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Abstract: Most methods of selecting an appropriate log-linear model for categorical data are 
sensitive to the underlying distributional assumptions. However, there are many situations in which 
the assumption that the data are randomly chosen from an underlying Poisson, multinomial or 
product-multinomial distribution cannot be sustained. Pn these cases we propose a criterion to select 
among log-linear models that is an analogue of the C’ statistic for regression models and describe a 
method to estimate the denominator of this statistic. 
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Associations between categorical. variables are often studied by fitting log-lin- 
ear models to data summarized as a multidimensional contingency table. Good- 

man [5,6], IBrown [2], Wermuth [12] and others have proposed methods to select 
the ‘best’ log-linear model in the absence of a priori knowledge of the underlying 
relationships between the variables. In all these methods, the choice of the ‘best’ 
model involves &i-square tests of significance of the differences in the lack-of-fit 
statistics between pairs of hierarchical models. The asymptotic distribution theory 
of the &i-square tests is based on the assumption that the data in the contingency 
table are a result of independent random sampling from a Poisson, multinomial 
or product multinomial distribution 

In many applications the assumption either of independence or of the underly- 
ing distributional form is inappropriate. When these assumptions are violated, the 
variability in the data is often increased. Williams [13], Coffey [3] and others fit 
logistic linear models to data containing extra-binomial variation. 
approaches require the parametric modelling of the underlying distributional 
form. 
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An alternative approach is to approximate the distribution of the sample 
proportions by one in which the variance is proportional to the mean. The 
log-linear model is an example of a quasi-likelihood function [lO,ll] that can be 
fitted to the data using weighted least squares without the nee9 to specify the 
entire likelihood. Formal tests of significance to select a final model may then not 
be appropriate. The investigator may still want to select the ‘best’ model(s) using 
a heuristic criterion. 

A similar problem is that of variable selection in multiple linear regression. 
Mallows [9] proposed the CP statistic to compare alternative regression models. 
Minimizing the CP statistics is often used as a criterion to select the ‘best’ subset 
regression [7]. Rowever, the CP statistic does not provide a formal mechanism for 
hypothesis testing. 

We extend the C’ method to the selection of the ‘best’ log-linear model when 
the variances of the proportions can be assumed to be proportional to the 
proportions. Use of this C” analogue enables models with different numbers of 
parameters to be compared without relying on the distribution of the chi-square 
statistic. We describe how to estimate the denominator of this C’ analogue. 

We conclude with an example based on census data. As is common in such 
sets, all &i-square statistics are very large. The CP method provides a rationale to 
select an unsaturated model to describe the relationships between the factors. 

e Cp s istic 

The multiple linear regression model can be written as 

E(y)=XB 

where y is an (n x 1) column vector of observed frequencies, E( y) is the 
expectation of Y, X is an (n x p) design matrix, and j3 is a ( p >c: 1) column vector 
of parameters. 

For a multiple linear regression model Mallows’ CP is defined as 

SSE, 
cp = 7 -b-2P) 

u 

where n is the number of observations, p is the number of parameters estimated in 
the model, SSE, the sum of squares of error (residuals) for this model, and c2 the 
estimate of the variance (usually computed as the mean square error when all 
variables are entered into the regression). 

If the model being fitted is appropriate, the expected value of SSE, is 
(n - p) 0’ and C’ is of magnitude p. The addition of a new variable to the model 
reduces C’ only if the sum of squ.ares of error decreases by at least twice the 
estimate of the variance (i.e., 2e2). 

A modification of the Ck, statistic is to replace (n - 2p) by (n - kp) where the 
value of k, called the penalty, is specified by the investigator. Then, the addition 
of a new variab e to the model red 
of squares exceeds ke2. 

ces C’ only w&n the decrease in the error sum 
.n this a(-Gcle we cons: er the case when k is two (the 
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original Cl,) but only minor changes are required to allow other values of k. 
In an analogous manner the log-linear model can be written as 

an n x 1 vector of observed cell frequencies, is a vector of expected 
ncies, and X and j9 are as defined above in the regression model. 

Under independent Poisson, multinomial or product mu1 tinomial sarlaptia 
maximum likelihood solution can be obtained by a Fisher scoring technique [8] 
that solves iteratively for the parameter vector j3 by finding a solution (s~!-~iec! :v 
constraints) to the normal equations of 

(p-F)‘W_(f-F) 
where W- is a generalized inverse of the variance-covariance -matrix of J? 

The likelihood ratio statistic is 

G*= 

where the sum is over all cells. IJnder the distributional assumptions and when 
the model is appropriate, G* is asymptotically distributed as a chi-square statistic 
with n -p degrees of freedom (df) and, hence, its expected value is n -p The 
statistic G* is also asymptotically equivalent to the Pearson A-square statistic 

X’=x(h- r;;)"/F,.. 

Violations of the distributional assumptions are iikely to affect th;. expectat& 
of G*. Finney [4], for example, used a ‘heterogen+~~ factor”, estimated by 
X2/( n -p), to rescale tests-of-fit. When the test-of-fit on‘ a !c;g-lir~~ ino& that 
should fit the data appropriately yields a value of G”/( pi -. p) :!xt is not AI +a: 

unity, it may be possible to attribute the excess to viglatit-zs IS the distributissL%9 
assumptions rather than to an inappropriate specificatlc:n of the parameters c T ihe 
log-linear model. 

In order to use the C’ analogue, it is sufficient to a~su~ie that the variances of 
the sample proportions are proportional to their expected values. 1 he proposed (cp 
analogue is 

cP =$-(n-Q) 
u 

where G* is the usual test-of-fit statistic for the model of interest and 

where b represents the ba?e model whose fit theoretically should be adequate, Gz 
and fb are the likelihood ratio &i-square statistic for the base model atrd its 
degrees of freedom, and n is the number of cells in the table. ‘~33 the 

distributional assumptions are fulfilled, 6* can be replaced by unity. 
The value of C’ is reduced when a term (or terms) is added to the model if and 

only if the change in G* is at least twice the product of 6* and the df associated 
with the term being added. 
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3. 

In the absence of a priori knowledge about the appropriate model, the choice 
of the base model is important. If the base model contains too many parameters, 
the lack-of-fit statistic G* may have few df and, as a result, have large variability. 
If the base model is too parsimonious and omits some important interactions, G* 
will be overestimated. 

The problem of estimating O* has a parallel in the estimation of the error mean 
square in a multiway analysis of variance with one observation per cell. The usual 
initial estimate of the error mean square is from the mean square of the highest 
order interaction. However, this estimate may have few df. Therefore, an empiri- 
cal rule that is often used is to pool sums of squares of other interaction terms 
into the error sum of squares when the mean square of the interactions are less 
than twice the error mean square. 

In a similar manner we recommend that the initial estimate for a* be 

where k represents the model of order k (that contains all k-factor interactions 
but no (k f I)-factor interaction) and where k is the lowest order model such that 
the change in G* between two successive models divided by the change in df is 
less than 2G2 k + Jfk + 1 for all models of higher order. Chi-square tests of marginal 
and partial association [1,2] are then computed for each interaction. Using the 
above initial e.stimate of 6*, any interaction that has either a test of partial 
association or a test of marginal association that exceeds 26* is included in the 
model that is to be fitted at the first step. At each step e* is recalculated from the 
lack-of-fit of the current model. The iterative procedure steps when no interaction 
term can be added to or removed from the model. For this final model 

Cp=7- G2 (n-2p)=(n-p)-(n-2p)=p, 
u 

since a* = G*/(n -p). 

enya 

Table 1 reports a subset of data from the Kenya 1969 census. The data are 
cross-class d according to ge (12 categories), ther’s status (alive or 
dead) and ther’s status. T cell counts are in t 

Since the data are from a census, one rnay question the assumption that there is 
a superpopulation from which a random sample was taken. Also, since the 
frequency counts are so large, any hypothesis that is tested will almost invariably 
be rejected. Therefore, the goal of fitting a log-linear model is restricted to 
defining a parsimonious model that includes the ‘important’ interactions. One 
way of choosing such a parsimonious model is by use of the C’ analogue. 

In the first panel of Table 2 are the simultaneous tests of different orders. The 
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Table 1 

Kenya 1969 census data (in thousands) 

Year 
- 

Males Females 
-- - 

F,M F, -M -F,M -F, -M Toaai F,M F, -M -F, M -F, -M Total 

O-4 995 5 44 3 1047 983 5 45 3 1036 

5-9 831 14 57 4 906 808 13 53 4 878 
lo-14 614 20 67 7 708 584 16 60 6 666 
15-19 438 25 78 14 555 427 24 76 12 539 
20-24 287 28 86 22 423 299 31 90 26 446 

25-29 190 28 90 33 341 220 36 102 46 404 
30-34 119 26 85 48 278 119 29 86 62 296 
35-39 80 23 80 64 247 79 25 78 76 258 
40-49 66 28 106 158 358 61 27 94 177 359 
50-59 16 10 48 172 246 16 9 36 177 238 
60-69 6 4 15 150 175 7 2 10 136 155 
70+ 4 1 4 121 130 6 1 3 113 123 
Total 3646 212 760 796 5414 3609 218 733 83L 5335 

M Mother alive; - M Mother not alive; F Father alive; - F Father not alive, 

initial estimate of the variance based on the highest-order interaction is a2 = 
1470/11 = 133.64. In the second panel of Table 2 are tests of partial and marginal 
association. These results should be compared to 2e2 = 267.3. The ratios of the 
G2 to their dfs for the interactions FS, AIMS and AFS are less than 2ij2. Therefore 

Table 2 

Simultaneous tests EBf a11 ir;teractions with k or more factors (G2 in thousands) 

k-Factor df 

1 95 

2 81 

3 45 
4 11 

G2 

19705.61. 
9446.63 

66.88 
1.47 

.- 

Tests of partial and marginal association (G2 in thousands) 

Interaction df Partial Marginal 

associalion association 

G2 G2 

AM 11 1816.01 4425.67 

AF 11 2041.55 4653.38 

AS 11 12.14 10.17 

MF 1 286.62 2898.52 

MS 1 3.40 1.40 

FS 1 0.00 0.06 

AMP 11 61.20 60.95 

AMS 11 1.30 2.83 

AFS 11 0.81 1.29 

MFS 1 0.87 0.1.6 

AMFS 11 1.47 1.4:7 



164 E. T. Jolayemi, M. B. Brown /* Choice of log-linear model 

the hierarchical model defined by the configurations AS, AMF, MFS is fitted to 
the data. The revised estimate of e2 is 126.06 and no interactions are added or 
deleted at the next step. 

Models selected by criteria that are based on the significance of G2 would, not 
surprisingly, choose the saturated model. 

The usual methods of model selection test for the inclusion or exclusion of an 
interaction term are based on &i-square tests. I-Iowever, the distribution of the 
test statistic is asymptotically &i-square only if the underlying distribution from 
v&rich the sample is drawn is Poisson, multinomial or product-multinomial. 

Various ad hoc methods are used when the distributional assumptions are 
violated. An example is to choose the most parsimonious model whose test of 
lack-of-fit is less than a specified fraction of that of a base model. This rationale is 
based on the desire to explain a certain fraction of the variation - here called 
lack-of-fit. 

The Cp method compares the magnitudes of the tests of the interactions with 
that of the test of lack-of-fit. Therefore, the criterion to include or exclude a term 
is based on its relative magnitude compared to the other terms. 

Several cautions are necessary. Except in repeated-measures or case-control 
experiments it is unlikely that a model of smaller than expected variation is 
appropriate. Therefore, unless the design indicated a high likelihood of subnormal 
variation, we suggest that the lower bound for e2 be unity. It may be noted that in 
many published data sets (see e.g., [12]) the test of the high,:st order interaction is 
very nonsignificant. In these data sets the use of e2, rather than setting e2 to 
unity, would include too many terms in the model. 

Another method of model selection is analogous to the use of the adjusted R2 
in multiple regression. This criterio:n reduces to choosing the model that mini- 
mizes the ratio of the test of lack-of-fit to its df. As a result, interaction are 
included if their test statistic divided by df is greater than unity. Since the 
expected value of a central &i-square variate divided by its df is unity, the 
effective level of significance for using this criterion is nearer 50% than 5% even 
when tlnc underlying model is multinomial or Poisson and, therefore, too many 
terms may be selected for the model. 

The adjusted R2 criterion and more classical methods based on &i-square tests 
of significance are not appropriate for the more general sampling models de- 
scribed here since their criteria are not modified to allow for increased variances 
and, therefore, they would accept too many terms into the model. 

Since the appropriate model for many large data sets is the saturated model, 
the Cp criterion allows the investigator to :separate interactions into two groups: 
large and small. An examination of the tests cf marginal and partial association 
(divided by degrees of freedom) also allow judgements about magnitude. The t$'s L 

advantage is that it provides a standard cut-: Ff point. 
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