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Ab&&-An exact solution is given for the tlow of a second grade fluid between two infinite parallel plates 
rotating about noncoincident axes normal to the plates. A comparison of the torque and force exerted by 
the fluid on the plates with the corresponding experimental vaiues would enable one to determine the 
normal stress moduli. Using energy method, the stability of the above flow is investigated for disturbances 
of finite amplitude. It is found that the region of sure stability decreases with increase in the viscoelastic 
parameter. 

1. INTRODUCTION 
THE ORTH~~NAL rheometer of Maxwell and Chartoff [l] is used for determining the complex 
dynamic viscosity of a viscoelastic ffuid. It consists of two parallel plates which rotate with the 
same constant angular velocity about two parallel noncoincident axes. Abbot and Walters[2] 
gave an exact solution for the flow of an incompressible viscous fluid between two infinite 
parallel plates which rotate with the same angular velocity about two nonconincident axes. 
They also studied the flow of a viscoelastic fluid (obeying the model due to Walters[3]) in the 
same domain assuming that the distance between the axes of rotation is small. The flows 
investigated in Ref. [2] have relevance to the flows generated in a Maxwell-Chartoff rheometer 
mentioned above, the plates being, of course, of finite dimension. However, the analysis in[2] 
for a viscoelastic fluid employs an expansion of the appropriate physical variables in terms of a 
power series in the distance between the axes of rotation essentially ignoring terms of quadratic 
and higher order in the series. 

In this paper we establish an exact solution for the flow of an incompressible second grade 
fluid between two infinite parallel plates rotating with the same constant angular velocity about 
two noncoincident axes normal to the plates. The investigations of Berker [4] and Rajagopal and 
Gupta[5] who studied the flow of an incompressible viscous fluid and an incompressible second 
grade fluid, respectively, between two infinite parallel plates rotating with a constant angular 
velocity about a common axis of rotation having bearing on the problem studied in this paper. 

It is worth observing that the equations of motion of an incompressible second grade fluid 
are in general of higher order than the Navier-Stokes equations. Thus obtaining an exact 
solution to these equations might, in general, require boundary conditions in addition to the 
usual no slip conditions. Further the nonlinearities which occur in the equations of motion of a 
second grade fluid are of higher order than those in the Navier-Stokes equations. In this 
context we refer the reader to [5,6] for further discussion. It is also appropriate to remark that 
a general class of non steady flows in a second grade fluid, namely the flow between two infinite 
parallel planes due to constant tangential surface forces and the flows through channels and 
pipes under constant pressure gradient with the assumption of constant dynamic viscosity and 
positive normal stress modulus, was investigated by Ting[7]. 

It turns out that the form of the solution for the velocity field in this paper is similar to that 
in[21 although the pressure fields in these problems differ. It is also worth emphasizing that 
unlike[2] our solution does not require that the distance between the axes of rotation be small, 
the results being valid for arbitrary distances between the axes. The solution established in[5] 
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for coincident axes, however, cannot be obtained as a limiting case of the solution obtained 
here for noncoincident axes. 

Using the energy method[8], we also study the stability of the flow in this problem for 
disturbances of finite amplitude. Here we extend the general stability analysis of Dunn and 
Fosdick[9] for flows of a second grade fluid to unbounded domains. We examine the stability of 
the base flow in terms of two nondimensional numbers, viz. R (the Reynolds number based on 
the angular velocity of rotation and the distance between the plates) and a viscoelastic 
parameter r (denoting the ratio of elastic to viscous forces). As in[5], it is found that as r 
increases, the domain of sure stability decreases. The uniqueness of the solution for the 
equations of motion of a second grade fluid depends on r[lO]. 

In Section 2 we provide a mathematical formulation of the present boundary value problem. 
The main result concerning the exact solution for velocity and pressure distribution in the flow 
is given in Section 3. Finally in Section 4 we study the stability of this flow. 

2,MATHEMATICALFORMULATION 

The stress T in a homogeneous Rivlin-Ericksen fluid of second grade is given by ([ll]) 

T = - pI t PA, t a,AZ t QA,~ (2.1) 

where I_L is the dynamic viscosity coefficient, (Y~ and a2 are the normal stress moduli. We shall 
assume that the material rnoduli are constants independent of temperature. Further -pI denotes 
the constitutively indeterminate part of the stress due to the assumption of incompressibility 
and A, and A2 stand for the first two Rivlin-Ericksen tensors defined through 

A, = grad v t (grad v)~ (2.2) 

and 

A2 = A, t (grad v)~A~ + A,(grad v) 

where v is the velocity field and the overdot denotes material time differentiation. 
In this analysis we shall consider the model represented by (2.1) as an exact model. This 

model was shown to be a second order approximation to the response functional of a simple 
fluid in the sense of retardation by Coleman and No11[12]. But since the model is properly 
frame-invariant it can also be considered as an exact model in its own right. However, the two 
points of view are not contradictory and in this context we refer the reader to [9,13] for further 
comments. If the model (2.1) is required to be compatible with thermodynamics in the sense that all 
motions satisfy the Clausius-Duhem inequality and the assumption that the specific Helmholtz 
free energy is a minimum in equilibrium (at constant temperature), then the material moduli 
must meet the following restrictions [9]) 

p 20, (~~20 and aIta2=0. (2.4) 

The third condition in (2.4) is a consequence of the Clausius-Duhem inequality while the 
second follows from the requirement that the specific Helmholtz free energy is a minimum in 
equilibrium. More recently the implications of requiring the specific internal energy rather than 
the specific Helmholtz free energy be a minimum was investigated in[14]. 

When (2.1) is substituted into the equation of linear momentum 

divTtpb=p+ 

where b denotes the body force per unit mass, one obtains 

~Av + (Y,(Aw x v) + a,Avl + pv, - p(w x v) = grad fi (2.5) 



where w = curl v and 
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(2.6) 

Here we have assumed that b is conservative so that b = - grad 4 for some scalar field 4. Also since 
the fluid is incompressible it can undergo only isochoric motions and hence 

div v = 0. (2.7) 

In (2.6) /A,/ and Jv( denote the usual trace norm (A,[* = tr A,AT and (v * v)“*, respectively. Further 
in (2.5) the subscript t denotes partial derivative with respect to time. 

We conclude this section with a formal statement of the boundary value problem. We wish 
to determine the distribution of velocity and pressure satisfying (2.5) and (2.7) for the problem 
of steady flow between two infinite parallel plates rotating with constant angular velocity R 
about two noncoincident axes normal to the plates, the distance between the axes of rotation 
being a. A Cartesian coordinate system Oxyz is introduced so that the upper and lower plates 
are defined by z = h and z = 0, respectively. The upper plate rotates about an axis through P 
and the lower plate rotates about an axis through Q as shown in Fig. 1. 

The appropriate boundary conditions for the velocity field are 

U=y-fly, o=Rx, w=O at z=h 

and 

UC-y-fly, o=flx, w=O at z=O 

(2.8) 

(2.9) 

where u, v and w denote the velocity components along the x, y and z directions. 
We seek steady solutions of the form 

u = - i-qy -g(z)), u = n(x -f(z)), w = 0 (2.10) 

which satisfy (2.7). 
To determine the velocity field we shall find it convenient to eliminate pressure by taking 

Fig. I. 
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curl of (2.5) as follows 
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PA& + q curl (Awxv) + ar,Ao, - p curl (WXV) = 0 (2.11) 

which constitutes the starting point of our analysis. 

3.EXACTSOLUTION 

On substituting (2.10) in (2.11) we obtain 

elf”’ + a*f-lg”’ t pflg’ = 0 (3.1) 
and 

/.&gll’ - ff ,fip - pClf = 0 (3.2) 

where a prime denotes d~erentiation with respect to t. It follows from (2.8~2.10) that 

f(0) = 0, f(h) = 0, g(0) = - ;, g(h) = f (3.3) 

Let US introduce F(z) =f f ig where i = (- 1)“‘. Equations (3.1) and (3.2) can clearly be 
combined as 

F”‘-(m+inyF’=O (3.4) 

where m and n are given by 

and 

Now from (2.5) and (2.10), we have 

-- 1 ap = y [(I _f)f” + (y - g)g’q 

P az 
where 

P = B -; plvl”. 

Inte~ation of (3.1) and (3.2) gives 

ELf)) t alfIg”’ + pilg = q 

pg” - a&p - pflf = s 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where q and s are constants. 
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Substituting (3.7)-(3.9) in 
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dP/p = [(Wax) dx + (#/a~) dy + (#/a~) dz]/p 

and integrating the resulting equation, we obtain after using (3.11) and (3.12) the following 
expression for the pressure 

$_~(X’+y’)+z$ [2xf”+2yg”--f--g”+ 1/2(jQ+g’2)] t (T-Y) + c 

where C is an arbitrary constant. It can be seen from (3.13) that nonzero values of s and q 
would give rise to a pressure gradient between the plates with a corresponding flow of 

(3.13) 

Poiseuille type. In order to remove the possibility of flow of this type and at the same time to 
ensure the symmetry of the velocity distribution about the plane I = h/2, we put s = q = 0[2]. 
Equations (3.11) and (3.12) now give upon using (3.3) 

t&a/2 
0°) = [v2 t (a,n/p)2]' 

alf12a/2p 
g”(o) = [v2 t (aJl/p)2] 

which yield 

Since (3.3) gives 

F(0) = - ia/2, F(h) = iu/2 

the solution of (3.4) satisfying (3.14) and (3.15) is 

ia 
F(z) = z 

e(m+in)r _ e-(m+in)z + eCm+inXz-h) _ e-(m+inXz-h) 

e(m+in)h _ e-(m+in)h 

(3.14) 

(3.15) 

(3.16) 

This gives after a lengthy but straightforward computation 

f(z) = F {sin nh cash mh [cos nz sinh mz + cos n(z - h) sinh m(z - h)] 

- cos nh sinh mh [sin nz cash mz t sin n(z - h) cash m(z - h)} (3.17) 

and 

g(z) = ~{COS nh sinh mh [cos nz sinh mz + cos n(z - h) sinh m(z - h)] 

t sin nh cash mh [sin nz cash mz t sin n(z - h) cash m(z - It)]} (3.18) 

where 

A = 4(sinh2 mh + sin2 nh). (3.19) 

Thus the velocity and pressure fields are obtained from (2.10) and (3.13) with q = s = 0 and f 
and g given by (3.17) and (3.18). The expressions for the velocity components in (2.10) agree 
with those in[2] when LY~ = 0, i.e. in the case of the Navier-Stokes equations. Of course, as is to 
be expected, both the velocity and pressure fields depend on the normal stress modulus al. 
Although the velocity field in the present problem has the same form as that in[2], the pressure 
fields in the two problems are markedly different. 
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As mentioned earlier, the orthogonal rheometer of Maxwell and Chartoff [I] can be used in 
determining the complex dynamic viscosity of a second grade fluid. The velocity obtained 
above may be used to determine the stress at any point and hence the torque and the normal 
force exerted by the fluid on the two plates. This can be compared with experimentally 
measured torque and normal forces in the orthogonal rheometer which would enable one to 
determine the normal stress moduli. 

4. STABILITY 

In this section we $udy the stability of the above flow subject to disturbances of finite 
amplitude. Let v and P denote the velocity and pressure (modified) for the base flow which 
satisfy (2.5) and (2.7). Further assume that v’ and P’ denote another distribution of velocity and 
pressure (modified) which satisfy the same equations and boundary conditions as u and P but 
may conform to different initial conditions. Let 

u=v’-_v and @=pl-fi (4.1) 

denote the difference fields. Sufficient conditions for the disturbance field to decay asymptotic- 
ally to the mull flow were obtained by Dunn and Fosdick[9] using the energy method[8]. They 
showed that for a bounded domain B, the disturbance velocity decays asymptoticahy to zero in 
the sense that 

I B lu(x, t)? d V +: IB Igrad u(x, t) 2d V 

5 e-” [I B lu(x, 0)12 d V + T 1, (grad u(x, O)( 2d V] (4.2) 

where A > 0, provided the material moduli and the base flow are 
inequality holds 

such that the following 

(4.3) 

The expression on the 1.h.s. of (4.2) is a measure of the kinetic energy and the energy due to 
stretching in the fluid, In (4.3), M and -h? denote the maximum and minimum of the eigenvalues 
of the Rivlin-Ericksen tensor A,, N denotes the maximum eigenvalue of AA, and K stands for 
the Poincare coefficient for the domain. Since the domain is unbounded in the present problem, 
we make the following assumptions regarding the asymptotic behaviour of u and @ [8] 

u = O(r-‘I), grad u = O( T-~-I) and fi = O(rmk+‘) (4.4) 

where k > 1. These conditions will ensure that appropriate surface integrals will vanish in the 
limit r+ m. It then follows [8] that (4.3) can be replaced by 

(4.5) 

We shall study (4.5) in detail. It follows from (2.2) and (2.10) that the eigenvalues of A, are 

A = 0 and A = ? fi{(g’)2 + (f’)2}“2 (4.6) 

and the eigenvalues of AA, are 

A = 0 and A = + 52{(g”‘)2 + (j”‘)2}“2. (4.7) 
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It now follows from (4.6) and (4.7) that 

M = M 3 ii{( + (j’)2}‘/2 for 0 I z 5 h 

and 

N N 2 0{(g”‘)2 + Cf,a)2}“2 for 0 I z I h. 

Substitution of f and g from (3.17) and (3.18) into (4.8) and (4.9) gives 

M = ti a fi[(mK, - nS)’ t(mStnKJ2]"2{[~(z)t $(z - /I)]~ 

t [4(z) + d(z - w121"2 

and 

Nafl{[n3K,-3nm2K, t3mn2S-m3S]2t[m3K1 

- 3mn2K1- 3m2nS tn3S]2}1'2{[$(z)+~(z-h)]2 

+ [4(z)+ 9(z - M2P2 

for 0 I z 5 h with 

Kr =: sin nh cash mh, S = $f cos nh sinh mh (4.12) 

d(z) = sin nz sinh mz, Jl(z) = cos nz cash mz. 
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(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.13) 

Now a straightforward computation yields from (4.13) 

1$(z) + Jl(z - h)l2 + [4(z) + $4~ - h)12 

= cash’ mz -sin2 nz t cosh2 m(h - z) - sin2 n(h - z) 

t 2 sin nz sinh mz sin n(h -2) sinh m(h - z) t 2 cos nz cash mz cos n(z - h) cash m(h -z). 
(4.14) 

It follows from (3.5) and (3.6) that n 2 m and hence for 0 I z I h, 

Similarly 

cash’ mz - sin’ nz I cash’ nz - sin2 nz I cosh2 nh - sin2 nh. 

cosh2 m(h - z) - sin2 n(h - z) 5 cosh2 nh - sin2 nh. 

(4.15) 

(4.16) 

Further 

2 sin nz sinh mz sin n(h - z) sinh m(h - z) 5 2 sinh2 mh (4.17) 

and 

2 cos nz cash mz cos n(z - h) cash m(h - z) 5 2 cosh2 mh. (4.18) 

Now from (4.14)-(4.18) we have 

[e(z) t I)(Z - h)12 t [b(z) t 4(z - h)12 I 2(cosh2 nh-sin2 nh) t 2 cash 2mh. (4.19) 

Substituting (4.10) and (4.11) in (4.5) and using (4.12) and (4.19), we finally obtain the 
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sufficient condition for stability of the base flow subject to arbitrary disturbances as 

;((4r+R) ;;z [(mh sin nh cash mh - nh cos nh sinh mh)‘+ (mh cos nh sinh mh 

+ nh sin nh cash mh)2]112+A [(n3h3 sin nh cash mh - 3m2nh3 sin nh cash mh 
IT 

+ 3mn2h3 cos nh sinh mh - m3h3 cos nh sinh mh)2 + (m3h3 sin nh cash mh 

- 3mn2h3 sin nh cash mh - 3m3nh3 cos nh sinh mh + n3h3 cos nh sinh mh)2]“2 
I 

< A[2(cosh2 nh - sin2 nh) + 2 cash 2mh]-“2 (4.20) 

where 

R=m r=(yln 
lJ ’ PU * 

Figure 2 displays the stability region in the (a/h)-R 

(4.21) 

plane as computed from (4.20) for 
several values of the viscoelastic paramerer I. The region bounded by a curve (for fixed I’) and 
the coordinate axes represents the domain of sure stability with respect to finite amplitude 
disturbances. It may be noticed that this domain of sure stability decreases with increase in I. 
This tends to suggest that viscoelasticity could possibly exert a destabilizing inffuence on the 
flow. The region outside the domain of sure stability is not necessarily a region of instability 
since the above estimate is based on a sufficient condition for stability. 
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