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Abstract--The ordinary theory of maxima and minima is applied to develop the optimal switching 
conditions for the problem of two-impulse transfer with time constraint between non-coplanar elliptical 
orbits. It is shown that all the elements of the transfer orbit, the total characteristic velocity for the transfer 
and the time of flight between impulses can be expressed explicitly in terms of three variables namely the 
semi-latus rectum of the transfer orbit, and the true anomalies defining the locations of the impulses on 
the initial and the final orbit, respectively. In terms of these variables, three necessary optimal conditions 
are derived for solving either the problem of minimum-fuel, fixed-time transfer or the problem of 
minimum-time transfer for a prescribed fuel consumption. In the special cases of fixed-time coplanar transfer 
and free-time non-coplanar transfer, the general optimal conditions a~ reduced to the classical optimal conditions 
in the published literature, in particular, it is shown that for the minimum-fuel, fixed-time transfer between 
coplanat circular orbits, the optimal conditions can be expressed in terms of Lamberl's invariant parameters. 

I .  I N T R O D U C T I O N  

During the past two decades, the problem of  
minimum-fuel transfer between orbits has been thor- 
oughly investigated for both the high-thrust and the 
low-thrust propulsion systems. The cumulative re- 
sults have been masterfully presented in the exhaus- 
tive treatise by Marec[I]. With increased manned 
space flight in this decade, the transfer time becomes 
an important parameter which should be considered 
in the optimization process, in this paper, we propose 
to develop the optimal equations for solving the 
following two related problems. 

There are given two terminal orbits O, and O2 
about a Newtonian center of attraction F (Fig. I). 
For a high-thrust propulsion system, it is proposed to 
find the minimum fuel transfer trajectory for a pre- 
scribed transfer time, or the minimum-time transfer 
trajectory for a given fuel consumption. 

An orbit is defined by the classical elements a, e, t"J, 
i and to. If the plane of  the initial orbit is taken as the 
reference plane and the direction to the pericenter as 
the reference direction, there are given 7 parameters 
a,, el, a2, ez, ~2,/2 and % (Fig. 1). We shall assume 
that the thrust is high enough such that the velocity 
change at the time of the application of  the thrust can 
be considered as instantaneous. Furthermore, we 
restrict the problem to the case of  two impulsive 
changes in the velocity with magnitude Vt and V 2. 
The total characteristic velocity is then 

r = rl + r2 -- F(x) (i) 

t [keeased. 
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where X is the arbitrary variable defining the transfer. 
The time of  flight is 

+ -- G(X) (2) 

The mathematical problem is simply, for a given 3, to 
minimize the function V, or for a given V, to min- 
imize the function 3. Since this is a parametric 
optimization problem subject to constraint, the the- 
ory of maxima and minima is adequate for its 
solution provided that the variables selected lead to 
managable resulting equations. 

2. T R A N S F E R  G E O M E T R Y  

We shall define the shape and the size of an orbit 
by its eccentricity e and semi-latus rectum 
p = oil  - e  2] where a is the semi-major axis. Hence, 
we first have the given parameters Pl, el, Pz and e2. 
The elements without subscript correspond to the 
unknown transfer orbit O. To preserve certain ele- 
ment of symmetry in the equations, we shall use the 

Fig. I. Geometry of the terminal orbits. 
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plane of the transfer orbit as the reference plane. Let 
be the angle between the planes on the given orbits 

which intersect each other along the line of nodes FN. 
Let B, and 13. be the true anomalies of this line of 
node in the corresponding planes. Hence, as corn- 

paved to the classical elements of the orbit in Fig. 1, 
we have ~b = i2, #l = Q.~ a n d / ~  = 2= - ~ .  

Let/~ a n d / ,  be the locations of the impulses. These 
are defined in the planes of the terminal orbits by the 
true anomalies a~ and ~t,, respectively, with corre- 
sponding radial distances r t and r 2. Hence, in the 
planes of the terminal orbits 

Pt P2 
r 2 = 

rl [ + e [ c o s ~ t ~ '  I + e z c o s a  2' 

specifically, as shown in Fig. 3, with projection on the 
unit sphere, the initial plane O~ is rotated by an angle 
~'L, about the vector Fit, into the plane O which is in 
turn rotated by the angle "h, about the vector M:, into 
the final plane O: making an angle qb with the plane O, 
along the line of node FN. The sides and the angles for 
the oblique spherical triangle lrNl2 are clearly labelled 
on the figure. From this, we have the following useful 
relations 

c o s  a = c o s  i f ,  - ~,,) c o s  ~ :  - ~ 9  

+ s i n  (f l ,  - a , )  s i n  (f12 - ~t2) c o s  (9) 

(3) cos (b = cos "t, cos "Yz - sin ~/, sin "Yz cos ,~ (!0) 

In the plane of the transfer orbit, let ]~ and f2 be the 
true anomalies of the points i, and 12 respectively. 
Then (Fig. 2) 

p = r,(I + e cosft) = r2(l + e COS f2) (4) 

sin (~z - ~z) 
sin y~ = sin ~, (1 l)  

sin d 

sin (#, - =,) sin ~ (12) 
sin ~'2 -- sin d 

Solving for p and e, we have 

r,r2(cos f, - cos f2) 
I, = (5) 

r, cosfl -- r z COS f2 

cosy, = cos y2cos~b + sin h c o s  (B2-  =z) sin $ (13) 

cos ,tz= cos ~, cos ~b+ sin % cos ( [3 , -a , )  sin qb. (14) 

and 

e = 
( r 2 - - r  t) 

, ,  cos  f ,  - r~ cosA"  

Let d be the transfer angle mcasurcd in thc plane of the 
transfer orbit, that is 

a =A-f,. 

We have the following pertinent relations 

tanfl  = cot zl 
r,(p -r2) 

r2(p - r , ) s i n A  

r2(p - r t )  
tan f2 = --cot 3 + 

rj(p - r2) sin d" 

Finally, let y~ and Yz be respectively the plane changes 
upon the applications of the impulses. More 

In the figure, the two rotations T~ and 72 are in the 
same direction. This is a plane change of  the rotating (6) 
type. In the case where Y2 is in the opposite direction, 
we have a plane change of  the reflecting type. The 
same equations apply if we take a negative value for 

From the geometry of the transfer, it is clear that, 
(7) for the components of the vector X in eqns (1) and 

(2), we can take the true anomalies a~ and a2 defining 
the locations of the impulses, and the semi-[atus 
rectum p of  the transfer orbit. They are the unknown 
independent variables considered in the present formu- 
lation. The other elements are obtained explicitly in terms 

(8) of these variables. First, the radial distances r, and r2 are 
given by eqns (3), in terms of cq and oq respectively. 
Then, the transfer angle d is obtained from eqn (9). The 
plane change angles "y~ and "h are determined by eqns 
(I I) and 02).  This completely fixes the plane of the 
transfer orbit. In this plane, if p is specified, the true 

Si ~" I~Wl W. 

It Oi 

Fig. 2. Direction cosines of the impulses on the transfer 
orbit. 

, ) 

Fig, 3. Spherical geometry of the orbital planes. 
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Table 1. Dependency of the inter- 
mediary variables 

Variables Function of 

r l  ~1 

r2 ~2 
~1, ~2 

Ys, Y2 ~s, ~z 
.f,,A =,,=z,P 

2 I, 22, P 

anomalies fs and fz of the impulses are given by eqns 
(8). We then have the line of the apses of the transfer 
orbit. Its eccentricity is of course given by eqn (6). The 
functions V and x can then be easily computed. 

These functions will be given in the next section, in 
the mixed forms, containing the intermediary vari- 
ables e, r ,  y~ andf~. For  the purpose of  evaluating the 
partial derivatives of  these variables with respect to 
the independent variables as, a2 and p. it is convenient 
to summarize the dependency in Table 1. 

Based on this table, and using the appropriate 
equations for taking the partial derivatives and sim- 
plifying, we have the following equations for use in 
further development 

ar, z ~ arz - e2 
- - = r ,  sina, - - = r z  z - s i n a z  
aa, p, ' aaz P2 

Od OA 
~ =  --COS ~1, a~, aa2 

= COS ~z 

~ ,  sin ~h 
~ =  ~s ~ sin A 

s in  cot A, 

(15) 
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3. ~ CILt.RACTEiIISTIC FUNCTIONS 

We now derive the characteristic functions V and T. 
In the plane of the motion, let u be the radial component 
and u the transverse component of the velocity vector. 
We have the classical relations 

e sin f ,  v = - -  u----- 

r 
(24) 

where K is the gravitational constant. Let superscripts 
( - )  and ( + )  denote respectively the elements of the 
velocity before and after the application of the impulse. 
Then, for the true anomaly f ,  using either f = or, or f = f,, 
we have 

us-= e ~s inas ,  u~ . =  • sin f~ 

u2- = e sin f z ,  u2" = e2 sin oq 

(25) 

and 

UI  - = ~, U I *" : 
r l  r t  

{ )Z"  = , U I  ÷ = 
r2  r2  

(26) 

For the velocity changes V,, in the plane of  the 
(16) transfer orbit, we use a right-handed coordinate 

system i x y :  such that the x-axis is along the position 
vector, the y-axis is orthogonal to it and in the 

(17) direction of  the motion and the z-axis is orthogonal 
to the orbital plane. For the x, component, it is simply 

0~2 sin % ¢372 
= =" - sin Y2 cot A (! 8) 

aa,  sin A'  0% 

Of, Of 2 r , -  r~ cos f , - c o s  f, 
a p  = a-'p=e2r,r2 sin A = ep sin `6 (19) 

(cos ~, cos f ,  sin f2 - e ' p  sin a, cos fz) 
eps 

a f ,  I 
aa,  sin `6 

0f_.2~ = _ cos f_....~, (cos 72 sin f 2 -  ed7 sin a2) (20) 
0¢q sin ,4 ep2 

af--z~= c°s fz (cos V, sin y , -  e,_£p sin ad, ft._Z= _l_.L. 
0¢t, sin `6 epl 0cq sin `6 

x(cos ?2 sin f ,  cos f2 - e ' p  sin a2 cos f , )  (21) 
ep2 

- - =  ( / =  - sin f 2 - s i n  y, ae 1 sin f2 sin f, e +  ~ (22) 
Op sinA \ r, r2 / p p s i n - 4  

ae sin fz 
(e sin f ,  cos "Yl e ~ p  sin at)  

aat sin A Pl 

O.._~.e = Y.___z (e sin Y2 cos 72 -e2p sin az). (23) 
0a2 sin A Pz 

x, - u, + - u~-. (27) 

For the y, and z, components we refer to Fig. 4 which 
shows the velocity diagram in the local horizontal 
plane with V,, representing the projection of the 
velocity change into this plane. 

in the rotated plane 

yt + ---- ui + -- ly t - COS 'y~ 

Z~ + ---- V~- sin y~ 
(28) 

Fig. 4. Velocity components in the horizontal plane at the 
impulse. 
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while in the original plane, we have 
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Using the mean anomaly M such that 

Yi - ---- C t  + COS 'Yi - -  Vj - 

2,- = r. + sin y,. 
(29) 

Since we refer the velocity changes to the plane of the 
transfer orbit, for the first impulse V~ we use eqns (28) 
and for the second impulse Vz we use eqns (29) to 
have the components of the impulses V, 

M -- E - e sin E (38) 

we have the time of  flight between the impulses on the 
transfer orbit, with the provision for N complete 
revolutions 

• r = ~/r~ (M: - M~ + 21rN). (39) 
~ K  

) x,=V~K • sin f , - -~- -~  sin a, 

71 = ( v ~ p  - ~ cos ~,) 
r t  

Z) = s i n  ~/i 
r t  

(30) 

Since T is a function of p, e and f~ and f2, it is an 
implicit function of  the chosen independent variables 

p, at and a2. 
If the transfer orbit is hyperbolic, we have the same 

characteristic function (39) with " a "  being the semi- 
transverse axis such that 

o = p / ( e  ~ - -  1). (40) 

and 

y: = ~ (v~p~ cos ~ , -  v~p)  (3 l )  
r2 

z: = sin "y:. 
rz 

The total characteristic velocity for the transfer is 

V = Z(x, 2 + y ;  + :2),n (32) 

It is dependent of  the variables ~ ,  a2 and p through 
the intermediary variables e, r(, y, and f~. For taking 
the derivatives with respect to the independent vari- 
ables, it is convenient to express the characteristic 
velocities in the form 

I/', = (x~ ~ + h,2) jn (33) 

where h, is the horizontal component of V, with 

K 
h2 = y2 + z / =  ~ (p + p, - 2V/'~, cos ?,). (34) 

The mean anomaly is now 

M = e sinh H - H (41) 

where the hyperbolic anomaly H is related to the true 
anomaly f by the equations 

sin f 
c o s h H =  e + c o s f  s inhH= . (42) 

I + • cos f" I + e cos y 

4. T H E  O P T I M A L  C O N D I T I O N S  

If the characteristic velocity for the transfer is 
prescribed, being equal to a value V0. we have the 
constraining relation 

V - V o -- 0. (43) 

On the other hand, i f  the transfer time is prescribed 
being equal to a value to, we have the constraining 
relation 

3 - 30 = 0.  ( 4 4 )  

We consider the augmented performance index 

J = kz(V - Vo) + k2(3 - %) (45) 

Along an elliptic orbit, the time of  flight from the 
pericenter to a point with eccentric anomaly E is 

t= x / ~  ( E - e  sin E) (35) 
] K  

where a is the semi-major axis 

where k~ and k2 are two constants. If ~ is any one of 
the three independent variables, p, "j and "2, the 
minimization of J leads to the three necessary condi- 
tions 

OJ OV k & + 2 =0 ( 4 6 )  

a = p / ( I  - eZ). (36) 

The eccentric anomaly is related to the true anomaly 
by the equations 

e+cos  f ~/I , e  z sin f 
cos E=  - -  sin E =  (37) 

I + e  cos f '  I + •  cos f 

From eqn (45), it is clear that for a minimum-fuel, 
free-time problem, we take k z = 0 ,  while for a 
fixed-time problem, in addition to eqns (46) we 
consider eqn (44). On the other hand, if the fuel 
consumption is prescribed, for the minimum-time 
problem, the three eqns (46) and the constraining 
relation (43) constitute the set of  optimal conditions. 
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In all these cases, we can use the ratio k = kJk, and 
write the necessary conditions 

ev k~ e-~+ ep=o 

PV dr 
&----~ + k ~ = 0 (47) 

dV dx N+kN=O. 

The problem now is to evaluate the partial derivatives 
in these equations. 

For the function V, from the definition (33), a 
typical derivative is 

1 [" Ox, lOh,2'~ 
( 4 8 )  

It is convenient to use the direction cosines of the 
impulses V, associated to the rotating axes along the 
transfer orbit as seen in Fig. 2. We have by definition 

x, y, z, (49) s,=~, r,=~,, w,= E. 

Then, we have 

OV= ~ Ox, i Oh, 2 
o-~ s, ~ ~ 2 v, o~" (50) 

63  

where by definition 

q,=P=(I +e cos f,). (54) 
r, 

Besides these polar equations of the transfer orbit, in the 
algebraic manipulation we have used the identities 

,4 e sin f~=qt cos . 4 - q : +  tan - 
sin ,4 2 (55) 

/t 
e sin f:  = qt - q: cos d tan - .  

sin J 2 

For the derivatives with respect to a~, we have 

O(x,Ox'--!~=~[ esinf~c°s'Y'sin J 

e l  
- - - p  sin u, cot d 

Pl 

- -  e t COS Oil (56) 

and 

0oh sin d • sin fl cos ~,j 

el ] 
- ~ p  sin % 

0h~2=2"~-- [ z*q* sin Y~ ~ p 

Based on the eqns (30), (31) and (34) and with the 
help of the equations in section 2, these derivatives 
are easy to evaluate. First, with respect to p, we have 

= ~ e sinfl - 2 tan 

Ox2 = - 2  e sin f2 + 2 tan op 

(50 

and 

op r, xl p 

Oh2 2 _ ~  ~--. 
-~p = r2 ,v p 

(52) 

Upon using in eqn (50) we obtain 

Oh22 
0% 

e l  
- -  y~p sin oq 

PJ 

x e ,  sin a~ 1 

= -2  ,~x sin 

sin A q:'" ~P 

Upon using in eqn (50) there comes 

Oal sin ,4 

( ,, ) × • s in  f ,  c o s  "y~ - - -  p s in ¢h 
P, 

(57) 

,F_[ 
~P = [ ~ / 7  q' sin d 

- q: sin d 

- (S, +S2)tan -~] 

(53) 
( ( w ,  - w~) 

(58) 
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By a similar development we have the derivative of V (55), we have the final results 
with respect to a2 

aV K 

J[C ii&=- p 

S-S, cos A+T 

sin A 
* 

X(c sin fr cos T*-~ p sin aI) 

+s2(~-cos~2; 

+ sin r2 
( 

(W,- W,) 
sin A 

41 

A 

-w2’“z . )I 

(59) 

TO express these derivatives in terms of the direction 
cosines such as in eqn (53) we shall use the following 
relations for simplification. First. from eqns (30) and (31) 
we have 

T, 
w, sm y, = 

(60) 

Next, we have 

$ 4, sin y, = 
I J 

p e sin f, -2 p sin a, 
PI (61) 

$ q2 sin yI = - 
2 

Combining these equations, we obtain 

esinf,cosy,-Z1psina,= 
PI 

y (S,q, -T, c sin f,) 
I 

c sin fj cos y2 -2 p sin aI (62) 

= -y (S,+ - T2 e sin II). 
2 

Finally, we have 

sin y, r,V, sin yr r,V, 

wl=G,*y=Z* 
(63) 

Next by taking the derivative of the second eqn (37) using 

the fust equation, we have 

Using eqns (60). (62) and (63) in eqns (58) and (59) and 
next eliminating e sin f, and e sin fz by means of eqns 

(S, sin A - 7, cos A) 

sin A 41 

A 
+ -$-p-T,ty 

1 
+S,T, (64) 

(S, sin A + T: cos A) 
42 

A 
-&q,+T,tanr 

3 
+ S:T, (65) 

A 
Ql’W2 tan y . 

In these expressions, by definition 

x =S, cos A-S,+T 
I sin A 

II 
x S,-S: ~0s A 

2= sin A 
+T,. (66) 

Then, we can write eqn (53) 

A 
q,x,-q*x*-(&+&I ‘“y . 

1 
(67) 

For the function T. from the definition (39), a typical 
derivative is 

+2nN $ (a”‘) (68) 
1 

Hence, we shall evaluate the derivatives of aM and M. 
By Kepler’s equation (38). M is a function of e and/and 
hence, based on Table I. is a function of all three in- 
dependent variables a,. a2 and p. Fit. we have from 
eqns (37) and (38) 

aE . 
$=(l-•cosE)--smE$ 

at (69) 
(I-e*)aE m =-d-P 

at 4 
sm j d’. 

4 dS 

aiz *af sin f de -=--- 
at 4 at t/i---;?,2 

(70) 
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By substituting into eqn (69), we have the derivative of 
M 

aM ( I - e : p  '2 Of X / l - e  2 (q+ 1) Oe 
O'~ = q: O~ q: sin f ~'~ 

where ~ is any one of the three independent variables. 
For the semi-major axis "'a'" as given in eqn (36), we 

fast evaluate its derivative with respect to the variables 
ct., through the eccentricity e. In general 

O 3 ep ~': Oe 
a 3~2 m - -  

Oa (I - e : )  ''z Oct" 

Hence 
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there is a simplification in the fast term which leads to 

O'r l~_~rr:ze.._.._,sinotz+.YsindOe] 
(71) Oct--'~ = e Lppzsinfz ~ a , "  (77) 

Finally. using eqns (23) for the derivatives 0e/0ct, and 
Oe/aaz, we obtain with the aid of eqns (62) and (63) 

8"r_r,V, p ~ [ _  W,r,e, sina, 
Oct1 -- eK qlPt sin fl sin % (78) 

(72) + Y sin f : (S .q t -  T~e sin f 0 /  
J 

and 

O__. (a,,:M)=a~, z OM+ M aa ''2 
Oct Oct Oct 

P"2 l a y  (q+ l) sin f Oe ] 
q~ ~ (1 _eZ) ~ (73) 

3e Mp vz Oe + - -  
( I - e ~ )  ''z Oct" 

If thc derivatives (72) and (73) are substituted into eqn 
(68) we obtain the dcrivative of the time function "r with 
respect to ct in the form 

O-~ = I,q?Lact • ~aa-q,~ 

I 0el x L ~ - a -  e cot f,  

+ - Y sin .4 
e 

(74) 

where, by definition 

¥=  
(I - e : )  sin d 3e2"r 

qzsinfz q ,  s i ' n f  

cot f : - c o t  f , ] .  + 
J 

(75) 

When using a = oq in eqn (74), with the derivatives al- 
ready calculated in Section 2, the fast term vanishes and 
there is a simplification in the second term which leads 
tO 

Oct--~m = e pp, sin ft + Y sin d . (76) 

With a = az, the second term in eqn (74) vanishes and 

a.r rzV2 p~p. [ W.r.e. sin ~x. 

O~z eK Lq:Pz sin f2 sin "y: (79) 

+ Y sin f,(Szq2- T2 • sin fz)]-  

For the derivative of a ~'2 with respect to p, we now have 

Oa"2 3Vpp A 
- - -  (80) 

0p 2(1-e2)  ' ' :  

whcrc, by dcfinition 

O e  
A = ( I  -eZ)+ 2ep ~p 

2e(sin fz-sin f , )  
= 1 +e2+ 

sin 3 

(8t) 

Combining the last two equations with eqn (71). we now 
have 

O (a~'2M)=~r af+(q+l)  f ]  g Lg "2-~ep sin 

'~pA [ 3eM 
* ii-e')"' 
- (q+ I----2 ] 

q2 sin f . 

(82) 

Using eqn (19) for af/ap and the second form in eqn 
(81) for A, this equation can be put in the form 

O_ (a~,,M) V~p [ ! (sin f z - s i n  ft) 
Op = eq "-~ ~ s~n f - cot f sin d 

(cos f~-cos f,)'! 
4- sin ,O .j - ~ cot f 

(83) 
Vpp A r 3eM 

+ 2e(l - eZ--''~ L(! -e:) ~'2 

+ p cos f - 2er]  
j 
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Using f=f~ or f = f z  in this equation, the first term 
vanishes identically. Inserting the remaining terms with 
the appropriate subscript for f and r in eqn (68) for ~ = p. 
we have the final form 

#'r I ~ { c o t  f _cot f2+y[(l+e2) sinA 
Op 2e a 

+ 2e(sin f2 - sin f,)l}- 
(84) 

explicidy the final optimal conditions 

(X, + YZ e sin fz)(S,q~-T, • sin fO+SITt 

[(W, - W:) 
+ w ' L sinai q : - W , tan ~ ] 

W~Z e r,e~ sin a, = 0 

qlPt sin ft sin "yl 

(87) 

For a hyperbolic transfer orbit the time of flight is 
given by eqn (39) with N = 0, while the mean anomaly 
M is defined by eqn (41) with the hyperbolic anomaly H 
related to the true anomaly y by eqns (42). The same 
type of derivation leads to identical formulas for the de- 
rivatives of "r. with the difference that the function Y is 
now defined as 

Y = (e 2 -  I) sin .4 

+'.( ' ' ) 
q : s i n f z  q, s in f l  

+ cot f , - c o t  f2] .  (85) 

In fact, this is also identical to the previous formula (75). 

5. PROBLEM SYNTHESIS 

In summary, we have derived the necessary conditions 
for solving the problem of fixed-time optimal two-im- 
pulse transfer between non-coplanar elliptical orbits. The 
solution depends on three variables namely the semi-latus 
rectum p of the transfer orbit and the true anomalies eta 
and ot 2 defining the locations of the impulses on the initial 
and the final orbit, respectively. It has been shown that 
all the elements of the transfer orbit, the transfer time, 
the characteristic velocities and the optimal directions of 
the impulses can be expressed explicitly in terms of these 
variables. The solution is obtained by solving the three 
optimal conditions (47) and, depending on if we have a 
minimum-time or a minimum-fuel problem, either eqn 
(43) or (44) for the four unknowns k, p. a, and cq. By 
eliminating the Lagrange's multiplier k from eqns (47), 
we have the set of two equations 

dV dr dVdr 
= 0  

DpDa, Da, Op 

DV Dr DV & 
=0.  

De an2 On2 De 

(86) 

These two equations with either eqn (43) or (44) 
constitute a set of three equations for the three 
unknowns p, a~ and a2. If the partial derivatives, as 
have been evaluated in Section 4, are substituted in 
the last two equations, after simplification we have 

and 

(X2 + YZ e sin f , )(S:q,-  Tz e sin fz)+ S:Tz 

[ ( W : -  W,) _~] 
- W .  L "~m3 q , - W .  tan (88) 

+ W..Z e rze. sin a. = 0 

qzPz sin fz sin y, 

where by definition 

d 
q:Xz-qiX~ +(Sj +S:) tan "~ 

Z= 
cot f~ - cot f2 + Y[( 1 + e:) sin d + 2e(sin fz - sin fl)l 

(89) 

with Y given by eqn (75). 
For elliptic transfer, the time eqn (39) has provision 

for N complete revolutions along the transfer orbit in the 
case of long duration for the transfer. For a direct transfer, 
such as the case of minimum-time, we have of course 
N = O. In the actual computation, the main difficulty is 
the evaluation of the arguments of the trigonometric func- 
tions involved. We can always choose the unit time and 
the unit length such that K = I and p, = !. Then the unit 
vclocit~L.~ " the circular speed of distance p~, that is 
Vcm VK/pt. 

The transfer time has been defined as the time between 
the impulses. The problem formulation is general and the 
only restriction is that the transfer is accomplished by 
using two impulses. This is a realistic assumption since 
in the problem where the prescribed time is short a two- 
impulse transfer is necessary to accommodate this con- 
straint. 

To show the general character of this study, we con- 
sider in this section some special cases of interest. 

Coplanar transfer 
In this case, we have identically W, = W z = 0. But, 

before using this limit in eqns (87) and (88), we must 
use eqns (63) to replace in the last term of each 
equation W,/sin y, by V"Kxp, lr, V,. Then, we have the 
resulting equations 

(X I + YZ e sin fz)(Slq, -- TIe sin f 0  + SIT, 

~ Ze e I s in  at1 
- qt Vt s i n ~  = 0 ( 9 0 )  
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and is the ratio of  the radii. Then, 
normalized time of  flight 

(X~ + r Z  e sinfmXS2qz - T2e smA)  + S2Tz 

~Zee2s~n~z 
- -  ~ - -  . " T " ' ~  ~ / ~  q2 V2 smf2 =0 .  (91) 

In the planar case, the terminal orbits are defined by 
the orbital elements p,, e,, Pz, ez and the angle co from 
the initial pericenter to the final pericenter. With 
Yt = )'z = ~ = O, the eqns (10)-(14) become trivial, 
while eqn (9) is replaced by 

d = ¢0 + az - "l (92) 

it is easy to verify that the two necessary conditions 
(90) and (91) a n d  either eqn (43) or (44) can be 
ultimately expressed in terms of  the chosen indepen- 
dent variables p, ~,t and % 

The special case of minimum-fuel, fixed-time trans- 
fer between coplanar circular orbits has been dis- 
cussed in Ref. [2] based on the remarkable Lambert's 
theorem for the time equation, in the present formu- 
lation, the necessary conditions are obtained by 
putting el = e2--0 in eqns (90) and (91). We have 
then 

(Xi + YZ e sinf2XSiqt - Tie sinft) + SITt = 0 
(93) 

( X, + YZ e sinfiXS2q2 - -  T2 e sinA) + Sz T2 = O. 

By eliminating YZ e between these two equations we 
have an identity so that only one of  the two equations 
applies. This equation, together with eqn (44) consti- 
tute a system of two equations for tyro unknowns for 
solving the problem of  minimum-fuel fixed-time 
transfer between coplanar circular orbits. The reason 
for only two independent variables is that we now 
have rotational symmetry in the plane. The first 
impulse can be initiated anywhere in the initial orbit. 
In the present formulation, if we chooseft and f2 as 
independent variables, then since the radii r, and r 2 
are given, p and • are functions of  these variables as 
seen from eqns (5) and (6). 

in the Lambert's formulation, it is known that the 
time of  flight between impulses can can be expressed 
in terms of  two invariants g and ~ defined as[2]: 

2g = E 2 -- E~ or 2g = H z - H, (94) 

and 

2x/~jr~ d 2~i) cos 2 = cos - == (95) 
(r, + rD 2 (n + 

where 

r2 
n = - -  ( 9 6 )  

rl 
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by defining the 

f ~ / ( r t + r ~  (97) 

we have for elliptic transfer 

GS:Z[2g-s in2g+2xN 2~] 
= ~ sin3g + (98) 

where 

G = 1 - c cosg. ( 9 9 )  

The corresponding equations for hyperbolic transfer are 

- m l - -  4-~"2a] . G ''z [-siah 2g-2g 
-c- 2~v L sinh~g 

(I00) 

and 

G = 1 - c  coshg. (101) 

The semi-major axis, which is an invariant in the 
sense of  Lambert is given by 

a = sinZg 
002) 

o 

a = sinh 2 g. 

Since the constraining relation (44), written as 

- ~o = 0 (103) 

is now a function of  ~ and g, it is expected that the 
necessary condition, namely one of  the two eqns (93) 
can be expressed in terms of  these invariants. To 
prove this, we first observe that for e, = 0 

SFl,- T, es in f ,=x /~ ,S  ,. (104) 

Using these relations in system (93) for simplification, 
we have 

TI 
YZ • sin f2= - X , - ~ q ~  

(105) 
T~ 

YZ e sin fl = - X2 - V~q2" 

Instead of using one of these equations, we shall combine 
them to retain the symmetry of the resulting formula. By 
multiplying the f'wst equation by • cos f~ and the second 
equation by - e cos f2 and adding, we obtain 

¢'aYZ sin ,4 - - $ 2  • sin f2-Si  e sin f ,  

+ ( I  +'-'~q2 ) Tze cos f 2 - ( I  +-~ql ) T¢cos f,. (106) 
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Using the def'mitions (49) of the direction cosines S, and 
T,. the polar eqns (54) and the identities (55) for • cos 
f, and • sin f,o the right-hand-side of this equation is 
much simplified and we obtain the resulting equation 

(107) 

For the function Z, as defined in eqn (89). we have for 
the numerator 

d 
q:X:-q,X, + (S, +S:)  tan%- 

Z 

=q:T2- q,T,+S, e sin f : - S i  e sin f ,  

Since q, =p/r, and, as shown in [3]: 

• , . 4  
rir: sin- ~ 2rlr 2 .4 

p =a(!  --e") = " = ~  a sin: g (rl + rz)G sin2 (113) 

with r,/a given by eqn (102) and sin2('4/2) evaluated 
from eqn (95), we obtain the expressions for the 
impulses 

2(r,/rt) sin:g V? =-K 3 
r, (n+ I)G 

_ /4n-(n+ I) 2 ¢: "] 
(114) 

+ 2(S, + S:) tan~- = + q: 
[ V, V: 

+ 2(I - c o s  `4) 
(q, +q.,) 

L sin: `4 

+ 2 t a n : d ] ( l +  l l ' ~  (108) 

For the denominator of the function Z, the coefficient of 
Y can be put in the form 

(I +e:)  sin `4 + 2e(sin f z - s i n  f l )  

A 
= 2  s in  . 4 - ( I - e : )  s in  d - 4  tan - 

2 

2( I - cos A ) 
+ (ql+q,.). (109) 

sin d 

For hyperbolic orbit, we change sin' g into - s i n h :  g 
while using definition (101) for G. 

Finally. we now show that  the opt imal  condit ion 
(I 10) can also be expressed in terms o f~  and g. For  
this purpose,  we write the r.h.s, of  the equation 

- Y sin f, sin fz = 

I [3"r ~f~,e2sinf ,  sinf2 
( I - e 2) sin `4 

2e sin f..............~, + 2e sin f :  sin '4 ] .  (115) 
q, q~ .! 

Then, from eqn (113) 

2n • 2,4 
ql --- ~ sin -~ = nq2 (!16) 

and with the aid of  eqn 002)  

Then, upon substituting into eqn (107) and simplifying, 
we have 

4n sin2g ,4 (I 17) 
(I  - e  2) = (n + !)2G2 sin' 2" 

V,+V2 Y sin d 
q2J'2V,+q,~'2V: cot f 2 - c o t  f t  

= - Y  sin f ,  sin f2 .  

(riO) 

This is the final optimal equation for use with eqn (44) 
in solving the problem of minimum-fuel, fixed-time transfer 
between coplanar circular orbits if the variables selected 
are the true anomalies f ,  and f2 of the impulses on the 
transfer orbit. In this case, the magnitudes of the impulses 
arc 

V~ -- ~ [3q,- 2qrc/ql - (] -- e")] 'n ( I I I )  

Since e sin f ,  and e sin f2 can be expressed in terms of  
qi and q2 by the identities (55), it is clear that  
expressions (115) can be expressed in terms of  the 
invariants ~ and g. After usin[[ the appropr ia te  re- 
lations in eqn (110), we have the optimal relations ex- 
pressed in terms of ~ and g 

~ .s,_'. v ,  + v ,  = 

n + l  V, + V~n~ V: 

GI'2F, + 3"rri F2 
sin:g ~/4n - (n + i )2~2 

(118) 

whcre, by definition 

which are functions o f f ,  and f2 through the elements 
p and e. If  Lamber t ' s  invariants ¢ and g are consid- 
ered, we first write this equation for elliptic orbit  

F, = (n + I)2¢ (4 - ¢ z) - 4n (¢ + 2 cos g)  

F2 = (n + I )"c (¢ - 2 c o s  g )  + 4n cos 2 g.  

(119) 

v , '  = 7, - ' 2  
(i 12) For  hyperbolic transfer, we simply change cos g into 

cosh g and sin 2 g into - sinh 2 g. The opt imal  relations 
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which have been deduced as special cases of the where, by definition, 
present theory are in perfect agreement with the 
equations given in [2]. 

Free time transfer 
It is of  interest to consider this important  special 

case. The three necessary optimal conditions are 
obtained by taking k = 0 in system (47). We have 
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d 
qiXl -- q:Xz - (St + S ~  tan ~ = 0 (12o) 

Xj[(Sisin3-Ttcos3) Tl 3 ]  
sin A ql + ~ q: -- Tj tan -~ 

+SiTl+Wt i qz-Witan~ =0 (121) 

Xz[!S2sin d + T2cos 3 )  T2 d ]  
sin ,4 qz -- ~ qf + T2 tan -~ 

[ ( W ~ -  W,) ~ ]  
+ s : r , - w ,  L ~ q , - W ,  tan = 0 .  (122) 

:t 
0 = tan - .  (125) 

2 

Upon substituting into eqn (120), we have 

O'(T2- TO($~ + 5.92 

+ 0:(Sl + S.. )[3 - 2SL: - 2S:" - S~S: - 3T~T:-  WjWz} 

+ 0[2Tz- 2/'1 - T~SI2+ T,Sz:+ 3T~S~ 2- 3TzS ~q 

+ (St + S:)[ 1 - 2St z - 2S: z + 3S;Sz - T~Tz-  WIWz] = O. 

(126) 

Equations (123). (124) and (126) are precisely the re- 
markable switching relations first discovered by Marchal 
[4]. The direction cosines of the impulses in these rela- 
tions satisfy the identities 

These three equations can be solved for the three un- 
knowns p, ct I and az. We notice that the equations arc 
linear in thc variables q~ and q:. Upon solving the first 
and the last equations we obtain 

5: + T,Z+ W, z= !. (127) 

( I - cos 3)11 - 2S, z - S,S, + OT2(S,+ S:)l 

q' -- I + (S,T, - SzTI) sin A - ( S~Sz + T,T2) cos ,d - W ~W z" 

(123) 

Similarly. by combining the first two equations, we have 

( 1 - cos ,4)[ I - 2S, 2 - S,$2 - OT~(S, + Sz)] 

q" -- i + ( S j T z -  S2T,) sin .4 - (5~2+ TIT~) cos A - W~W2 

(124) 
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