CHARM QUARK PRODUCTION AND FRAGMENTATION
IN e^+e^- ANNIHILATION AT 29 GeV

M. DERRICK, E. FERNANDEZ, R. FRIES, L. HYMAN, P. KOOIJMAN, J.S. LOOS,
Argonne National Laboratory, Argonne, IL 60439, USA

S. AHLEN, G. BARANKO, P. BARINGER, D. BLOCKUS, B. BRABSON, M. DAIGO 1,
G.E. FORDEN, S.W. GRAY, J.-P. GUILLAUD, C. JUNG, H. NEAL, H. OGREN,
D.R. RUST, M. VALDATA-NAPPI 2
Indiana University, Bloomington, IN 47401, USA

C. AKERLOF, J. CHAPMAN, D. ERREDE, N. HARNEW, P. KESTEN, S. KOOIJMAN,
D.I. MEYER, D. NITZ, D. RUBIN, A.A. SEIDL, R. THUN, T. TRINKO, M. WILLUTZKY
University of Michigan, Ann Arbor, MI 48109, USA

I. BELTRAMI, R. DE BONTE, K.K. GAN, D. KOLTICK, F.J. LOEFFLER, U. MALLIK,
R. STEVENS, R.J. WILSON
Purdue University, West Lafayette, IN 47907, USA

B. CORK
Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

and

L. KELLER and J. VA'VRA
Stanford Linear Accelerator Center, Stanford, CA 94305, USA

Received 28 June 1984

The electroweak production asymmetry and the decay fragmentation function for $e^+e^- \rightarrow c\bar{c}$ have been measured at $\sqrt{s} = 29$ GeV using charged D^* production over the full kinematic range. The data were taken at PEP using the High Resolution Spectrometer. The measured asymmetry is -0.12 ± 0.08. The total production cross section in units of the point cross section corrected for initial state radiation is $R_{D^*} = 2.7 \pm 0.9$.

The characteristics of charm quark production and fragmentation in high energy e^+e^- annihilations have been analyzed previously using charged D^* production [1-5]. We have also reported results based on direct D^0 and D^+ production [5,6]. In this paper we use charged D^* production to measure the charm fragmentation function and electroweak asymmetry. The data come from an integrated luminosity of 106 pb$^{-1}$ collected by the High Resolution Spectrometer (HRS) over a two year running period at PEP at a center of mass energy of 29 GeV 41.

In the standard model [7] the e^+e^- annihilation data sample includes the 19.6 pb$^{-1}$ of data reported in ref. [5].
proceeds via γ and Z^0 intermediate states so that in the reaction $e^+e^-\rightarrow c\bar{c}$ the amplitudes of the two processes interfere to produce an asymmetry in the production angular distribution. The angular distribution is described by the form $1 + a\cos \theta + \cos^2 \theta$, where θ is the angle between the incoming electron and the outgoing c quark, and the integrated forward-backward asymmetry $A = 3a/8$ is given by

$$A = \frac{3}{2}q g^e g^c \frac{G_F}{2\sqrt{2}\pi\alpha} \frac{s}{1 - s/M_Z^2},$$

where M_Z is the Z^0 mass, q is the charge of the c quark, and g^e, g^c are the electron and quark axial vector coupling constants. The predicted asymmetry at $\sqrt{s} = 29$ GeV, using $M_Z = 94$ GeV, $q = 2/3$, and $g^e = -g^c = 1/2$, is $A = -0.095$. Since the charm quark cannot be observed directly, θ is determined by the line of flight of charmed D^* mesons with high fractional energy $Z = 2E_{D^*}/\sqrt{s}$, where E_{D^*} is the energy of the meson.

We have observed charged D^* production in the decay mode

$$D^{**+} \rightarrow D^0\pi^+,$$

with the D^0 decaying into the $K^-\pi^+, K^-\pi^+\pi^-\pi^-$ and $K^-\pi^+\pi^0$ modes. Our analysis also includes the charge conjugate states. The D^{**}'s were isolated using the excellent mass resolution of the HRS and by exploiting the fact that the Q value of reaction (2) is only 5.8 MeV, so that the $D^{**+} \rightarrow D^0$ mass difference (δ) is well determined.

The HRS is a general purpose detector using a 1.62 T solenoidal magnetic field and is described elsewhere [8]. The resolution for high momentum tracks at large angles is measured to be $\sigma_p/p \approx 2 \times 10^{-3} p$ (p in GeV/c). The shower energy is measured with an electromagnetic calorimeter in both barrel and end-cap regions with a typical resolution of $\sigma(E)/E = 0.18/\sqrt{E}$ (E in GeV). The detector was triggered if (i) at least two tracks were observed in the central drift chamber, or (ii) a minimum of 4.8 GeV shower energy was deposited in the calorimeter, or (iii) at least one track and a minimum of 2.4 GeV shower energy were observed. To select a clean sample of the antihadron multihadron events, the following was required: (i) a minimum of five well reconstructed charged tracks, (ii) $\Sigma|p_i| \geqslant 7.5$ GeV, where $\Sigma|p_i|$ is the scalar sum of the total momenta of the tracks, (iii) total shower energy deposited in the barrel calorimeter $\geqslant 1.0$ GeV. In reconstructing D^0 and D^* decays, no particle identification was used and each

Fig. 1. The quantity δ, (a) for $D^0 \rightarrow K^-\pi^+$ with $1.81 < M_{K\pi} < 1.92$ GeV and $Z > 0.4$, (b) for $D^0 \rightarrow K^-\pi^+\pi^-\pi^-$ with $1.81 < M_{K3\pi} < 1.92$ GeV and $Z > 0.6$, (c) for $D^0 \rightarrow K^-\pi^0$ with $1.55 < M_{K\pi} < 1.70$ GeV and $Z > 0.6$, (d) for $D^0 \rightarrow K^-\pi^+$ with $1.81 < M_{K\pi} < 1.92$ GeV and $0.2 < Z < 0.4$ and $|\cos \theta^*_\mu| < 0.8$.

track in the events passing the above cuts was taken as both a kaon and a pion. All K−π+ combinations were used and the quantity $\delta = (M_{K^-\pi^+} - M_{K^-\pi^+})$ was determined for those combinations with 1.81 < $M_{K^-\pi^+}$ < 1.92 GeV which is the mass region for D0 decays. The same technique was used also for the K−π+π−π− decay of the D0. Fig. 1a shows the mass difference δ distribution for the K−π+ decay mode with $Z_{D*} \geq 0.4$ and fig. 1b the δ distribution for the K−π+π−π− decay mode with $Z_{D*} \geq 0.6$. Prominent peaks are evident at $\delta \sim 0.145$ GeV. Fig. 2a shows the K−π+ (ZD* > 0.4) and fig. 2b the K−π+π−π+ (ZD* > 0.6) effective mass distributions for 0.143 < δ < 0.149 GeV. The peaks at 1.86 GeV show clear evidence for D* production with small backgrounds. These D* candidates were used for the asymmetry measurement.

For the Kππ0 decay mode of the D0, no attempt was made to reconstruct the π0. The well known k-
ysis yielded an asymmetry of $A = -0.08 \pm 0.12$. This result combined with our D^* measurement yields our most precise value of $A = -0.12 \pm 0.08$ which is in good agreement with the standard model prediction of $A = -0.095$. This result can be compared with previous measurements by the TASSO collaboration [4] at $\sqrt{s} = 34.4$ GeV of $A = -0.28 \pm 0.13$ which was later updated [11] to $A = -0.13 \pm 0.10$.

In measuring the fragmentation function over the range $0.2 < Z_{D^*} < 1.0$ only the $K\pi\pi$ decay mode was used and a more restrictive vertex requirement was imposed. To reduce background in the region of $0.2 \leq Z_{D^*} < 0.4$, events were selected with $|\cos \theta^*_D| < 0.8$ where θ^*_D is the decay angle of the D^0 in its helicity frame. A clear signal is observed as shown in fig. 1d for this Z range when the angle cut is imposed. This angle cut was not imposed for $Z_{D^*} > 0.4$ where the background is low. The number of D^*+0 observed as a function of Z were corrected for the decay branching ratios and the detector acceptance. No correction for D^0D^0 mixing was made since it is not observed in the data. This is consistent with an expected mixing amplitude [12] of $< 10^{-3}$ and the best experimental limit [13] of $< 5\%$.

Fig. 4a shows the fragmentation function $D(Z) = (1/N)dN/dZ$ and fig. 4b the scaling cross section $(s/\beta)ds/dZ$ for this analysis together with previous results [1,4]. Fitting the data to the parameterization of ref. [14] yields $\epsilon = 0.41 \pm 0.10$. Table 1 lists the data for each region of Z, along with the corresponding efficiencies. The experimental data peaks near $Z = 0.55$ and has a mean value of 0.53 ± 0.03. This hard fragmentation is undoubtedly due to the process $e^+e^- \rightarrow c\bar{c}$, with the D^0 containing the primary charmed quark since charmed mesons from the process $e^+e^- \rightarrow b\bar{b}$ are expected to carry a much smaller fraction of the available energy. We note that although our results extend to low Z where b fragmentation is expected to be important compared to charm fragmentation we have not separated the two components in our analysis.

Assuming $\sigma(D^{*+}) = \sigma(D^{*0})$ from isospin conservation, the measured total D^* cross section, corrected

\begin{table}[h]
\centering
\begin{tabular}{cccc}
\hline
Z & Efficiency & $s \beta ds/dZ$ (μb GeV2) & $D(z) = \frac{1}{N} \frac{dN}{dz}$ \\
\hline
0.2–0.4 & 0.24 & 0.168 ± 0.049 & 1.23 ± 0.36 \\
0.4–0.5 & 0.42 & 0.185 ± 0.060 & 1.44 ± 0.46 \\
0.5–0.6 & 0.45 & 0.391 ± 0.070 & 3.07 ± 0.55 \\
0.6–0.7 & 0.49 & 0.211 ± 0.050 & 1.68 ± 0.40 \\
0.7–0.8 & 0.55 & 0.118 ± 0.035 & 0.94 ± 0.28 \\
0.8–1.0 & 0.62 & 0.026 ± 0.011 & 0.21 ± 0.08 \\
\hline
\end{tabular}
\caption{The invariant cross section and fragmentation function for D^{*+} production.}
\end{table}

a) Includes correction for decay angle cut.
for acceptance, is \(\sigma(D^* + \bar{D}^*) = 0.31 \pm 0.10 \) nb. This value, divided by the muon pair point cross section corrected for initial state radiation, gives an \(R \) value of \(R(D^* + \bar{D}^*) = 2.7 \pm 0.9 \) in good agreement with \(2.5 \pm 0.64 \pm 0.88 \) measured by the TASSO group [4]. The expected inclusive \(R \) value for all charm production using \(\alpha_s = 0.17 \) is 3.53, which includes 0.7 units of \(R \) for the \(b \) decay into charm.

In conclusion \(D^{**} \) production has been studied at a center of mass energy of 29 GeV with the HRS. The charm quark asymmetry measured at \(\sqrt{s} = 29 \) GeV is \(A = -0.15 \pm 0.09 \), from the charged \(D^* \) sample, where the \(D^0 \) from the \(D^{**} \) decayed into \(K^- \pi^+ \), \(K^- \pi^+ \pi^+ \pi^- \), or \(K^- \pi^+ \pi^0 \). Combining this result with the asymmetry measured in inclusive \(D \) production gives \(A = -0.12 \pm 0.08 \). The fragmentation function is hard indicating that the \(D^* \) contains the primary charmed quark and the size of the production cross section indicates that a large fraction of charmed quark events proceeds through \(D^* \) formation.

This work was supported by the US Department of Energy and in part by the Sloan Foundation. We acknowledge the work of the technical staffs of SLAC and the collaborating institutions whose efforts made the experiment possible.

References