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This paper describes a model for a multi-stage production/inventory system where lots may be of different sizes. In addition, either 
completed lots or partial lots, called batches, may be transported to succeeding stages. The model incorporates constraints on lot and 
batch-sizes and thus provides a rather comprehensive set of possibilities for organizing a production/inventory system. A heuristic 
solution procedure is developed and is shown to be 'close to optimal' by bounding. 

1. Introduction 

When the rate of continuous demand is smaller than the manufacturing rate for a product, intermittent 
manufacturing in economic lot-sizes is usually justified. Economic lot-sizes are also important  when the 
continuous demand of an assembly line is fed by a part which is manufactured intermittently. The 
single-stage lot-size model is frequently misusgd in multi-stage manufacturing because it ignores the 
work-in-process inventory and overstates the optimal lot-size. 

Lot-size models impose a constraint on the scheduling of production facilities which are shared by 
several products because the manufacturing of lots must be scheduled with priority. Facility scheduling is a 
lesser problem in single-stage production models than in multi-stage models. Even in the multi-stage case, if 
a relatively small portion of all products have scheduling priority, there is ample room for manipulating the 
schedule of the rest of the product line. The key problem is to identify those products which constitute a 
substantial part of the work-in-process and represent a relatively small portion of the total production 
capacity, If such products are scheduled according to an appropriate lot-size model, the process inventory 
and the total inventory cost can be reduced considerably. 

The state of the art of product ion/ inventory  research is well summarized in a recent comprehensive 
survey of the literature [10]. Since the mid 70's multi-stage product ion/ inventory  models have gained 
increasing attention. The terminology used in the literature varies substantially. In this  paper  we call a 
quantity produced with one set-up at a stage a ' lo t '  and a portion of a lot transported to the next stage a 
'ba tch ' .  Deterministic lot-size models for multi-stage serial and assembly systems represent a variety of 
process organizations. Two classes of these models, both based on an infinite time horizon, can be 
distinguished in the literature. One class, which we call 'var iable  lot-size models'  [1,2,5,9], allows different 
and non-increasing lot-sizes across stages. Only complete lots are transported to the next stage and the 
lot-size of a stage is an integer multiple of the lot-size that follows it. One variable lot-size model [4] does 
not have integrality restrictions; it is analytically tractable because any portion of a lot can be transported 
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to the next stage at zero cost. Another class, which we call 'batch shipment models' [6,7,8], has uniform 
lot-sizes at all stages but allows portions of a lot to be transported to the next stage is equal-sized batches at 
some cost per batch. 

In this paper, we present a lot-size model for a single product that is manufactured in a serial system 
through a large number of stages. The model and its assumptions are briefly summarized as follows: 

(a) Lot-sizes can be variable and subject to constraints, but must be integer multiples of the lot-size at 
the following stage. Starting a new lot involves a fixed set-up cost. 

(b) Either complete lots or equal-sized batches can be shipped to the next stage at a transportation cost 
for each shipment. The unit cost of transportation is related to the load capacity of the transport 
equipment. 

(c) Lot sizes and batch-sizes are not restricted to integers. Set-up times of lots and transportation times 
of batches are assumed to be negligible. 

(d) Deterministic (constant) production and demand rates are assumed over an infinite horizon. No 
backlogging (deliberate shortage) of inventory is permitted in the system. 

(e) Linear inventory-holding costs are assumed at all stages. The cost of holding one unit of process 
inventory is related to the stage which has been completed and cannot decrease at the following stage (due 
to the added value of the product). 

Our model combines the features of the variable lot-size and the batch shipment models and uses the 
conventional assumptions in the literature. The use of variable lot-sizes balances multiple set-up costs at 
some stages against the decreased size and cost of the process inventory. Transporting batches instead of 
complete lots may result in higher transportation costs. On the other hand, production at subsequent stages 
might be scheduled with overlap on the same lot to further reduce the size and the cost of the average 
process inventory. As an additional element of flexibility beyond that in existing models, our model can 
accommodate constraints on lot-sizes that may result from limited production or storage capacity as well as 
constraints on batch-sizes that may be caused by limited load-capacity of the transport equipment. 

Usually, our model would yield a lower (certainly never higher) cost than either of the variable lot-size 
or the batch shipment models. Hence, it is an economical substitute for these models whenever they are 
applicable to a serial production system. This is certainly the case in the automobile and generally in the 
machine industry where many parts of a complex product involve a series and usually large number of 
production operations (stages). Part manufacturing is seldom synchronized with the rhythm of the 
assembly line; therefore, a single part is produced in lots intermittently. While a single part may not be sold 
directly, the assembly of the product incorporating this part could create a continuous demand over time. 
This is the reason for the applicability of these lot-size models. 

Although the generalizations of previous models that are presented in this paper are straightforward, the 
add considerable realism to the representation of the process organization. At the same time, they increase 
substantially the difficulty of solving a traditionally formidable optimization problem. 

2. Constructing the cost function 

First, we define our notation. The stages in the production system are i = 1, 2 . . . . .  n; the final stage, the 
one which meets the demand for the finished product, is stage 1. Other symbols are as follows: 

O 

t , ,  = 

= 

7; ,  - -  

g i  = 

C i ~--- 

Q ,  = 

t i = 

demand (consumption) rate of the final product (at stage 1), 
production rate at stage i (note that P, > D), 
fixed (set-up) cost per lot at stage i, 
transportation cost of one load from stage i to the next, 
the maximum size of one load (load capacity) transported from the ith stage to the next, 
unit inventory-holding cost per unit time, at stage i, 
the lot-size at stage i, 
the maximum lot size permitted at stage i, 
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Si = Q,+]/Q, (note that S~ is required to be integer), 
b, = the number of batches in the lot at stage i (note that b~ is integer), 
x~ = QJb~, the size of batches in the lot at stage i (note that the sizes of the batches are 

equal). 

All parameters above are greater than zero. Also, it should be noted that 
(i) a non-integer value, A, ' rounded up' to the nearest integer is denoted by [A], 

(ii) the 'rounded-down' value is denoted by [AJ, 
(iii) [ [ AJ ] denotes conventional rounding to the nearest integer, 
(iv) an integer rounded is the integer. 
For the convenience of our equations we define 

Qo = Q,, c,,+, = O, P,,+, =0,  Po=D, S,=1.  

To derive the cost function, we start by examining Fig. 1 which illustrates the production/inventory 
model of two adjacent stages i and i - 1 for the case when P, < P~_ ]. The upper dashed line with slope P~ 
shows the uninterrupted production build-up of lot-size Q~ at stage i. From this stage b~ number of 
equal-sized batches, each of size x, = QJb,, are transported to the next stage, i - 1. The rectangular vertex 
of the triangle (the sides of which form a step function) immediately below the dashed line represents the 
point at which each batch is available for production at stage i - 1. The other step function with slope P,_ ] 
shows the production build-up of Q,_ 1 lot sizes at stage i - 1. The dashed line below this step function, the 
slope of which is D, indicates the cumulative demand which must be matched by the cumulative production 
at every stage. It can be seen that the inventory at stage i -  1 cycles back to zero every Q,_I/D units of 
time. 

Let R,_] be the earliest possible time for the start of production at stage i - 1. To find an analytical 
expression for R,_ ] we denote the sequence of batches shipped from stage i with j = 1, 2 . . . . .  b,. 

Clearly, we wish to start producing at stage i - 1 as soon as possible to minimize the size of the process 
inventory, but R,_ 1 is constrained by the point where the step functions touch. As can be seen in Fig. 1 this 
happens whenj  + 1 = 6 batches are completed at stage i during ( j  + 1)xJP, units of time. During this time 
[jx,/Q,_~] = 2 lots are completed at stage i -  1 requiring [jx,/Q,_IJQ~_~/P,_~ units of time. These lots 

Qi=~xi 

(j-+)x i 

Jx i 

IJ ' i lQ .  
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Fig. 1. Build-up of inventory between adjacent stages when P, < P,_ i. 
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satisfy demand during [ jx i /Qi_  i] Q , - 1 / D  time periods. It is easy to verify t h a t j x J P  i_ , units of time are 
needed to produce j x  i units at stage i - 1. From these distances on the time scale we find the following 
analytical expression: 

R,_ ,  = ( j  + 1 ) x / P  i - j x / ? i _ ,  - [ J,,,/Q,-1] Q i - , ( 1 / D  - 1 /P ,_ , ) .  

Therefore, as is seen in Fig. 1, to keep stage i -  1 production supplied it must be true that 

Ri_,  + jx , /P i_ l  + [ix~Q,_ d Q i _ , ( 1 / D  - 1/P,_1) >1 ( j  + 1)x i /e i  for 0 < j  <~ b , -  1. 

Of course, this will be true if 

Ri_ , =  max { ( j +  1 ) x i / g - j x i / g _  , - [ j x / Q i _ 1 1 Q i _ , O / D -  1/P,_I)}. 
O ~ j < b , - I  

Rearranging the expression for R i_ 1 we obtain 

R i _ , = x , / P i +  max { 0 ( j ) } ,  (1) 
O~j~b , -1  

where 

O(j)  = j x i ( 1 / P  , - 1 /P i_ , )  - l j x i / Q i - , I Q i - , O / D  - 1 / P , _ 1 ) ,  

j = 0, 1 . . . . .  b, - 1 and j  = integer. 

One could illustrate graphically that if Pi >/Pi-, ,  Stage i - 1 can be started as soon as the first batch is 
completed at stage i, which is after x i / P  i units of time. It is also easy to verify that expression (1) is also 
valid for this case. When P, >/P,_, the quantity ( l / P , -  1/Pi_l )  is non-positive and j =  0 provides the 
maximum in (1); thus 

R , _ I = x , / P i  for P, >-- Pi_l. 

It will be useful to examine the lowdr bound on R i_,. Naturally, in the case above the lower bound on 
R i - i  is 

R , _ I = x , / P i  for P />  P,_l. 

It is also obvious from Fig. 1 that if P, < Pi-i  the shortest time for Ri_,  will occur when the step 
functions touch during the production of the first lot at stage i - 1 .  That is when j =  ( [Qi_l /x , ]  - 1 ) .  
Substituting this f o r j  in (1) we obtain the lower bound on Ri_ , which is 

h i _ , = x / P , + O ( [ Q , _ l / x , ] - l )  for g < Pi_,- 

Since part of O(j)  in (1) is [ jx , /Q ,_ l ]  which becomes [ ( [Q, - i / x i ]  - 1 ) x / Q , - l ]  = 0. the analytical 
expression for the lower bound on R,_,  is 

R,_,  = x i / P  , + ( [O,_ , /x , ]  - 1)x i (1/P,  - 1 /P ,_ , )  for g < ei_ ,. 

The two lower bounds can be combined in one general expression for h i_ 1: 

Ri_,  = xi [1/P, + (1 i - 1) ( l /P ,  - 1/P,_ ,  )] (2) 

where 

1 ifP,>_.P,_ 1, 

t, = l O , _ , / x , 1  if P~ < P,-1. 

Actually, this rather than the case in Fig. 1 is usual. R,_ 1 is not equal to ]~i-1 only if D is 'nearly equal' to 
P,, 

Having found the analytical expression for R i_ ~ we can determine the inventory at stage i as shown in 
Fig. 2. 
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I T N ~  Ri_ I ~ I ~  I ~ . 
O i D _1 

Qi-1 ~ I 

Qi4 

Fig. 2. Time-weighted inventory of stage i. 

To find the average inventory-holding cost at stage i, we start by finding the time-weighted inventory 
(shaded area in Fig. 2). This is done by subtracting triangles from a trapezium. Then, we divide the area by 
Qi/D to obtain the average inventory and multiply by c, to obtain the inventory-holding cost per unit time. 
Thus C,, the average inventory-holding cost of stage i is 

C, = ½ciD[2R,_, + Q,(1/D - 1/P,) - Q,_ , (1 /D - 1/P,_,)] .  (3) 

Since P0 = D the expression for C, holds for all stages. 
It is interesting to consider the possibility of using batch-sizes that are larger than the load capacity of 

the transport equipment, x, > g,. Each batch would thus require [xJ&] loads and hence the transportation 
cost per Q, lot-size would be T,[Q,/x,] [x,/g,1. If batch-sizes are limited to x, <~ g,, the transport cost per 
Q, lot-size would be T,[ QJg,] which is obviously smaller. It also can be verified, by examining Fig. 1, that 
increasing the number of batches and hence decreasing the batch-size involves a smaller R,_ 1 (earlier start 
of production at stage i -  1) and thus saves inventory-holding cost. The constraint x, ~< & allows us to 
simplify the statement of the cost function. 

Recall that F, is the set-up cost per lot at stage i. The sum of the set-up and transportation costs, 
(F, + b,~), divided by Q J D  gives the average fixed cost per unit time. 

The total cost of the system can be obtained by summing the fixed and inventory-holding costs: 
n 

TC = D Y: ( ( F ~ + b T , ) / Q , + ½ c i [ 2 R , _ , + Q , ( 1 / D - 1 / p ~ ) - Q , _ I ( 1 / D - 1 / p ~ _ , ) ] }  " (4) 

Since c,+ i = 0, we can rearrange (4) and express the total cost in terms of Q,. Thus, the optimization 
problem is as follows: 

minimize TC = D ~ { F,/Q, + Q,(1 /D - 1 / P , ) ( c , -  c,+1)/2 + c,R,_, + T,/x, }, 
i= l  

xg ~< g, for i = 1 . . . . .  n, 
subject to Qi <~ L, for i = 1 . . . . .  n, (5) 

Q~+I/Q, = S, = positive integer for i = 1 . . . . .  n - 1, 

QJx ,  = b, = positive integer for i = 1 . . . . .  n. 
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3. Bounding 

In order to obtain a lower bound on the cost of the optimal solution to problem (5) we relax the 
integrality constraints on S,, l, and b,, replace R,_ 1 with Ri_ 1 and solve the problem using x, -- QJb, .  Thus 
we have 

Hence 

1 if P, >/P,_,, 

I~ = Q i - l / X i  if P / <  g _ l .  
(6) 

h ~,_, = x, [ l / P ,  + ( 1~ - 1 ) ( l / P ,  - l / P , _ ,  )]. 

Now, we introduce a new indicator variable 

3__{01 otherwiseifPi>~Pi-'°ri=n+l' 

(7) 

(8) 

which we can use in (7); therefore 

k~_, = (1 - - 3 i ) x J P  , + 6,[x , /P,_,  + O,_, (1/P,  - l /P ,_1)  ] . (9) 

Substituting (9) into (5) and letting 8,+, = 0, we obtain the following total cost expressed in terms of Q, 
and x,: 

TC c = D ~ { FJQ,  + Q, [ (1 /D - 1 / P , ) ( q  - ci+ , ) / 2  + 8,+ lq (1/P,  +, - 1/P,)] 
i=1 

+x,c,[(1 - 6,) /P,  + 3,/P,_1] + r / x , } .  (10) 

This can be written as 

TC ¢ = h ~ { A J Q ,  + B,Q, + H~x, + G,/x,  } (11) 
i=1 

where the A,, B~, H, and G~ coefficients are evident from (10). Since R,_, "¢ 6 Ri_~, TC ¢ ~< TC for all values 
of Q, and x,, now we have the problem 

minimize TC c , 
subject to Q~< L,, 

xi  ~ g, ,  

O,_, ~< Q,. (12) 

xi <~ Qi, 
Qi, xi >10. 

The solution to this problem provides the lower bound on the solution to (5). Since TC c is convex, as 
can be seen from (11), we could use nonlinear programming. An efficient method is given in [3]. 

4. A heuristic solution procedure 

First, we find integers S, by the following cumulative rounding procedure. Let Q~ . . . . .  Q~ be the optimal 
Q, values found in problem (12); then the Si's are determined in sequence by 

S, = Q~(S,$72 77 Sk_,)  fork  = 1 . . . . .  n - 1 (13) 

where So = 1. 



Z. Drezner et aL / Multi-stage production with variable lot sizes 233 

Since L J ( S I S  2 . . .  S,_1) is the maximum allowable Q1, given the lot-size constraint L,, at stage i. 

Qlu = min { L J ( S 1 S  : . . . S , _ a ) }  (14) 
l ~ i ~ n  

is the upper bound for Q1- It can be shown that Q1 ~< Q~u if and only if Q, ~< L, for i = 1 . . . . .  n. Therefore 
we choose 

Q, = min( Qlu, Q~ }, Q, = Q , S  1 . . .  S,_ 1. (15) 

Next, we determine the best integer b,'s for the Q~'s found in (15). First, we consider the case where 
R~_ 1 = Ri_ ,. In (5) we convert each x i to QJbi ;  hence each term of the sum now containing b, can be 
optimized separately with respect to b,. Terms not containing b~ (constants) are ignored and we have n 
problems of the type 

minimize f (  b, ) = (T~/Q,) b, + c,R,_ 1 . 

Substituting (2) this can be written as follows: 

minimize f ( b , )  = ( T J Q , ) b ,  + ( O , / b , ) c , [ a / P g + ( l , -  1 ) ( l / P ,  - l / P , _ , ) ] ,  (16) 

subject to b, >_. Q J g i ,  

where 

1 ifP,>~Pi_ 1, 

I ,= [bJS ,]  i f P , < P , _  1. 

If P, >/P,_ 1, then l, -- 1 and f (b , )  is convex. We find the lowest cost integer on either side of the non-integer 
solution b, = Q,/ (P ,T , )  1/2. Then, we compare this integer with [Q,/g,]  and take the larger of the two. 

If P, < P,_ 1, the problem is more difficult. In this case, 

f (b~)  = ( T , /Q,  )b, + (O, /bj )c~ [1/P,  + (r, + b J S ,  - 1 ) ( l / P ,  - 1/P ,_  I )] (17) 

where  r~ = [bJS~] - bJS~ a n d  0 ~< r, ~< 1. 
Let y~ = b J S , ,  and consider the function 

h(y , ,  ,.,) = (u, + w,r,)/y,  + v,y, + w, (18) 

h(Yi, r i ) 

\ ~. / h (yi,1) 
~ x  / 

~% / /  / h(Yi,O) 
| ~'~ / / 

\ [ -... , , 

I I ' ' " "  
i I i y~ 

L~d Fyil 
Fig. 3. Illustration of a ' typical '  function h(y, ,  r,) in Eq. (18). 
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where 

u, = (O,/S,)(1/P,_~)c, ,  v, = T, S J Q , ,  w, = (OJS , ) (1 /P ,  - 1 /P,_ l )c  ,. 

Note that h(y  i, O)<~f(b,)<~ h(y,, 1) and f (b~)=  h(y,, [y,] -y~). A 'typical' function h(y,, r~) is plotted in 
Fig. 3. It is shown there as a continuous function although it exists only when bi = y~S i is an integer. Since 
S, is an integer, an integer y, sets bg also to an integer. 

In Fig. 3, yf  indicates the minimum of the envelope h(y,, 0). It can be shown that, when r i = 0, the 
minimum of function (18) occurs at 

yC = ( •i//Di ) 1//2 (19) 

and that the optimum integer y~ must be in the region [ [ y : ] ,  [ y(] ]. 
In order to find the optimum value of b~ when [ y:] Si >i QJg, ,  we need only search for the lowest cost 

integerslin ithe interval [ [y : l  s,, ly:l s,]. if Iycls, <- e,/g, we would search integer b,'s from IO,/g,l to 
IlO,/g,1/s, ls,. 

Refinements to this procedure are possible. For instance, let y,* be the value of y that minimizes 
h(y~, [y~] -y , ) ,  considered as a continuous function. Since r~ = [YT] -Y~, it can be shown from (18) that if 
lyTl  [y:l theny* is given by 

y* = (( u, + w,[ y:l)/v,) '/2. (20) 

Only integer b~'s on either side of y'S,  would be checked if the constraint b, >1 QJg,  did not interfere. 
However, unless S, values are very large such refinements are not necessary. 

When R,_ I ~ R,_ I (note that this happens only when j ~ ([Q~_l/x~] - 1 ) ,  expression (1) is used for 
R~_ 1 and problem (16) becomes: 

minimizef(bi)  =(Ti/Oi)bi+cio m:bx_l { j x , ( I / P  i - 1 / P i _ l ) - [ ~  ] ( 1 / D -  1/Pi_ 1) ) . 

(21) 

Let b* be the optimum number of batches in (16) and b** the optimum number of batches in (21). Note 
that f (b*)  is an upper bound for f(b**).  

As can be seen from (1), R,_ 1 >i xJP,;  therefore 

f (  b,) >i ( T~/Q~)b, + ( c,Q,/P,)/b, .  

We now search for b** in the region of f (b , )  where 

( T,/Qi ) b, + ( c,Q,/P, )/b, <~ f (  b* ). (22) 

The resulting range [b,'~*i~ ), b*,~m~) ] is obtained by setting the preceding inequality (22) to an equality 
and solving the resulting quadratic equation. 

Now that the S,'s and b,'s are known, Q1 may be updated to it's 'current-best' value as follows. Given 
S 1 . . .  S~ and b I --- b, eq. (10) can be put in the form 

TC = U/Q~ + VQ~ (23) 

where 

v = D ~  (E+b,r,)/(S,S~ ... S,_,), 
i--I 

V = D ~ S,S 2 ... S,_,{(I/D- I/P,)(c,- c,+,)/2 
i--I 

+ [8,+,(1/P,+, - 1/P,)  + (1 - 8,) /(P,b,)  + 8 , / ( t ,_  ,b,)] c, }, 

8.+ 1 -- 0 and the 8 i indicator variable is given in (8)• 
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The lot size that minimizes the total cost is expressed by (U/V) 1/2. Therefore, we can set the new 
Q~ = min(Oa,, ( U / v )  1/2) and the procedure is ready to loop again. It was found empirically that when g,'s 
are relatively small and binding on the value of x i, the best value of Q1 is often an integer multiple of some 
g,. Therefore, in addition of the value of Q1 found above, the closest such integer multiplies are checked. 
Since the cost is non-increasing and the number of possible b/s is finite the procedure must converge. 

5. Computational example and conclusions 

Table 1 presents the problem parameters used in the example. The solution to the problem is shown in 
Table 2. 

The first two sections of Table 2 show the solutions obtained by the heuristic procedure presented in this 
paper (without and with constraints). The total costs in each case are denoted by TC and the lower bounds 
on the costs are denoted by TC c. The third section of the table contains results for a typical variable 
lot-size model [5] when batch shipments are not allowed. The 'optimal' total cost here is denoted by TC*. 
For each of the cases 'A cost-ratio' indicates the percent cost in excess over the lower bound cost. 

Note that the total costs in Table 2 for both the unconstrained and constrained cases are very close to 
the lower bound. Considering the fact that the lower bound on cost is a hypothetical result (i.e. very seldom 
attainable due to integrality requirements), the accuracy of the heuristic procedure is favourably reflected 
by the example. As a further test, 100 cases of each kind were computed with uniformly randomized input, 
the results of which are summarized in Table 3. 

The results in Table 3 support confidence in the accuracy of the heuristic procedure. Except for very few 
cases, the A cost-ratio is very moderate. For the unconstrained problem 95 percent of the cases are 2.23 or 
less percent above the lower bound; for the constrained problem we found this percent to be 3.88 or less. 
This accuracy is especially remarkable if one considers that even for an optimal solution (for Qi = x,) 95 
percent of the cases are 1.5 percent or less above the lower bound costs. 

The computation of the heuristic procedure is rather efficient. Its time was between 0.16 and 0.22 CPU 
seconds for a large sample of 12 stage cases on a CYBER computer. Experiments with very large numbers 
of stages, 10 ~< n ~< 300, have shown that the computational time increases nearly proportionally with the 
number of stages up to n = 100. For example, the following CPU seconds were needed (average of five 
problems) for some large numbers of stages: 0.41 for n --- 50, 0.98 for n = 100, 1.90 for n -- 150, 4.15 for 
n --- 200 and 6.02 for n - 300. 

Last but certainly not least, a noteworthy comparison can be made from Table 2 between the optimal 
total cost of a variable lot-size model ($15245.52) and the heuristic total cost ($12265.51) for the more 
flexible model presented in this paper. Note that both results include the same transportation cost per 
shipment whether it is a lot or a batch. The model which accommodates simultaneously both variable 

Table 1 
Problem parameters 

i c, P, F, T, g, L, 

1 2.5 250000 1.0 0.6 250 
2 2.4 500000 6.0 0.6 250 
3 2.2 375000 17.0 0.6 250 
4 2.1 200000 8.0 2.2 250 
5 1.7 150000 26.0 1.3 500 
6 1.6 225 000 9.0 3.2 500 
7 1.5 275000 17.0 1.6 500 
8 1.4 125 000 24.0 1.0 500 
9 0.6 175 000 46.0 0.8 500 

10 0.4 525 000 18.0 1.2 5000 
11 0.3 800 000 16.0 8.0 6000 
12 0.1 600000 60.0 5.8 6000 

1500 
1500 
1500 
1500 
50O0 
5OO0 
5000 
5000 
5000 
50OO 
OQ 

oO 

Number  of stages: n ffi 12; Demand  rate: D = 60000. 
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Table 2 
Solution results 
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n = 12 Unconstrained Qi and x i Constrained k), ~ L,, x, <~ g~ Unconstrained Q, = x, 

i Q, S, x, b i Q~ s, x, b, Qi S, b, 

1 1309.526 1 261.905 5 1250.0 1 250.0 5 428.37 3 1 
2 1309.526 1 327.381 4 1250.0 1 250.0 5 1285.11 1 1 
3 1309.526 1 327.381 4 1250.0 1 250.0 5 1285.11 1 1 
4 1309.526 2 654.763 2 1250.0 2 250.0 5 1285.11 1 1 
5 2619.052 1 436.502 6 2500.0 1 416.6 6 1285.11 1 1 
6 2619.052 1 654.763 4 2500.0 1 500.0 5 1285.11 1 1 
7 2619.052 1 523.810 5 2500.0 1 500.0 5 1285.11 1 1 
8 2619.052 2 436.509 6 2500.0 2 416.6 6 1285.11 3 1 
9 5238.104 1 476.191 12 5000.0 1 500.0 10 3855.33 1 1 

10 5238.104 1 1309.526 4 5000.0 1 1250.0 4 3855.33 1 1 
11 5238.104 2 4238.104 1 5000.0 2 5000.0 1 3855.33 2 1 
12 104476.207 1 5238.104 2 10000 1 5000.0 2 7710.66 1 1 

TC = $12265.51 TC = $12515.90 TC* = $15245.52 
TC. ~ = $12 212.85 TC.  c = $12 458.13 TC.  ~ = $15135.91 
A cost-ratio = 0.43% A cost-ratio = 0.46% A cost-ratio = 0.72% 

Table 3 
a cost-ratio percentiles 

No. 
of 
cases 

Type of cases randomized Percent of  cases Max. Min. Mean 

< 25 < 50 ~ 75 < 95 

A Cost-ratios (in percentages) 

lif0 Unconstrained Q, and x, 0.31 0.51 1.01 2.23 5.16 0.13 0.77 
100 Constrained Q, < L,, x i ~ gi 0.92 1.47 1.94 3.88 11.90 0.28 1.80 
100 Unconstrained Q, = x, 0.30 0.70 1.00 1.50 1.60 0.01 0.72 

Data used (square brackets denote ranges): n = 12, D = 60000, F, = [1.0 - 50.0], T, = [0.1 - 10.0], c i = [0.1 - 7.5], P, = [65000 - 950000], 
L, = 1500, gi = [100-1000  (in 100's)], for i = 1, 2 . . . . .  n. 

lot-size and batch shipment creates its savings by decreasing the set-up and/or the inventory-holding costs. 
The 24 percent cost savings in the example speaks for itself. 
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