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FRACTAL ENERGYTRANSPORT: RANDOMWALK SIMULATIONS ON LONG-RANGEPERCOLATION
CLUSTERS

Panos ARGYRAKIS* and Raoul KOPELMAN

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
USA

Luminescence from naphthalene alloys is quenched by long-range exciton hops.
These are modeled by long-range random walks on long-range percolation clus-
ters with a range—dependent hopping time. Both linear and exponential range
dependencies are simulated, over nearest to fifth nearest neighbor hops. At
critical percolation thresholds the random walk properties obey the super-
universality hypothesis (spectral or fracton dimension of about 4/3). How-
ever this asymptotic limit is approached at different rates for different
functional forms of the hopping time (constant, r, er,

10r).

Recent luminescence experiments on isotopic mixed naphthalene crystals were

interpreted in terms of fractal energy transport*
4 Basically this involves

random walks on percolation clusters (defined by the C
10H8 in the C10D8 host).

However, these clusters are defined via long-range bonds and the long-range

random walks were assumed to be in the same universality class (spectral di-

mension) as nearest neighbor walks on ordinary percolation clusters. The ques-

tion is not only whether the asymptotic (long time) behavior is the same but

also how soon such asymptotic behavior is approached (considering the finite

experimental time-scale).

The static properties of long-range percolation are well-studied.
5’6 The

thresholds for different interaction ranges have been derived via Monte-Carlo

methods by Hoshen et al.5 and via a position space renormalization group

method by Gouker and Family.6 The percolation exponents (~,y, v, etc.), and

therefore fractal dimensions, are the same as for nearest-neighbor interactions.

We perform random walk simulations at these thresholds and monitor the number

of distinct sites visited at least once <SN>~and the mean-squared distance

<R2N>. as a function of time (number of steps N), for different concentrations

(p).
The relationship for nearest—neighbor walks is

SN~N ~

where f = d
5/2 and the spectral dimension d5 is expected to equal about 4/3.

Above the threshold (critical concentration ~ the behavior of Eqn(l) is
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expected to crossover
8 to a classical behavior, where f = 1 for 3—dimensional

perfect lattices, but f ~ 1 for 2—dimensional perfect lattices. Below the

threshold we expect an effective exponent f, where 0 < f < 2/3.

The jump probability depends on the distance between sites. For each walk

a maximum range of interaction is defined and jumps are allowed to take place

only to sites within this range. We vary this range from R = 2 to R = 5 lat-

tice distances. The hopping frequency ~(r) is a function of the distance r.

In this work we treat four functional forms: (a) constant, (b) r~, (c) e_r,

(d)
10—r (the last two are closely related to excitation exchange interactions

and differ little from each other). The details of the particular random walk

techniques were reported elsewhere.
9’1°
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FIGURE 1 FIGURE 2
vs N as a function of the cutoff SN vs N, as a function of v(r), for

range R, for R = 5, 2, 3, 4 (top to bot- R = 2 at ~ = 0.29. Top to bottom:
torn, for threshold concentration PC = ~(r) = constant, r—1, e—r and 10°’,
0.07, 0.29, 0.16 and 0.10, respectively). respectively.
Here ~(r) = constant. Notice that in
this case of ~(r)= constant all ranges
produce practically the same SN, so that
the lines are indistinguishable.

Our results are summarized in two figures. Figure 1 shows SN vs N as a

function of the interaction range R (R = 2 to 5) for a distance independent

jump frequency: v(r) = const(r). It is interesting to see that one gets a

similar and nearly constant slope f for all R > 1, but this slope f is somewhat

smaller than the ordinary (R = 1) slope, i.e., it is below 2/3. However, the

general behavior for this family of curves (for all values of R) is similar to

the nearest-neighbor random walk results’° we recently reported. Figure 2
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shows the effects of the distance dependence (of the jump frequency) for R = 2.

The main effect is the non-linearity for all non-flat ~(r), i.e (r) S r~,

er,
10-r This curvature may reflect a slower approach to the asymptotic

value. Specifically, for a case of a steeply falling—off function ‘~(r), the

walk, at short times, performs nearest neighbor jumps only. Thus the effective

short time percolation threshold is about ~c = 0.59 and hence an effective

f --~ 2/3 is expected at early times. For longer times, longer range jurlips

become probable and f approaches 2/3 as the effective threshold (p0) approaches

the nominal values.
5’6 We plan to pursue the long-time limit in another study.

Similar behavior to that of R = 2 (Figures 1,2) was also obtained for R = 3

to R 5.

In summary, we have performed simulation calculations at the critical perco-

lation threshold for binary lattices with long-range interactions. Our re-

sults show that scaling and universality of the fractal behavior are largely

intact. In the short-time limit that we investigated (up to 5000 steps) the

qualitative results showed an effective exponent f somewhat smaller than expec-

ted. This is also in agreement with recent experimental observations2’3’~

and simulations.12
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