves with obtaining 
a proper form of Fick’s law from the more general continuum theory for interacting media. 
Instead, in this section we shall make a comparison between the results obtained in Section 6 
and the results based on a eqn (57) with the diffusivity D being a constant. In fact it is our 
purpose to emphasize that random generalizations of eqn (57) would not be valid. It should be 
possible to obtain a specific function D of the deformation gradient which indeed would lead to 
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a valid constitutive model. But as we mentioned earlier we have no rational means of arriving at 
the specific function. The best one could do is to use experimental results and curve matching 
procedures to determine the form of D. 

In the present problem, using eqn (I) 

UI = u2 = 0, v3 = u(z), 

WI= w,=o, w,=~v(z)=C*u(z). 
P 

Equation (57) then becomes 

PD G -- 
p2’ = - 1 _ C2 & ’ (58) 

The conservation of mass equations for the solid and fluid must still be satisfied. By the 
conservation of mass equation for the fluid, eqn (34), eqn (58) becomes 

PD dC2_ --_ - F, (constant). 
l-C2 dz 

(59) 

Substituting eqn (45) in eqn (59), defining fi = l/p and integrating gives the following 
equation 

A 

‘n(p*+;-p,,fi=- 
F(P* + 1) 

DP,O 
t++ (60) 

where I,!J is the constant of integration. 

The swelling eqns (54) and (56) provide boundary conditions for p at z = 0, h. There is no 
difficulty regarding the use of these equations in a Fick’s law approach because the surface 
tractions required on the upstream and downstream surface can be found by simple force 
balance arguments. Thus, eqns (54) and (56) can be solved for v(0) and v(h). Also by eqns (45) 
and (46) 

so that 

b = (PI0 - P20) v + P209 (61) 

i%=O.h = [Pzo+(Plo- P20b4,=0.h1-‘. (62) 

Equations (60) and (62) give an expression for $ 

#a) 
ti = In (p* t 1) - p,&(O) 

which together with eqns (60) and (62) yield 

F _ In i%)[(P* + 1) - P,oi@)l &IO 
tp* + l)h m)[(P* + 1) - P,obm’ 

(63) 

(64 

The swollen thickness h is still unkown. Solving eqn (33) for 5’ and using eqn (61), one obtains 

(65) 



Applications of the theory of interacting continua 

Solving for p = ,V’ from eqn @I), substituting into eqn (65) and integrating, gives 

Eliminating F from eqn (66) by using eqn f64), gives 

h L=: ho - p2o)U + p’) 1 
h0 A2 -(cIexp@-$)-exp(-rL)1}-‘, 

where 

Finally, substituting eqn (67) into (64, we get 

F- PIOh 
5 - (9’ + 1 ~ZMPlo - pd 

I=p ic - $9 - exp ( - @I. 

Once v(O) and v(h) have been computed, constants c and # can be found from eqns (62), 
(63) and (68). Equations (57) and (69) give (h/ho) and F/D. 

If the result calculated by eqn (69) at a pressure difference Q =: qO of Mpsi is matched with 
the experimental result by Paul and Ebra-Lima[lS], then we find that D = 53.25 cm2/day. Using 
this 0, the variation of flux with the pressure according to Fick’s law is shown in Fig. 2. This 
figure shows that the results obtained by using a model based on mixture theory is in much 
better agreement with the experimental results of Paul and Ebra-LimaflS] than the results 
obtained using eqn (57) in conjunction with the assumption that D is a constant. We would like 
to emphasize that this result does not mean that a Fick’s law approach cannot be used but it 
does imply that a Fick’s law approach based on eqn (57) with D being a constant would be 
inappropriate. 

8. PRESSURE-INDUCED STEADY-STATE DIFFUSION OF AN IDEAL 

FLUID THROUCH A THICK SPHERICAL SHELL 

Consider the pressure induced diffusion of a fluid through a spherical shetf. The inner and 
outer radii before deformation are taken to be 1 and a, respectively, assuming non-dimen- 
sionalization with respect to the inner radius has taken place. Let the inner radius of the shell 
after deformation be fi and the pressure on it be Q and let the outer radius be r. with pressure 

40. 
We refer the motion of the body to a system of spherical polar coordinates. A point 

originally at (R, 8,$) is now at (r(R), 3, 4). It is a consequence of the symmetry of the problem 
that the fr, 8,d) directions are aI1 principal directions of stress and stretch. This implies that the 
only non-zero components of the strain tensor C@ with respect to these coordinates are 
Cl1 = AZ,, C,, = C33 = A$ where h, = drfdR, he = r/R. Then the invariants, from eqn IN), are 

The velocity vector of the fluid has components 
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Let uii and rii now denote the physical components with respect to spherical coordinates of 
the partial stress tensors of the solid and fluid, respectively. Equation (25) gives for the solid 

J’= (&-p~.+?pK*: 

(T22=a33= (m,-p$+ZpK*k (70) 

& = 0 , if i+j 

Equation (26) yields 

7r 
pK!%!?_&p_$, 

PI Pzo Pzo ’ 

T22 = n33 = pK P2 P’O P? 
PIP20 p20p+ 

rii = 0, if if j. 

(71) 

Let hi denote the physical components of the diffusive force in spherical coordinates. Then eqn 
(27) gives 

6, _ a41 ploK& _ p2K4ht+ 2A;) P dp, 
ar ~20 dr dr PIO dr 

-al?L12.v, 6 &t!l 
P’0P20 * a ’ 

6 2+! 
3 aqt’ 

(72) 

The equations of motion in spherical coordinates, in the absence of the external body force, 
are satisfied identically in the 4 and ,9 directions, respectively. In the r-direction, the equations 
of motion for the solid and fluid are, respectively 

dc” 
dr+ 

2((~” - a**) _ b’ = o 
r I ) (73) 

dn” 
dr+ 

2(7r” - 7~‘~) + 6 = o 
r I 7 

where the inertia term has been neglected. Adding eqns (73) and (74) we obtain 

d(a” + 7~” 
dr 

+ 2[(?r” + (7”) - (7r22 f (r22)1 = 
0. 

r 

The conservation of mass equation for the solid is, by eqn (3) 

Also, the specific volume v of the solid is given by 

The continuity equation for the fluid gives 

r2p2v = F, 

where F is a constant representing mass flux through the shell. 

(74) 

(75) 

(76) 

(77) 

(78) 
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From eqns (2) and (1 l), we obtain 

1 
Pz=Pzo j-DO , ( 1 

I 
P = P20 + -j&PI0 - Pzo). 

Substituting eqns (70) and (72) into eqn (73), we get 

PI dp + d(pKA~) 2 --- 
P,odr dr 

~~(2~K~~-2~K~~~i~K~ 

+pZKd(A:f2h;) _+ (y PI ~2 _ 
dr ZZ!P -O* 

Substituting eqns (70) and (71) into eqn (79, we get 

887 

(7% 

(80) 

(80 

dp d(WW- PK;Eo) 
dr= dr 

(82) 

Equations (77)_(82) are 6 equations for p, pI, p2, r, p and 0. Substituting eqn (82) into eqn (81) in 
order to eliminate p, using eqns (77~(82), we can eliminate p, pl, p2, p and u to obtain 

(83) 

Ri is the actual inner radius used in non-dimensionalization. A second relation between A, and 
he is given by a compatibility condition 

The boundary conditions at R = 1 are 

r=P L( ~” $ 7Tt’ = - 4i. 

By eqns (70) and (71), this gives 

-p(l)+ Kp*o 1 +---Jf- l ~,uNof > [(A,(l)h~I)-I)t2Af(1)1=-qi. 

(84) 

(85) 

The degree of sweeping at R = I is controlled by the Flory-Huggins equation, without con- 
straint, eqn (28). Setting ps = qi, t, = - Q;, t2 = tj = c?* + r2’, substituting from eqns (ll), (46), 
(70), (7if, (SO) and (85), gives at R = 1 

(86) 
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Fig. 6. Variation of flux with pressure difference for spherical shells. a = undeformed outside radiuslun- 
deformed inside radius 

where v is defined in eqn (77). The boundary conditions at r = a are 

r= ro, Jl+ *ll= - 40. 

An equation analogous to eqn (85) is obtained at R = a. To save writing, denote it by (85a). The 
Flory-Huggins swelling equation at R = a is obtained by evaluating all quantities in (86) at 
R = a. Denote this eqn by (86a). 

The problem is now formulated at a set of two non-linear coupled ordinary first order 
differential eqns (83) and (84), with boundary conditions (86) and (86a). 

Numerical results have been obtained for a (undeformed outside radius/undeformed inside 
radius) = 1.01, 1.05 and l.S.Figure 6 shows that the pressure difference becomes almost constant 
at flux increases. This is in contrast to the plate response shown in Fig. 2, and apparently arises 
from the variation of in-plane stretch with flux. Results show that the inside and outside radii 
and shell thickness increase with flux. Furthermore, An he and p2/p20 vary only slightly through 
the shell thickness. This suggests that a membrane approximation be developed which is done 
in a separate work. 
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