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ABSTRACT 

Boyd, J.P., 1984. Equatorial solitary waves. Part 4. Kelvin solitons in a shear flow. Dyn. 
Atmos. Oceans, 8: 173-184. 

It is shown that a mean flow with shear makes the Kelvin wave dispersive. This in turn 
modifies its nonlinear behavior and makes it necessary to replace the one-dimensional 
advection equation derived in an earlier work of the author's by the Korteweg-deVries 
equation instead. The frontogenesis predicted in the earlier paper will still occur, but the wave 
breaking will not. Instead, once a steep front has formed, it will disintegrate into a train of 
solitary waves. These then propagate towards the east at a faster-than-linear rate. It is also 
shown that Kelvin solitary waves will have much smaller zonal widths than Rossby solitons of 
the same height; "round" Kelvin solitary waves (equal zonal and latitudinal width) are to be 
expected, and are fully consistent with the small amplitude, weak dispersion theory. An 
interesting implication of the Korteweg-deVries model is that the peak signal from a 
nonlinear Kelvin wave packet may be roughly double that of a linear Kelvin wavetrain. 

1. INTRODUCTION 

This  p a p e r  is the seven th  b y  the au t ho r  in a series dea l ing  wi th  non l inea r  
equa to r i a l  waves  (Boyd  1980a,b;  1983a, b,c;  1984) a n d  the fou r th  of  the series 
to  descr ibe  equa to r i a l  so l i ta ry  waves.  T h e  p rev ious  six art icles a s s u m e d  tha t  
the  m e a n  s ta te  was one  of  rest,  thus ignor ing  m e a n  currents .  T h o u g h  
obv ious ly  unreal is t ic ,  this  was  jus t i f ied  b o t h  b y  the c o m p l e x i t y  of  the theo ry  
even  wi thou t  m e a n  f low a n d  b y  the  fac t  tha t  weak  shear  will no t  qua l i ta -  
t ively a l ter  m o s t  results.  T o  be  sure, a weak  m e a n  cur ren t  will change  the 
l a t i tud ina l  s t ruc tu re  a little, a n d  add  smal l  co r rec t ions  to the speed  and  
amp l i t ude ,  bu t  it will no t  p r ec lude  or  p r even t  so l i ta ry  waves  unless  the  shear  
is so s t rong  as to c rea te  cri t ical  la t i tudes  or  ins tab i l i ty  - -  and  p e r h a p s  no t  
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even then. Johnson (1972) gives a good discussion of solitary water waves in 
weak shear flows; Redekopp (1977) describes Rossby solitons with critical 
latitudes and (weak) instability. 

The Kelvin wave, however, is a special case. In the absence of shear, it is 
nondispersive and therefore cannot form solitary waves at all, as discussed 
by Boyd (1980a). By creating dispersion, weak shear drastically modifies 
even the qualitative behavior of the Kelvin wave. Instead of forming steep 
fronts and eventually breaking, a Kelvin wave in shear will evolve into 
solitary waves of Korteweg-deVries type instead. 

In the previous articles in this series, the singular perturbation theory 
which describes each different type of nonlinear equatorial wave has been 
worked out in careful detail. Here, the derivation will be brief, and the 
formal treatment of the problem will be outlined more in words than with 
equations. The reason is that the nonlinear term in the Korteweg-deVries 
equation has already been calculated (Boyd 1980a). The other half of our 
task, which is to evaluate the dispersive term of the Korteweg deVries  
equation, can be done in a strictly linear calculation: a perturbative treat- 
ment of shear effects on a Kelvin wave. Complete results are given in the 
appendix, but we actually only need the eigenvalue c, which can be de- 
termined via the Rayleigh-Schrt~dinger formula for general current profiles 
without calculating the eigenfunction at all. 

The next section derives the Korteweg-deVries equation for the Kelvin- 
wave-in-shear. Section 3 discusses the connection between the Korteweg- 
deVries solutions and those of the one-dimensional advection equation 
which describes Kelvin waves in the absence of shear. The final section is a 
summary and prospectus. 

2. D E R I V A T I O N  O F  T H E  K O R T E W E G - D E V R I E S  E Q U A T I O N  

The formal perturbation theory begins with the following assumptions: 
(i) The wave amplitude is O(~) where ~ << 1, 
(ii) the mean current U(y) is O(S) where S << 1, and 
(iii) S2/L 2 -  O(c), 
where L is the zonal length scale. The first two assumptions allow both the 
nonlinearity and the dispersion-inducing shear flow to be handled through 
perturbation theory. The third assumption is necessary so the effects of 
nonlinearity and dispersion can balance to create a solitary wave. When the 
shear is much stronger than allowed by (iii), the Kelvin wave will simply 
disperse; when the shear is very weak in comparison to the nonlinearity, the 
wave will steepen and develop a front (Boyd, 1980a). 

One striking difference from the Rossby solitary wave is that we have not 
assumed that the zonal length scale L is large in comparison to one. For 
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Rossby waves, this is essential because with or without mean current shear, 
Rossby waves are weakly dispersive only when the zonal scale is large in 
comparison to one. When L is O(1), Rossby waves--except for the nonlinear 
wave packets discussed in Boyd (1983a)-- disperse too rapidly for the 
dispersion to be balanced by a weak nonlinearity. None of these three 
order-of-magnitude assumptions affects the actual numerical calculations, 
but each is essential for the logical consistency of the final result. 

The zeroth order perturbation equations are simply those for a linear 
Kelvin wave with no mean current with the familiar solution 

u ° = A ( x ,  t)e -(1/2)y2 (2.1) 

~°-=u° (2.2) 

v°-=0 (2.3) 

where all quantities have been nondimensionalized as in Boyd (1980a) and 
where A ( x ,  t) satisfies the amplitude equation 

At + CAx= 0 + O(, ,  S 2) (2.4) 

where the phase speed c =  1 to lowest order. At O(S) -O(c l /2 ) ,  the 
nonlinear terms do not appear, and one is merely calculating the first-order 
shear-induced corrections to the zeroth-order wave. At second order, O(c) 

- O($2), the nonlinear terms and the second order shear-induced correc- 
tions both appear. The nonsecularity condition upon the second order 
forcing then gives the Korteweg-deVries (KdV) equation in the form 

A t + coA x + D AA x + F ( S ) A x x x = O  (2.5) 

where D is a numerical constant and F is a function only of the shape and 
form of the mean current. Note that (2.5) differs slightly from the form of 
the Korteweg-deVries equation given in Boyd (1980a) in that it is written 
directly in terms of x and t rather than in coordinates moving at the linear, 
nondispersive phase speed c o. 

The key observation is that the nonlinearity and dispersion enter (2.5) in 
an independent, additive fashion. (They become coupled only when the 
perturbation theory is carried to higher order.) In particular, the O ( S )  shear 
corrections to the zeroth order Kelvin wave do not appear in the nonlinear 
terms at O(c); such corrections enter only at O(cS) .  Thus, the nonlinear 
contribution to (2.5) must be exactly the same as in Boyd (1980a), which 
neglected mean shear. The earlier work gives 

D = (3/2) 1/2 = 1.2247 (2.6) 

To put it another way, the nonlinear coefficient in (2.5) must be the same 
as in the nondispersive Kelvin treatment of Boyd (1980a) so that the KdV 
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equation will reduce to the one-dimensional advection equation of the earlier 
paper in the limit S--, 0. Similarly, the Korteweg-deVries equation must 
correctly reproduce the linear dispersion relation for a simple plane wave in 
the limit of infinitesimal amplitude. 

Although Boyd (1980b) gave only numerical coefficients, this need for 
consistency with the linear dispersion relation for a sine wave gives an 
analytic formula for the third derivative term of the KdV equation for 
Rossby waves, too, and it is illuminating to derive this first before proceed- 
ing to the slightly harder case of the Kelvin in shear. For either wave type, 
the coefficient of the KdV third derivative can be obtained merely by 
calculating the phase speed c as a power series in the dispersion parameter, 
which, for Rossby waves without shear, is the wavenumber k. By substituting 
a power series in k into the usual cubic dispersion relation for equatorial 
waves, one finds 

- 1  k2{ 1 [1 1 ] } + O ( k 4 )  (2.7) 
c -  (2n + 1) + (2n + 1) 2 (2n + 1) 2 

where n is the meridional mode number of the Rossby wave. Since the 
Korteweg-deVries equation must be consistent to O(~) for all ultra-long 
Rossby waves of zonal scale L = O(cl/2), whether they are sine waves or 
solitons, it follows that the coefficient of the third derivative of the equation 
must equal the negative of the second order term in the expansion of c in the 
dispersion parameter, i.e. 

F = - [ 1 - 1 / ( 2 n  + 1)z]/(2n + 1) 2 (2.8) 

which agrees with the numbers in (3.35e), (3.36e), and (3.37e) of Boyd 
(1980b) for n = 1, 3, and 5 to all decimal places given. 

A similar expansion generates the third derivative coefficient F for the 
Kelvin wave, but the dispersion parameter is now the shear strength S rather 
than the wavenumber. The perturbative calculation of the effects of shear on 
the phase speed c is very similar to that given in Boyd (1978a,b), so the 
details will not be given here. For the general parabolic wind profile 

U ( y ) =  U o + S [ F y  + A y z] (2.9) 

which is geostrophically balanced by the mean height field 

n ( y )  = 1 - S [ F y 3 / 3  + Ay4/4] (2.10) 

one finds 

c = {1 + U 0 + SA(13/32) + $2[ F2(175/576) + A2(473/2048)] } 

r=(g3/288) + A2(53/512)} (2.11) 
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The terms in the first set of braces in (2.11) are corrections to the linear, 
nondispersive phase speed c o that appears in the Korteweg-deVries equa- 
tion. The terms in the second set of braces are the dispersion induced by the 
shear. The Korteweg-deVries equation is consistent with (2.11) if and only if 
it takes the form 

A t + coA x + 1.225AA x + FAxx x = 0 

where 

c o = 1 + U 0 + 0.406A + 0.304F 2 + 0.231A 2 

F = 0.288F 2 + 0.lIMA 2 

(2.12a) 

(2.12b) 

(2.12c) 

Note  that since S is a dummy parameter introduced merely to order the 
magnitudes of different terms, we are now free to dispose of it by setting 
S = 1 in (2.12). The validity of the perturbation theory then requires that the 
nondimensional parameters F and A both be small in comparison to unity, 
however. 

The Korteweg-deVries equation (2.12) is the principal result of the paper, 
but there are some technical comments that should be made before discuss- 
ing the solutions A ( x ,  t) of (2.12) in the next section. 

First, because the parabolic flow is unbounded, the mean depth H(y )  will 
vanish at some latitude y (unless F = 0 and A < 0) and the mean current 
U(y)  will create a critical latitude where it equals the phase speed. Either 
circumstance would seem to make nonsense of our perturbation scheme. As 
stressed in Boyd (1978a,b), however, the breakdown of the assumption of the 
"smallness" of the perturbation for linear and parabolic currents (or any 
unbounded flow) for large y merely causes the perturbation series to be 
asymptotic rather than convergent because for small F and A, this break- 
down occurs only where the amplitude of the wave is exponentially small 
anyway. An alternative way of conceptualizing this is to imagine that the 
parabolic profile (2.9) is really a near-equatorial approximation to a bounded 
flow in which U(y)  is proportional to a Gaussian or a hyperbolic tangent 
function or something similar. We make only an exponentially small error in 
using the parabola (2.9) to compute c (and therefore F )  if the approximation 
of the parabola to the bounded flow breaks down only for large lYl. 

Second, for more general currents, even those varying too rapidly near the 
equator to be approximated by the parabola, we can infer the form of the 
result without performing any actual calculations. Omitting the details, it can 
be shown, by dividing the equations by k and introducing ~ = o / k ,  that for 
any current U(y) ,  there is perturbative dispersion relation of the form 

c = co(S only) - F k 2 S  2 + O(S  3) (2.14) 
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where F is a numerical constant. Since this is identical in form with (2.11), 
we have verified that we will always obtain the Korteweg-deVries equation, 
regardless of the shape of U(y). 

The third and final comment is to note that although the perturbed u,  v ,  

and 9~ are given in the appendix for completeness, it is quite unnecessary to 
compute them to obtain the dispersive coefficient of the KdV equation. 
Since the unperturbed equations for equatorial waves are a self-adjoint 
system, one can calculate the eigenvalue directly by using the familiar 
Rayleigh-SchrSdinger perturbation formula, which can be found in any 
quantum mechanics text. A readable reference is Merzbacher (1970). The 
only complications (minor ones) are that the shear terms, which play the role 
of the perturbation potential energy V, are a non-self-adjoint operator, and 
that the unperturbed operator is a 3 × 3 matrix operator rather than a single 
equation. The mechanics of the corresponding vector eigenfunctions and 
inner products are discussed in the appendix of Cane and Sarachik (1979) 
and in Boyd (1983a). The point is that it is straightforward to obtain the 
coefficient of the third derivative of the Korteweg-deVries equation for 
quite arbitrary currents; the parabola was used only for convenience. 

3. K E L V I N  SOLITARY WAVES 

The general solution of the Korteweg-deVries equation has been dis- 
cussed in Boyd (1980b), so here we will concentrate only upon solitary 
waves. The most important qualitative conclusion is that since the nonlinear 
and dispersive coefficients of the KdV equation for Kelvin waves in shear 
are of the same sign, as true also of the Rossby equations of Boyd (1980b), 
the solitary waves will be of elevation only. Put another way, Kelvin solitons 
of the first baroclinic mode will increase the depth of the thermocline. 
Strictly speaking, we can assert this with surety only for the parabolic flow 
(2.9), but since inclusion of both symmetric and antisymmetric mean flow 
components still leads to a dispersive coefficient of the KdV equation which 
is positive definite, Kelvin solitons of elevation are to be expected even for 
mean flows considerably distorted from the parabola. 

The difference in sign from Rossby waves--both coefficients are positive 
for the Kelvin wave, but negative for Rossby waves--implies that the 
qualitative effects of dispersion and nonlinearity will be the same in either 
case, but with the direction of propagation reversed. The Rossby solitons 
travel t~ the west at a greater-than-linear rate, and the dispersive wavetrain, 
if any, is left trailing behind. In a similar way, the Kelvin soliton travels to 
the east at a greater-than-linear speed, and if the initial condition excites a 
wavetrain as well as a solitary wave, the wavetrain will lag behind to the west 
of the soliton. 
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The lowest order  solution is 

U----- .4(X,  t)e -(1/2)y2 (3.1) 

q0=u (3.2) 

v-=0 (3.3) 

where A(x ,  t) satisfies the KdV equat ion (2.12). The  single soliton solutions 
are 

A = 9.80 FB 2 sech 2 [ B ( x - { c o + 4FB 2 }t )] (3.4) 

where F is the coefficient of the third derivative term in the Kor teweg-deVries  
equat ion and c o is the phase speed of a Kelvin wave in the limit of 
infinitesimal ampl i tude and infinite zonal scale. For  a fixed mean  current,  
the solitons are a one-parameter  family with the pseudowavenumber  B as the 
parameter .  Figure 1 shows the shape of the velocity and height fields for a 
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Fig. 1. The height and horizontal wind field for a typical pseudowavenumber of B -- 0.75. The 
nondimensional horizontal length scale has been taken as 300 km (first baroclinic mode). The 
contours of constant height are 0.75, 0.5, and 0.25 of the peak marked by the "H" .  The 
magnitude and direction of the soliton velocities are marked by arrows. Both the amplitude 
and velocity scales have been left arbitrary since the magnitude of u and ~ depend on the 
strength and form of the mean current. The shape of the u and q~ fields, however, depends 
only upon the zonal width, and thus can be graphed unambiguously. The Kelvin soliton 
propagates towards the east at a superlinear rate. 
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particular choice of B. Equations (3.1)-(3.4) show that the shape is de- 
termined solely by B; the amplitude and nonlinear phase speed correction 
are what are sensitive to F, and therefore to the mean flow U(y). 

In view of the intrinsic variability of the currents and the limitations of 
approximating the currents by a parabola and the actual stratified ocean by 
a one-layer model, it is foolish to discuss the Kelvin solitary waves except in 
a qualitative, order-of-magnitude sense. Although it will therefore be neces- 
sary to choose parameter values somewhat arbitrarily, one can nonetheless 
obtain a feeling for the possibilities. 

The magnitude of the shear is constrained by the need for (i) barotropic 
stability, which requires A ~< 0.5 and (ii) no critical latitudes too close to the 
equator, which implies we should (roughly) restrict F ~< 0.5 also. (The Kelvin 
wave instability of Boyd and Christidis, 1982, 1983, is negligible for such 
weak shears.) For these limiting values, one finds 

A = 0 . 5 ,  r = 0 "  A(x, t)=0.255B 2 s ech2 [B(x -{1 .26  + 0.104BZ}t)] 

F = 0 . 5 ,  A = 0 : A ( x , t ) = 0 . 7 0 6 B  2 s e c h 2 [ B ( x - { 1 . 0 8 + 0 . z 8 8 B 2 } t ) ]  (3.5) 

These limiting shears are not particularly small in comparison to one, of 
course, as required for the validity of the perturbation theory, but Boyd 
(1984) has shown that the Korteweg-deVries theory for the n = 1 Rossby 
soliton is accurate even when the solitary wave is so large that it has a closed 
region of entrained, recirculating fluid and behaves like a modon. This is 
quite common in singular perturbation theory (Bender and Orszag, 1978, 
give other examples), so it is reasonable to discuss Kelvin solitons for the 
shears of eq. 3.5. 

For B = 1, for example, which for the first baroclinic mode corresponds to 
a zonal half-width of about 500 km where the half-width is the distance 
between the two points where A = 1 /2  of its maximum value, one finds that 
the phase speed corrections are modest. The solitons, however, are of rather 
large amplitude with the ridge in linear shear almost doubling the depth of 
the thermocline. 

In weaker shear, solitons of this same width are much smaller, decreasing 
as the square of the shear strength for fixed zonal scale. Conversely, if the 
shear is fixed and the pseudowavenumber is reduced, the soliton amplitude 
again decreases as the square of B. One is left with the conclusion that unless 
either B is O(1) and the shears are O(1/2)  or alternatively, B >> 1 for weaker 
shears, the solitons will be quite small. As stressed earlier, derivations of the 
Korteweg-deVries equation in other contexts usually require that the zonal 
scale be a "slow" length scale so that the solitons are elongated in the zonal 
direction. Boyd (1983d) shows that this perturbative requirement need not 
be taken too seriously for the n = 1 Rossby wave, which can be round and 
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modon-like and yet still be accurately described by the lowest order theory 
of Boyd (1980b). For Kelvin solitons, this requirement does not exist even in 
principle. Since B = 0.75 (illustrated in Fig. 1) makes the zonal and latitudi- 
nal half-widths identical, it is clear from (3.5) that Kelvin solitons must be 
round, or perhaps even wider in latitude than longitude, to have large 
amplitude. 

Nonetheless, even in weak shear, the current-induced dispersion will still 
profoundly influence wave behavior by preventing the frontogenesis and 
wave-breaking which, as discussed in Boyd (1980a), would otherwise inevita- 
bly occur along the crest of the Kelvin wave. Whitham (1974) gives a good 
discussion of what happens when the Korteweg-deVries equation with weak 
dispersion, i.e., a small value of the third derivative coefficient F, is given a 
large initial condition. During the early stages of the evolution of the flow, 
the third derivative is negligible and the crest of the wave does develop a 
steep front. Even if the initial scale of this disturbance is very large, however, 
this very frontogenesis creates the small zonal scales which are necessary for 
dispersion to be important. Instead of rolling over and becoming multi-val- 
ued, the wave does not break, but rather the front breaks up into an 
assortment of narrow (and narrowly spaced) solitons as shown schematically 
in Fig. 2. 

This qualitative behavior is remarkably indifferent to the actual size of the 
dispersion coefficient. Decreasing F still further causes the disintegration of 
the front into solitons, which occurs very rapidly just before the nondisper- 
sive front would break, to happen later and still more rapidly, and the front 
is chopped up into a larger number of narrower solitary waves. Soliton 
formation must occur, however, and no later than the time of breaking t B 
calculated by setting F = 0 and solving the resulting nondispersive equation. 
Thus, even a weak mean current would turn Kelvin wave-breaking into 
Kelvin solitons. 

Whitham (1974) gives a full description of this process, but it is useful to 
quote a couple of quantitative facts. First, the height of the tallest soliton is 
bounded by twice the maximum positive value of A(x, t = 0). Second, the 
number  of solitons generated from an initial condition is roughly given by 

0.144 o o  

IA(x ,  t = 0 ) l  1/2 dx  (3.6) N = F1/2 oQ 

provided that the predicted number is large. Equation 3.6 shows explicitly 
just what was claimed above: as the dispersion coefficient F is reduced, more 
sohtons are generated from the same, fixed initial condition, which is 
obviously possible only if the solitons have narrower zonal scales. In the 
limit F ~ 0, of course, viscous effects will certainly become important, but 
an attempt to estimate precisely on what scale would take us too far afield. 
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~ 0 ~ tB 

j K d V  

~~ t>tB /I 
Fig. 2. Schematic solution of the Korteweg-deVries equation for very weak dispersion. 
During the early stages, the leading edge of the wave packet steepens while the trailing edge 
flattens, just  as in the nondispersive case illustrated by Fig. 1 of Boyd (1980a). This continues 
until  t approximately equals t B, which is the time of wave-breaking obtained by ignoring the 
dispersion completely and solving the one-dimensional advection instead equation. After this, 
however, the wave behavior is wildly different: the two alternatives for t > t B are shown in the 
lower two panels. If the wave is truly nondispersive, then the solution becomes multi-valued, 
i.e., the wave breaks. If dispersion is present, even weakly, the wave packet will break up into 
a number  of tall, narrow solitons. The height of the largest solitary wave will be roughly 
double the maximum wave amplitude at t = 0 even though there is no increase of the wave 
amplitude whatsoever during the nondispersive evolution of the wave, either before or after 
breaking. 

4. SUMMARY A N D  CONCLUSIONS 

It has been shown that the shear of a mean current, even weak shear, can 
profoundly alter the behavior of a Kelvin wave by  replacing breaking with 
the formation of solitary waves instead. Unlike Rossby solitary waves, which 
are usually much wider in x than in latitude, Kelvin solitons, except those of 
very sn~all amplitude, must have rather small zonal scales with zonal half- 
widths of the order 500-1000 km or smaller. 

The nonlinear coefficient of the Korteweg-deVries  equation for Kelvin 
waves is identical with that of the one-dimensional advection equation of 
Boyd (1980a); it is not affected by the mean current to this order. The 
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dispersive coefficient of the KdV equation is explicitly calculated in closed 
form for a general parabolic current. It can be computed for more general 
currents by borrowing the familiar Rayleigh-Schr6dinger perturbation for- 
mula from quantum mechanics to calculate the phase speed c for an 
ordinary, linear sine wave to second order in the strength of the shear; the 
dispersive coefficient is independent of the nonlinearity to this order. 

The shear of the mean flow will affect the Rossby solitons of Boyd 
(1980b) also, but because long Rossby waves are already dispersive, even for 
a resting mean state, the only effect will be to alter the numerical values a 
little without changing the qualitative behavior of the waves. The mean flow 
has a much more profound effect on Kelvin waves because Kelvin waves 
have no dispersion when a latitudinally varying mean current is absent. 
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APPENDIX: THE FULL PERTURBATIVE SOLUTION 

The parabolic wind profile 

U(y) = Fy + Ay E 

is geostrophically balanced by the height 

Fy 3 Ay 4 
H ( y ) =  1 

3 4 

The nondimensional dispersion relation to second order is 

c =  1 + (13/32)A + I '2{175/576 - k2(83/288)} 

+ A 2 (473/2048 - k2 (53/512) } 

The zeroth order fields are 

U 0 _~. dp 0 -~. e - ( 1 / 2 ) y  2 

voz---O 

(A1) 

(A2) 

(A3) 

(A4) 

(as) 
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The 

U 1 

q~l = 

U t 

first order corrections are 

F y ( ( 1  - 5k2)/6 + (2 + k2)y2/18 - y 4 / 3 0 }  + A ( ( a 6 k  2 - 8 3 ) / 2 5 6  

+ (25 - 26kZ)y2/64 + (5 + 2k2)y4/64 - y 6 / 4 8 }  ( A 6 )  

Fy{-5k2/6 +(k 2 -  1 ) y 2 / 1 8  - y 4 / 3 0 )  

+ A{(21  + 4 6 k Z ) / 2 5 6  + (13 - 26k2)y2/64 

+ (2k 2 - 3 )y4 /64  - y6/48} (A7) 

Z(5 - y Z ) / 6  + Ay(13 - 2 y 2 ) / 1 6  (A8) 
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