Giant Arteriovenous Malformation of the Vein of Galen in an Adult

Keith L. Black, M.D. and Saeed M. Farhat, M.D.

Department of Surgery, Section of Neurosurgery, University of Michigan and St. Joseph Mercy Hospital, Ann Arbor, Michigan


A case of a large vein of Galen malformation in a 29-year-old man is presented. A two-staged surgical procedure, first with ligation of the feeding vessels, and followed later by thrombectomy, allowed successful surgical treatment of this lesion.

KEY WORDS: Vein of Galen, malformation; Thrombosis; Surgical ligation; Aneurysm

Vein of Galen aneurysms comprise less than 1% of all arteriovenous malformations [19]. The experience with these lesions suggest three distinctive clinical presentations: that of the neonate, that of the infant, and that of the older child or adult [11,13]. In neonates the initial presentation is typically that of congestive heart failure, and death secondary to congestive heart failure and myocardial infarction is the usual sequela despite heroic surgical and medical treatment [4]. Infants usually present with hydrocephalus, and older children or adults typically present with seizures, headaches, and symptoms of subarachnoid hemorrhage. The older the patient at the time of presentation the better the prognosis, primarily because of the absence of associated cardiac problems.

Less than fifty cases of vein of Galen malformations in adults are reported in the literature [1,7,9,13,14,20,21]. This report describes the presentation of a giant malformation of the vein of Galen in an adult and the surgical treatment of the lesion.

Case Report

A 29-year-old right-handed man presented on June 25, 1983, with a 9-month history of progressive headaches, difficulty seeing to his right at night, nausea, and vomiting. Examination on admission revealed a right homonymous hemianopsia and bilateral papilledema. Babinski’s sign was present on the right and his uvula deviated to the right. A bruit could be heard over the occipital area, louder on the right side. A computed tomography scan revealed a large enhancing mass in the posterior parietooccipital region containing small flecks of calcification and forward displacement of the lateral ventricles (Figure 1). Arteriogram showed a large vein of Galen malformation in the left occipital parietal area supplied by two enlarged posterior temporal branches of the left middle cerebral artery (Figure 2). Both anterior cerebral arteries were supplied by the right internal carotid artery and the posterior cerebral arteries were hypoplastic.

A two-staged surgical procedure was planned. First, the two feeding vessels would be ligated to allow the malformation to thrombose; later an elective thrombectomy would be performed. On July 6, 1983, the patient was brought to the operating room and a temporal parietal incision was used to approach the malformation. The bone was extremely thin above the mastoid and external auditory canal and slightly discolored. The cortex in the parietal area had a yellowish discoloration suggestive of previous bleeding. Two large branches of the middle cerebral artery could be seen emptying into the malformation (Figure 3). When temporary clips were placed on these vessels, the malformation became softer and an arteriolized vein adjacent to the lesion immediately became venous in nature. The two feeding vessels were doubly ligated. After the operation the patient was alert and oriented. Thirty-six hours later he had a seizure, became unresponsive, and had a respiratory arrest. He was intubated, hyperventilated, and given intravenous mannitol and Lasix. His level of consciousness improved somewhat. A computed tomography scan showed a decrease in the size of the malformation, edema, and a left to right shift from the midline (Figure 4). An arteriogram showed partial thrombosis of the vessels feeding the malformation, and no filling of the malformation was evident (Figure 5). The patient was taken back to the operating room and
Figure 1. (A) Computed tomography without contrast-medium enhancement of vein of Galen malformation before first craniotomy. (B) Computed tomography of malformation with contrast-medium enhancement.

Figure 2. Carotid angiography demonstrating vein of Galen malformation. (A) Arterial phase, lateral view. (B) Venous phase, lateral view. (C) Anteroposterior view.
the tense wall of the aneurysmal dilatation was opened. Approximately 100 mL of gelatinous blood was evacuated, and good decompression was achieved. Fresh bleeding was evident from an opening into the wall of the aneurysmal dilatation near the level of the petrous bone. A clip was placed across this opening through the aneurysmal cavity. After the operation a right hemiparesis was present, but this improved over 3 weeks. Repeat angiography and computed tomography scan were consistent with thrombosis of the malformation (Figures 6 and 7). When last seen on October 10, 1983, he had
a slight pronator drift on the right and extinction of sensation on the right with double simultaneous stimulation. The right homonymous hemianopsia remained. His papilledema was disappearing but he had some evidence of optic atrophy. His neurological examination was otherwise normal. He has no further complaints of headache or nausea.

Discussion

Less than 25% of reported arteriovenous malformations involving the Galenic system have been in older children and adults. Hydrocephalus, which is most common in infants, is reported in only 30% of adult cases [13]. Intracranial bruits, common in infants, are rarely heard in neonates or adults [11].

The arterial supply to vein of Galen malformations results from persistent channels during embryologic development [9, 16, 18]. The posterior cerebral arteries, posterior choroidal arteries, and thalamic perforating arteries usually supply the malformation, but supply from the anterior circulation is sometimes reported. Multiple arterial feeders supplying the malformation, which are usually the rule in neonates [10], and which make operation extremely difficult [4, 5], are uncommon in adults.

In this case, only a few flecks of calcification could be identified in the malformation. Rimlike calcification is common, however, in adult vein of Galen malformations as a result of the chronic increase in venous pressure [21]. Calcification in younger patients is generally associated with thrombosis of the malformation.

Complete thrombosis at the time of diagnosis has permitted successful surgical excision in a few reported cases [7, 8, 12, 17]. Thrombosis of the malformation subsequent to ligation of the feeding vessels has been reported in one case [6]. In the present case a two-staged
surgical approach was planned. First, the feeding vessels would be ligated, allowing the malformation to thrombose, and later an elective thrombectomy would be performed.

Unfortunately, our patient developed vasogenic edema after ligating the feeding vessels to the giant malformation and deteriorated 36 hours after the operation. Cerebral vessels surrounding a large arteriovenous malformation adjust to the chronic state of low perfusion pressure secondary to the sump effect of the malformation. When the feeding arteries are occluded, the surrounding vasculature is subjected to a rapid increase in perfusion pressure to which it can no longer autoregulate. The cerebral capillaries become exposed to a high intravascular pressure, and vasogenic edema subsequently develops [15,22]. Due to the mass effect of the edema, the thrombectomy had to be performed on an emergent basis for decompression.

If resolution of symptoms has occurred after ligation of the feeding vessels with thrombosis of the malformation, thrombectomy is not required. If symptoms attributable to a mass lesion remain after thrombosis of the malformation, then thrombectomy with decompression can be an important adjunct to successful surgical treatment of these lesions.

References