NON-EXISTENCE OF RENORMALIZABLE SELF-INTERACTION IN $\boldsymbol{N}=\mathbf{2}$ SUPERSYMMETRY FOR SCALAR HYPERMULTIPLETS

L MEZINCESCU
SLAC. Stanford Unversity, Bin 81, PO Box 4349. Stanford. (A 94305. USA
York-Peng YAO
Department of Physics, Unversity of Michigan, Ann Arbor, MI 48109, USA

Received 9 August 1983
(Final version receıved 23 December 1983)

Abstract

We prove that the assumption of invariance under "isospin rotations", 1 e automorphisms of $N=2$ supersymmetnic charges, imphes that there is no local renormalizable interaction among scalar hypermultiplets

1. Introduction

Amongst various motivations in recent studies of extended supersymmetry, one that entreats us is the possibility of building finite (for a review of finite theories see [1]) realistic four-dimensional models For this purpose, a preliminary step is to ascertain what couphings and soft breakings are allowed, as such theones are very restrictive.

Let us focus our attention on $N=2$ supersymmetric models in which the dimensions of the operators in the lagrangians are not greater than four We shall adhere to the conventional termunology and call such models renormalizable, although in extended supersymmetry there may be other possibilities

It is known how to introduce gauge interactions [2] On the other hand, there have been remarks of inability to construct other renormalizable interactions between scalar multiplets [3] It is fair to say that the impossibility has not been substantiated with published systematic analysis The purpose of this note is to give a proof that there can be no self-interaction between an arbitrary number of scalar hypermultiplets Here, by a scalar hypermultuplet, we mean the $N=2$ supersymmetry (SS) algebra in which ether the scalars $\left(A_{t}\right)$ or the spinors $\left(\psi_{l}\right)$ are isodoublets with respect to the $S U(2)$ automorphisms of SS charges The superpartners $\psi_{\alpha}, \bar{\phi}_{\alpha}$ and $A_{i j}$ are respectively singlets and $1 \oplus 0 \mathrm{SU}(2)$ representations

While for the multiplet $\left(A_{i}, \psi, \phi\right)$ it is trivial to see that no self-interaction can be written which is $\mathrm{SU}(2)$ invariant (because of the impossibility of forming $\mathrm{SU}(2)$ covariant Yukawa coupling), for the multiplet (A_{1}, ψ_{i}) this is not evident. as we can in principle construct $S U(2)$ covariant coupling. $A^{\prime /} \psi_{2} \psi$, The same is true for bosonic trilinear couplings, which can appear after the elimination of auxiliary fields.

We know in several cases that the internal symmetry due to extended supersymmetry is manifest only when the lagrangians are written in terms of physical component fields [4] Thus. when one performs a general analysis about interactions, one should not make assumptions about the isospin assignments in the auxiliary fields* In fact, we shall do away with the auxiliary fields altogether and work only with physical fields.

We shall show that the $N=2$ supersymmetry algebra already implies the nonexistence of self-interaction ${ }^{\star \star}$ This is accomplished by writing down the most general transformations possible on the physical fields, consistent with isospin invariance, locality and renormalizability The algebra is then forced to have only free field transformations.

2. Proof

In this section, we prove that there is no renormalizable Yukawa interaction among $N_{1} \Phi_{t}$ type and $N_{2} \Phi_{i}$ type hypermultiplets One assumption we need to make for our proof is that the set of transformations on the $N=2$ indices (e g t and l above) constitutes a good symmetry. We call this the $\mathrm{SU}(2)$ isospin symmetry. This implies that all equations must be covariant in isospin. We will show that the most general supersymmetric transformations on these fields, consistent with the extended algebra, isospin covariance and renormalizability, correspond to an interaction free theory

For notational convenience, we group all $N_{1} \Phi_{1}$ into one vector and all $N_{2} \Phi_{1}$ into another vector We choose to work with "real" $\Phi_{i_{j}}$, this should place no limitations on our proof, because we can always decompose each complex $\Phi_{i j}$ into two real $\Phi_{i j}$.

We have not assumed any further internal symmetry among these hypermultiplets, but it is clear that our proof goes through when such symmetry exists, because that will just be tantamount to applying a general result to a particular case For example, when Φ_{t} falls into a representation of $\operatorname{sp}(n)$, one can further impose a

[^0]reality condition
$$
\left(A_{t}^{L}\right)^{*}=\Omega^{L M} \varepsilon^{l} A_{l M}
$$

Correspondingly，we must halve the number of spinor components through another relation

$$
\psi_{L}=\Omega_{L M} \phi^{M}
$$

Because the symplectic matrix commutes with $\operatorname{SU}(2)$ ，this essentially means that we can pass to a Φ_{i} with fewer components by destroying the manifest invariance under $\operatorname{sp}(n)$ ．In what follows，we assume that this reduction has been made

We take the phase convention ${ }^{\star}$

$$
\begin{equation*}
\left(A_{1}^{\prime}\right)^{*}=A_{f}^{* l} \tag{1}
\end{equation*}
$$

Writing

$$
\begin{equation*}
A_{t}^{\prime}=A_{0} \delta_{i}^{J}+A \quad \tau_{t}^{\prime} \tag{2}
\end{equation*}
$$

we impose that

$$
\begin{equation*}
A_{0}=-A_{0}{ }^{*}, \quad A=A^{*} \tag{3}
\end{equation*}
$$

It follows then

$$
\begin{equation*}
A_{i}^{j}=A_{i,}^{* j}, \quad\left(A_{i j}\right)^{*}=-A^{\prime \prime} \tag{4}
\end{equation*}
$$

Based on dimensional and isospin considerations，we have the following general supersymmetric transformations

$$
\begin{align*}
& \delta A_{t}=\xi_{t}^{\alpha}\left({ }_{0}\right) \psi_{\alpha}+\bar{\xi}_{\alpha t} \bar{\Omega} \overline{\phi^{\alpha}}, \tag{5}\\
& \delta A^{* i}=\bar{\xi}_{\alpha}^{(\cdot)!} * \bar{\psi}^{\alpha}+\xi^{\alpha t(\overline{)}) *} \phi_{\alpha}, \tag{6}\\
& \delta \psi_{\alpha}=\xi_{\alpha}^{k} \mathcal{M}_{k}+{ }_{l}\left(\sigma_{\mu} \partial^{\mu} \bar{\xi}\right)_{\alpha h} \overline{豸 勺}^{k} . \tag{7}
\end{align*}
$$

[^1]\[

$$
\begin{array}{cc}
\left(\tau_{1}^{\prime}\right)^{*}=\tau_{,}^{\prime}, & \left(g_{1 \prime}\right)^{*}=-g^{\prime \prime} \\
\left(\xi_{h}^{\alpha}\right)^{*}=\bar{\xi}^{\alpha k}, & \left(\xi^{\alpha \kappa}\right)^{*}=-\bar{\xi}_{k}^{\alpha}
\end{array}
$$
\]

and a simular one for $\delta \bar{\phi}_{\alpha}$, where

$$
\begin{align*}
& \mathbb{N}_{k}=m\left(\Sigma_{1} A_{k}+\varepsilon_{2} A_{k}^{*}\right)+\Sigma_{1} A_{k} A_{m}^{m}+\Xi_{2} A_{k}^{*} A_{m}^{m}+厅_{1} A^{m} A_{m k}+\overleftarrow{厅}_{2} A^{* m} A_{m k}, \tag{8}\\
& \bar{\Re}^{k}=\overline{\operatorname{T}} A^{k}+\bar{\Xi}^{*} A^{* k} \tag{9}
\end{align*}
$$

We also have

$$
\begin{equation*}
\delta A_{1 j}=\xi^{\alpha \alpha} \psi_{\alpha \kappa l \jmath}+\bar{\xi}_{\alpha k} \bar{\psi}^{\alpha k}{ }_{1 j}, \tag{10}
\end{equation*}
$$

with

$$
\begin{gather*}
\psi_{\alpha k l l}=-D_{1} g_{k \iota} \psi_{\alpha J}-D_{2} g_{k j} \psi_{\alpha l}, \\
\bar{\psi}_{\alpha \alpha_{j}}^{k}=-D_{1}^{*} \delta_{1}^{k} \bar{\psi}_{\alpha J}-D_{2}^{*} \delta_{\jmath}^{k} \bar{\psi}_{\alpha l} \tag{11}
\end{gather*}
$$

We shall write down the transformation for $\psi_{a t}$ later In the above, ξ and $\bar{\xi}$ are
 with appropriate dimensions in rows and columns m is a mass parameter We have also used the phase conventions

$$
\begin{equation*}
\left(\psi_{1}^{\alpha}\right)^{*}=\bar{\psi}^{\alpha l}, \quad\left(\psi^{\alpha l}\right)^{*}=-\bar{\psi}_{i}^{\alpha} \tag{12}
\end{equation*}
$$

Now, the extended supersymmetry algebra demands that

$$
\begin{equation*}
\left[\delta_{\xi}, \delta_{\xi}\right] \psi_{\alpha}=2 \iota \xi^{\beta k}\left(\sigma_{\mu} \partial^{\mu}\right)_{\beta \beta} \bar{\xi}_{h}^{\beta} \psi_{\alpha}, \tag{13}
\end{equation*}
$$

whereas, by applying the above transformations in successive orders, one obtains

$$
\begin{equation*}
\left[\delta_{\xi}, \delta_{\xi}\right] \psi_{\alpha}=-l \xi^{\beta h}\left(\sigma_{\mu} \partial^{\mu} \bar{\xi}\right)_{\alpha k}\left(\overline{\mathcal{G}} 0 \underline{D} \psi_{\beta}+\overline{\mathrm{V}} \overline{\mathrm{D}} * \phi_{\beta}\right)+\xi_{\alpha}^{\alpha} \bar{\xi}_{\alpha l} P_{k}^{\alpha l}, \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& P^{\alpha \prime}{ }_{k}=m\left(\bar{b}_{1} \cdot \bar{D} \bar{\phi}^{\alpha}+\bar{\xi}_{2}{ }^{(0)} * \bar{\psi}^{\alpha}\right) \delta_{k}^{t}
\end{aligned}
$$

$$
\begin{align*}
& -\mathscr{T}_{1} \overline{\bar{Q}} \bar{\phi}^{\alpha} A_{k}^{l}+\sigma_{1} A^{m} \bar{\psi}^{\alpha l}{ }_{m k}-\mathscr{T}_{2} \cdot \bar{D} * \bar{\psi}^{\alpha} A_{k}^{l}+\mathscr{T}_{2} A^{* m} \bar{\psi}^{\alpha}{ }_{m h} \tag{15}
\end{align*}
$$

Comparing eqs (13).(14), we have

$$
\begin{equation*}
\left.\left.\left.2 l\left(\sigma_{\mu} \partial^{\mu}\right)_{\beta \beta} \psi_{\alpha} \delta_{k}^{\prime}=-l\left(\sigma_{\mu} \partial^{\mu}\right)_{\alpha \beta}(\bar{\beta} 01) \psi_{\beta}+\overline{\mathrm{V}} 0\right)\right)^{*} \phi_{\beta}\right) \delta_{h}^{\prime}+\varepsilon_{\alpha \beta} \varepsilon_{\alpha \beta} P^{\alpha \prime} \tag{16}
\end{equation*}
$$

The part which is symmetric in α and β of the last equation gives

$$
\begin{align*}
& 2 l\left(\sigma_{\mu} \partial^{\mu}\right)_{\beta \beta} \psi_{\alpha}+2 l\left(\sigma_{\mu} \partial^{\mu}\right)_{\alpha \beta} \psi_{\beta}=-l\left(\sigma_{\mu} \partial^{\mu}\right)_{\alpha \beta}\left(\overline{\operatorname{Son}} \psi_{\beta}+\bar{C} \nabla \eta{ }^{2} \phi_{\beta}\right) \\
& -l\left(\sigma_{\mu} \partial^{\mu}\right)_{\beta \beta}\left(\overline{\mathfrak{T}} \mathrm{O}_{2} \psi_{\alpha}+\overline{\mathrm{C}} \mathrm{O}_{\boldsymbol{R}} \phi_{\alpha}\right), \tag{17}
\end{align*}
$$

which, upon multuplying with sides by $\left(\bar{\sigma}_{\nu} \partial^{\nu}\right)^{\beta \beta}$. results in
or

$$
\begin{align*}
& \overline{3} \cdot 2=2, \tag{19}\\
& \text { 巳OD* }=0 \tag{20}
\end{align*}
$$

As eq (19) asserts that $01 \neq 0$, we must conclude from eq (20) that

$$
\begin{equation*}
\overline{\mathrm{E}}=0 \tag{21}
\end{equation*}
$$

Likewise, we lower the index l in eq (16) and obtain from the symmetric part in k and l

$$
\begin{equation*}
P^{\alpha}{ }_{l k}+P_{k l}^{\alpha}=0 \tag{22}
\end{equation*}
$$

By equating coefficients of the various products of A and ψ, we have*

$$
\begin{array}{r}
\sigma_{1} \overline{\sigma_{2}} \otimes I=0, \\
\sigma_{2}, Q_{2} * \otimes I=0, \\
s_{1} I \otimes\left(-D_{1}^{*}+D_{2}^{*}\right)-\sigma_{1} I \otimes D_{1}^{*}=0, \\
s_{2} I \otimes\left(-D_{1}^{*}+D_{2}^{*}\right)-\sigma_{2} I \otimes D_{1}^{*}=0 \tag{26}
\end{array}
$$

Eqs (23) and (24) give

$$
\begin{equation*}
T_{1}=T_{2}=0 \tag{27}
\end{equation*}
$$

As we can show later on that

$$
\begin{equation*}
-D_{1}^{*}+D_{2}^{*} \neq 0 \tag{28}
\end{equation*}
$$

* Direct product (\otimes) occurs, because we have products of fields
which, because of eqs (25),(26), leads to

$$
\begin{equation*}
\delta_{1}=\delta_{2}=0 \tag{29}
\end{equation*}
$$

Altogether, eqs. (21), (27) and (29) ensure that A_{i} and ψ_{α} obey free field transformation laws. In the same manner, $\bar{\phi}_{\alpha}$ can be shown to transform as a free field

Now that we have shown that Φ_{i} 's do not interact, we can take the following as the general transformation

$$
\begin{align*}
\delta \psi_{\alpha i} & =\xi_{\alpha}^{k} M_{h i}+\iota\left(\sigma_{\mu} \partial^{\mu} \bar{\xi}_{k}\right)_{\alpha} \bar{N}_{t}^{k} \tag{30}\\
\delta \bar{\psi}_{\alpha}^{\prime} & =-\bar{\xi}_{\alpha k} \bar{M}^{k!}+\imath\left(\xi^{k} \sigma_{\mu} \partial^{\mu}\right)_{\alpha} N_{k}{ }^{\prime} \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
& M_{h_{l}}=m\left(E A_{k l}+F g_{k l} A_{l}^{l}\right)+G_{1} A_{k l} A_{l}^{l}+G_{2} g_{k_{l}} A_{l m} A^{l m}+G_{3} g_{k_{1}} A_{l}^{l} A_{m}^{m} \tag{32}\\
& \bar{N}_{l}^{h}=\bar{A} A_{l}^{h}+\bar{B} \delta_{l}^{k} A_{l}^{l} \tag{33}\\
& \bar{M}^{h_{l}}=\left(M_{k_{l}}\right)^{*}, \quad N_{k}^{l}=\left(\bar{N}_{t}^{k}\right)^{*} \tag{34}
\end{align*}
$$

Here, the coefficients \bar{A}, \bar{B} etc. are either $N_{2} \times N_{2}$ or ($\left.N_{2}\right)^{2} \times\left(N_{2}\right)^{2}$ matrices
As before, we compare the consequences due to extended supersymmetry algebra on the one hand and those due to the transformation on the other

$$
\begin{align*}
{\left[\delta_{\xi}, \delta_{\xi}\right] \psi_{\alpha l} } & =2 \imath \xi^{\beta h}\left(\sigma_{\mu} \partial^{\mu}\right)_{\beta \beta} \bar{\xi}_{k}^{\beta} \psi_{\alpha t} \\
& =-\imath\left(\sigma_{\mu} \partial^{\mu} \bar{\xi}_{k}\right)_{\alpha}\left(\overline{A \xi^{\beta t} \psi_{\beta l}{ }_{t}+\bar{B}} \delta_{t}^{k} \xi^{\beta l} \psi_{\beta l m}^{m}\right)+\xi_{\alpha}^{k} \bar{\xi}_{\alpha l} P_{h l}^{\alpha l} \tag{35}
\end{align*}
$$

where

$$
\begin{align*}
P_{k l}^{\alpha l}= & m\left(E \bar{\psi}_{k l}^{\alpha l}+F g_{k_{1}} \bar{\psi}_{m}^{\alpha l}\right)+G_{1} \bar{\psi}_{k l}^{\alpha l} \otimes I A_{l}^{l} \\
& +G_{1} A_{k l} I \otimes \bar{\psi}_{m}^{\alpha l}{ }^{m}+G_{2} g_{k_{1}} A^{m n} I \otimes \bar{\psi}_{m n}^{\alpha l}+G_{2} g_{k l} \bar{\psi}_{m n}^{\alpha l} \otimes I A^{m n} \\
& +G_{3} g_{k 1} A_{m}^{m} I \otimes \bar{\psi}_{n}^{\alpha l n}+G_{3} g_{k l} \bar{\psi}_{n}^{\alpha l n} \otimes I A_{m}^{m} . \tag{36}
\end{align*}
$$

This results in the equation

$$
\begin{equation*}
2{ }_{l}\left(\sigma_{\mu} \partial^{\mu}\right)_{\beta \beta} \psi_{\alpha l} \delta_{k}^{\prime}=l\left(\sigma_{\mu} \partial^{\mu}\right)_{\alpha \beta}\left(\bar{A} \psi_{\beta l}{ }^{k}{ }_{t}+\bar{B} \delta_{l}^{k} \psi_{\beta l m}{ }^{m}\right)+P_{k,}^{\alpha l} \varepsilon_{\alpha \beta} \varepsilon_{\alpha \beta} \tag{37}
\end{equation*}
$$

The part symmetric in α and β is

$$
\begin{equation*}
\bar{A} \psi_{\alpha k}{ }_{l}+\bar{B} \delta_{l}^{\prime} \psi_{\alpha k m}^{m}=2 \delta_{k}^{\prime} \psi_{\alpha t} \tag{38}
\end{equation*}
$$

Using eq (11), we deduce

$$
\begin{align*}
\bar{A}\left(D_{1}+D_{2}\right) & =2 \tag{39}\\
(\bar{A}-2 \bar{B})\left(D_{1}-D_{2}\right) & =2 \tag{40}
\end{align*}
$$

Note that eq (40) asserts that $D_{1}-D_{2} \neq 0$, a property which was used earlier
We now make use of the part of eq (37) which is anti-symmetric in α and β We simplify it with eqs (39) and (40) into

$$
\begin{equation*}
-2 l\left(\sigma_{\mu} \partial^{\mu}\right)_{\alpha \beta} \psi_{t}^{\alpha} g_{l k}=P_{\beta l k t} \tag{41}
\end{equation*}
$$

From this, the prece which is symmetric in k and l must vanısh, i.e

$$
\begin{equation*}
P_{\beta / h_{t}}+P_{\beta k h_{1}}=0 \tag{42}
\end{equation*}
$$

In particular, the portion which is totally symmetric in k, l and l gives

$$
\begin{equation*}
G_{1}\left(I \otimes\left(-D_{1}^{*}+D_{2}^{*}\right)\right)=0, \tag{43}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{1}=0 \tag{44}
\end{equation*}
$$

The other equations one can obtain from eq (42) are by requiring the coefficients of various products of A and ψ to vanısh

$$
\begin{align*}
G_{2}\left(I \otimes\left(-D_{1}^{*}+D_{2}^{*}\right)+\left(-D_{1}^{*}+D_{2}^{*}\right) \otimes I\right) & =0 \tag{45}\\
\left(\frac{G_{2}}{2}+G_{3}\right)\left(I \otimes\left(-D_{1}^{*}+D_{2}^{*}\right)+\left(-D_{1}^{*}+D_{2}^{*}\right) \otimes I\right) & =0 \tag{46}\\
-E D_{2}^{*}+F\left(-D_{1}^{*}+D_{2}^{*}\right) & =0 \tag{47}
\end{align*}
$$

Eqs. (45) and (46) give

$$
\begin{equation*}
G_{2}=G_{3}=0 \tag{48}
\end{equation*}
$$

However, eqs (44) and (48) are just the statement that $A_{i j}$ and $\psi_{\alpha t}$ transform like free fields, viz eqs (10), (30)-(34) This establishes the proof

3. Conclusion

We have seen that the assumption of the $\mathrm{SU}(2)$ invariance of the hard coupling essentally renders the interaction of the hypermultiplets zero Whether our result changes by giving up the $\operatorname{SU}(2)$ covariance remains unanswered

We would like to thank Drs J.-M Frère and S Raby for many discussions. We have also benefitted from a discussion with M Roček This work has been partially supported by the US Department of Energy. One of us (LM) wishes to thank the theory group at The University of Michigan for hospitability He also wishes to thank S Drell, J Gunion, L Susskind and B. Zumino for support and hospitality at varıous times during the last year.

References

[1] K S Stelle, Supersymmetry, finite theories and quantum gravity, preprint ICTP/82-83/9, to appear in Festschrift in honor of Bryce DeWitt,
P West, Finite four dimensional theories, Talk given at La Jolla workshop (Jan 83)
[2] S Ferrara and B Zummo. Nucl Phys B79 (1974) 413,
A Salam and J Strathdee, Phys Lett 51B (1974) 353,
P Fayet, Nucl Phys B113 (1976) 135
[3] M Sohnus, Nucl Phys B138 (1978) 109, G Parısı and H Sourlas, Nucl Phys B206 (1982) 321,
S J Gates Jr, M T Gnsaru, M Roček and W Siegel, Superspace (Benjamın/Cumming, Massachusetts, 1983),
G Sierra and P K Townsend, LPTENS 83/21, unpublished
[4] F Gliozzl, J Scherk and D Olive, Nucl Phys B122 (1977) 253

[^0]: * In fact it 1 s enough to make the assumption of $\operatorname{SU}(2)$ invariance only for the hard part of the interactions
 ** We emphasize that no lagrangian formulation is assumed in what follows, as the proof relies on the algebra and its representation only (We wish to thank the referee for reminding u, to stres, this point)

[^1]: ＊We have

