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Abstract: Dibaryon quark-exchange kernels are constructed in explicit analytic form for the tensor and 

spin-orbit terms of the one-gluon-exchange quark-quark Breit interaction and for spin-orbit terms 

generated by quark-confinement mechanisms. The spin operators needed are defined through their 

spin-reduced matrix elements including those needed for interactions coupling NN, NA, and AA 

channels. Effective baryon-baryon spin-orbit potentials, generated through the Wigner transforms 

of the quark-exchange kernels with the use of a local momentum approximation, show that the 

NN spin-orbit interaction derived from the symmetric spin-orbit term of the one-gluon-exchange 

quark-quark interaction is in general agreement with the short-range part of phenomenological 

potentials derived from NN scattering. With the inclusion of the antisymmetric spin-orbit one- 

gluon-exchange terms and spin-orbit terms generated by confining potentials the full triplet-odd 

NN spin-orbit potential is greatly reduced in the 0.5-l fm range. The uncertainties associated with 

spin-orbit terms generated by quark-confinement mechanisms are emphasized. The relative import- 

ance of various possible quark-gluon exchange terms is studied and shows that models which 

neglect some types of exchange terms are open to question. An SU(3)-flavor symmetric model 

for N-hyperon spin-orbit potentials leads to an NA spin-orbit potential only slightly weaker than 

the NN spin-orbit potential. 

1. Introduction 

Attempts at a fundamental understanding of the baryon-baryon interaction 

through the interaction among quarks in terms of the underlying quantum chromody- 

namics are complicated by the unsolved problem of quark confinement, and the 

medium- and long-range part of the baryon-baryon interaction is at present not 

understood in terms of the underlying quark-gluon physics. Since this part of the 

interaction is explained well in terms of the meson-exchange mechanism, recent 

investigations in terms of quark models have focused on the short-range part of the 

baryon-baryon interaction. Of the many models and methods used the nonrelativistic 

resonating group or generator coordinate method lm9) has the great advantage that 

the quark exchange kernels needed can be evaluated in very explicit analytic form 
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including the necessary color, spin, isospin factors which make it possible to couple 
the NN and AA systems, and the various hidden color channels. With the RGM 
formalism very specific quantitative results can be obtained directly and easily. 
Despite the possible shortcomings of nonrelativistic quark models, RGM models 
may therefore be very useful, particularly in a study of the relative importance of 
specific terms of the quark-quark interaction or specific quark-gluon exchange 
mechanisms. 

Most recent quark model studies of the NN interaction have focused on the 
central parts of the quark-quark interactions; but spin-orbit and tensor terms may 
be crucial for some aspects of the short-range part of the baryon-baryon interaction, 
and may be particularly important for the coupling of NN to NA channels. Possible 
dibaryon resonances in the ‘DZ, 3F3, ‘G4 NN channels lo) appear at energies very 
close to the NA threshold, and it has been suggested 11) that these dibaryon 
resonances can be interpreted as arising from NA threshold effects. Tensor interac- 
tions coupling channels such as ‘S2(NA) to IDI( or ‘P3(NA) to 3F3(NN), thus 
play a crucial role for the appearance of such resonances, and it has been suggested ‘*) 
that these may be very sensitive to the short- and medium-range parts of such tensor 
interactions. A specific form of the potential needed may therefore be obtainable 
from the tensor terms in the quark exchange kernels. A phenomenological A-nucleus 
spin-orbit interaction has been shown 13) to improve the fit to +nucleus scattering. 
Due to the peripheral nature of the rr-nucleus interaction such spin-orbit terms 
may again be explainable in terms of the spin-orbit terms in the quark-quark 
interaction. 

It has also been suggested 14) that the nuclear spin-orbit potential may arise 
largely from the short-range part of the NN interaction and may thus be explainable 
in terms of quark-quark spin-orbit exchange kernels. In the relativistic treatment 
of ref. 14), in which quark exchange is handled through a Fierz transformation 15*16), 
the analysis is based on a single exchange process in which only two quarks participate 
and is thus limited to only one of several possible quark-gluon exchange mechanisms 
of the six-quark system. It is the advantage of the nonrelativistic RGM treatment 
that all quark-gluon exchange terms can be treated on an equal footing so that it 
is possible to assess quantitatively the relative importance of the various quark-gluon 
exchange terms. It has been claimed “) that a nonrelativistic treatment of quark- 
gluon exchange gives rise to a spin-orbit interaction of the wrong sign and a very 
small magnitude, at least in the energy regime where the spin-orbit interaction 
begins to play a role. It will, however, be shown that both the sign and the strength 
of the spin-orbit interaction derived from nonrelativistic RGM quark-exchange 
kernels are sensitive functions of both range and energy and the method used to 
represent the confinement mechanism. In the relevant range-energy domain the 
spin-orbit interaction derived from nonrelativistic RGM quark-exchange kernels 
has a sign and magnitude in agreement with the phenomenological potentials derived 
from NN scattering data, if only the symmetric spin-orbit term of the one-gluon- 
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exchange quark-quark interaction is considered. Inclusion of the antisymmetric 
spin-orbit term and possible spin-orbit terms generated by a confining potential 
may, however, be responsible for a cancellation of most of this spin-orbit strength. 

The most detailed RGM treatment to date, including tensor and spin-orbit terms, 
has been given by Warke and Shanker 3). Their method of constructing the NN 
potential, however, is a variant of a Born-Oppenheimer approximation, and their 
treatment of the quark-exchange kernels is not quite complete. It is one of the 
purposes of this contribution to give the needed tensor and spin-orbit quark- 
exchange kernels in explicit analytic form [completing the earlier tabulations for 
the central terms “,‘)I. Particular emphasis is given to the coupling of NN to NA 

and AA channels with the above applications in mind. The relative importance of 
the various possible quark-gluon exchange terms in the spin-orbit interaction is 
studied in some detail. In sect. 3 the spin-orbit quark-exchange kernels are converted 
into equivalent spin-orbit potentials through the Wigner transforms of these kernels 
and the use of the local momentum (WKB) approximation employed in ref. “). The 
relative importance of the symmetric and antisymmetric spin-orbit terms of the 
one-gluon-exchange quark-quark interaction and spin-orbit terms generated by 
quark-confinement mechanisms can then be examined in detail. Finally, a brief 
discussion is given of the N-hyperon spin-orbit potential using an SU(3)-flavor 
approach in which strange and nonstrange quarks are treated on an equal footing. 

2. Quark-exchange kernels for tensor and spin-orbit interactions 

The nonrelativistic RGM wave function for the six-quark dibaryon system can 
be written [in the notation of ref. 8)] 

* = 4m,,(123) x h2(456)iSTm2)~, (1) 

where the internal three-quark baryon functions ~$n include a totally antisymmetric 
color, a totally symmetric spin-isospin (flavor) component, and a totally symmetric 
internal orbital function made up of OS oscillator functions, e.g. 

&+ (orbital) = ( &J’)-~” exp 1 = ( Tp)-3/* exp[-(r:+r:+r:-r,. r*--r1 . r3- r2 . r3)/3b2], (2) 

where b is the oscillator length parameter, b* = h/ma. The square bracket in eq. 
(1) denotes spin and isospin coupling. For B1 = B2, e.g. for the NN or AA system, 
the symmetry of the dibaryon spin-isospin function is given by S + T = Q. For B1 # B2, 
e.g. for the NA system, it will be convenient to let the square bracket in eq. (1) 
denote a symmetrically (antisymmetrically) spin-isospin coupled function for CJ = 
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even (odd), and therefore let the square bracket in eq. (1) be defined by 

&&d,,(123) x +n2(456)iST 
al& 

+(-l)“(-1) S~+S~-s+T~+T~--T x [+Bz( 123) X +B1(456)]ST} . (3) 

(Note that for B, =B2 only one of the d-values survives for a given S and T; note 
also that these internal functions are normalized in both cases Bi = B2 and Bi # B2.) 

The antisymmetrizer d in eq. (1) makes 4 totally antisymmetric under exchange 
of quarks between the two baryons and can be reduced in terms of double coset 
generators to the simple form 

a=$(l-9P,,)(l-LP). (4) 

The normalization for d is such that the norm kernel approaches the unit operator 
in the limit of infinite baryon separation. In eq. (4) PS6 exchanges quarks 3 and 6, 
and CP = P14P25P36 exchanges the two baryons. (The Pij act on color, spin, isospin 
and space variables.) The RGM kernel for the quark-quark interaction can be split 
into a direct and an exchange part: 

KC” (K R’) =%L~B, X ~BJsT~(RKZ-R) JT uij(l-9) 14~; X ~&T~(RIz-R’)) 9 
icj 

KF’ (R R’) =%-9)([4~~ X ~BJsT~(R~z-R) i oijP36(1- 9) 
i<j 

where RI2 = f( rl + r, + rJ - $( r, + r5 + r,J. With baryon internal functions defined as 
in eqs. (l)-(3), P can be replaced by (-1)” B(space), where B(space) acts on the 
orbital parts of the functions only. Only the exchange term of the color quark-quark 
interaction leads to an interaction between colorless nucleons. The 15 quark pairs 
(ij) thus lead to the five basic types of quark-gluon exchange terms shown in fig. 
1 when the interaction, U, is mediated by one-gluon exchange. Exchange kernels 

II-I 
123 654 123 654 123 654 123 654 123 654 

TYPE (1) (2) (3) (4) (5) 

WEIGHT 2 4 4 4 1 

(hiehj) -‘/9 -9/9 -*/9 d/9 ‘V9 

Fig. 1. The 5 types of quark-gluon exchange terms. The weights count the number of quark pairs which 
are equivalent to the pairs ij singled out in the figure. 
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arising from terms of type (1) and the central part of o are proportional to the 
exchange part of the norm kernel *). Quark-gluon exchange terms of type (1) are 
thus found not to contribute to any baryon scattering processes. Exchange kernels 
for the spin-orbit and tensor terms gain contributions from the exchange terms of 
types (2)~(5) only. Type (1) vanishes for baryons built from S-wave quarks. 

The one-gluon-exchange quark-quark Breit interaction has spin-orbit and tensor 
terms of the form 

fly. = ~a,hc(h, * Aj) & { 3$[rijx(P,-P,)lD (ui+aj) 
11 

-+[rijX(Pi+Pj)l ’ (ai-uj) (6) 

V 

-3h’ 
Qz =aa,hC(h,* Aj)- 

(Ui ’ rij)(Uj’ rij) (Ui ’ Uj) 

4m2c2 { r; I 3r;. ’ 
(7) 

where the quarks have been taken of equal mass, m, and rij = ri - rp The SU(3) 
color generators for the ith quark AT (LX = 1,. . . ,8) are normalized such that 
((hi. hi))=?, where (Ai. Aj)=C8,_i ATA:. 

In the nonrelativistic RGM treatments the one-gluon-exchange potential is aug- 
mented by phenomenological confinement terms in the quark-quark interaction of 
the form 

VFj = (hi * Aj) V,( rij) (8) 

with various radial dependences, e.g. v,(r) = -ucr2 (quadratic confinement) or 
v,(r) = -ufr (linear confinement potential). If such a confinement potential arises 
from a scalar coupling, (I,@), it will generate additional spin-orbit terms. To order 
u’/c’ the spin-dependent terms of such a couplirrg are ‘s-2’) 

+‘.“. = (Ai . Aj) ~~~{[,.(,-P,)l’(“i+uj) 
11 11 

+Lrijx (Pi +Pj)l ’ f”i-Uj)) * (9) 

Since the problem of quark confinement constitutes an unsolved problem it is not 
completely clear whether these additional spin-orbit terms generated by such a 
simple-minded quark-confinement mechanism should be included. If confinement 
is built into the quark model in the spirit of the MIT bag through a mass term in 
the relativistic single-particle problem (a mass which rises to infinity outside the 
bag) the single-particle Thomas terms of such a model may generate spin-orbit 
terms in the NN interaction through the quark-exchange mechanism. This possibility 
is discussed in sect. 3, where it is shown that such a model of confinement leads to 
spin-orbit terms of the opposite sign from those generated by P”.. 

In eqs. (6) and (9) the spin-orbit terms have been split into a symmetric (Ui+oj) 
and an antisymmetric (oi-uj) spin-orbit contribution. (Note that the symmetric 
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term in P”. has the opposite sign from the symmetric spin-orbit term arising from 
one-gluon exchange.) The antisymmetric spin-orbit term, through its dependence 
on pi+pi, seems to add spurious c.m. contributions and thus seems to be outside 
the realm of permissible interactions. These galilean non-invariant two-body terms 
have been discussed in detail [see, in particular, refs. 18S21)]. They are precisely of 
the form needed to cancel the spin-momentum-dependent terms generated in the 
two-particle barycentric frame if the two-body central potential Uijy color coulombic 
or confining, is expressed in terms of appropriate two-particle barycentric relative 
coordinates, Fli.7 which differ from the rij by additional spin-momentum dependent 
terms which arise from the Wigner rotation of the intrinsic spins of the two 
particles 18**l). In the c.m. frame of the six-particle system, however, the usual 
coordinates rij are the most natural, and since the color coulombic and confining 
potentials are expressed in terms of these, the full spin-orbit potential, symmetric 
and antisymmetric contributions, must be used. In the six-quark center-of-mass 
frame, where the c.m. momentum P can be set equal to zero, the (pi +pj) can be 
replaced by pi +pj -2P. (The c.m. component of (pi +pj) vanishes automatically if 
a OS harmonic oscillator c.m. motion function is included as part of the full six-particle 
wave function.) In all, therefore, exchange kernels are needed for three types of 
interaction terms, the symmetric and antisymmetric spin-orbit terms and the tensor 
term. 

It will be convenient to express the exchange kernels, KtE’(R, R’), in terms of 
dimensionless relative position variables, a, with conjugate dimensionless momenta 
q, where 

a=J$R/b, q=GbP/h. (10) 

The physical kernels, K(R, R’) are then related to kernels K( a, a’), expressed in 
terms of dimensionless a, a’, through 

K(R, R’) = (3/2b2)““K(u, a’) . (11) 

For the exchange kernels of eq. (5) these always occur in the combination 

P’(u, a’) =-;[K(a, a’)-(-l)“l?(u, -a’)] ) (12) 

where 4 gives the symmetry of the spin-isospin (or spin-flavor) dibaryon function, 
see eq. (3). Note that the relative motion function must have the symmetry, 

x(-R12) = (-1) “+‘x(R12). Consequently, only the J?(u, a’) need be given. The 
calculation of these kernels has been carried out by straightforward integrations. 
For the tensor and spin-orbit terms it will be convenient to express these J?(a, a’) 

in the following form: 

i 

C Ccij’( kc2’(U, U’) * [O X U]i$)(ij, (tensor) , (134 
k(u, a’) = ij 

C ccii’( k”‘(a, U’) * U,tf)(ij) (spin-orbit) , (13b) 
ij 
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where the k(a, a’) give the kernels of dimensionless orbital operators (see subsects. 
2.1 and 2.2), the c(‘j) contain the overall strength coefficients, and the effective 
u-operators, designated a$ in the following, are determined through the spin- 
reduced matrix elements of [Ui X Uj](2) and (ui *oj), tabulated in tables 1 and 2. 
These have been evaluated by the recoupling techniques explained in ref. 22). The 
summations over (ij) can be reduced to a sum over a small number of properly 
weighted characteristic quark-gluon exchange terms of the type illustrated in fig. 
1 (four terms for the tensor, and two terms each for the symmetric and antisymmetric 
spin-orbit potentials). 

2.1. TENSOR TERMS 

For the tensor potentials it will be convenient to consider the dimensionless factor 

${(Ui’ r,i)(Uj* rij)-frs(Ui’ Uj)]=$([rijx rijlc2) ‘-[ai XUj](2)) (144 

and write its orbital part in Cartesian tensor form 

(Oz)& ~~((rij)~(rij),-fr~~~,) 4P)=x,y,z. (14b) 

Exchange terms of type (2), (3), (4), and (5) (see fig. 1) give contributions to the 
kernels. For terms of types (2), (3), and (4) the exchange kernels for ( OG)uP have 
the form 

kc2’( a, a’),, = C’i’exp[-~(a2+u’2)+$(u* u’)] 

X+(VaVp-~V2&,)[W(V2)-~e~“‘], (15) 

where 

h(V)=erf (V)/V=2 J‘;; 
I 

o1 e-v*‘2 dt. 

For type-(2) exchange terms, with characteristic (ij) = (56): 

Cc2) = 27/5fi T*, v=J&z-3u’). 

For type (3), with characteristic (ij) = (26): 

C3’ = 27/5fi n2, V=J$j(u~-3u). 

For type (4), with characteristic (ij) = (25): 

Cc4’ = 27/8& n2 , y=&+d). 

(16b) 

(174 

(17b) 

(17c) 
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TABLET 

Spin-reduced matrix elements (aST(l(a, +oj)P~~ll/3S’T) 

(A) Symmetric combinations (B) Antisymmetric combinations 

OlP 
(ST) (S’T) 

(1) NN/NN 

(11) (11) 

(2) NN/NA 

(11) (11) 

(11) (21) 

(3) NN/AA 

(11) (11) 

(4) NA/NA 

(11) (11) 

(12) (12) 

(11) (21) 

(12) (22) 

(21) (21) 

(22) (22) 

(5) NA/AA 

(12) (02) 

(11) (11) 

(12) (22) 

(21) (11) 

(22) (22) 

(21) (31) 

(6) AA/AA 

(11) (11) 

(13) (13) 

(20) (20) 

(22) (22) 

(31) (31) 

(33) (33) 

(ij) = (25) (ij) = (36) alP 
(ST) (S’T) 

(ij) = (25) (ij)=(36) 

lo&/81 14&/27 

34\/6/81 4&27 

2430127 -4&/27 

20&/81 0 

35&/162 &/3 

-5&/ 18 &I3 

-5JG/54 5&/27 

&I/l8 -&i/9 

-5J30/54 -&i/27 

m2 5m9 

-2J3/9 

5&/81 

-J30/9 

-J30/27 

G/3 

-2JlO5/27 

4&/81 

-4J6/9 

0 

0 

-4421127 

442113 

4J3/9 

lo&/27 

2J30/9 
2&/27 

2J30/9 

44105127 

-2&/27 

24613 

-2J30/9 

243019 

-4&f 27 

442113 

(1) NN/NN 

(10) (10) 

(2) NN/NA 

(01) (11) 

(3) NN/AA 

(10) (10) 

(4) NA/NA 

(11) (11) 

(12) (12) 

(11) (21) 

(12) (22) 

(21) (21) 

(22) (22) 

(5) NA/AA 

(11) (01) 

(12) (12) 

(11) (21) 

(22) (12) 

(21) (21) 

(22) (32) 

(6) AA/AA 

(10) (10) 

(12) (12) 

(21) (21) 

(23) (23) 

(30) (30) 

(32) (32) 

2&/27 -2J6/9 

4&27 -8fi/27 

4&j/27 0 

J6/6 &if3 

-7Ji$54 h/3 

-5J30154 5&/27 

J30/18 -J%/9 

J%/l8 -&I27 

J%/lS 5J3019 

-2J15/27 

G/27 

-5J6f 27 

-J6/9 

5J6/9 

-2Jz/9 

4x&/27 

2JG/9 

IO&/27 

2J6/9 

lOJ6/27 

4J21/9 

4J6/27 -2J6/9 

-4Jiif 27 2J6/9 

0 -2J%/27 

0 2J%/ 3 

-4JE/9 -4JZ/9 

4JTi/9 4JZ/9 

Spin-reduced matrix elements for (ui-aj)P~~ can be read from this table through the relation 

(crSTll(a,-a,)P~~lIPS’T) =((YS~I(~Z-~~)PS~TIIPS’T) 

= t(aSTI(oz + os)P::IIPS’ T) 

-f(~S~l(~~+~~)~~~lIPs’T). 
The spin-reduced matrix elements of tables 1, 2, 4 are defined through 

(aSMsTM,IO; IpS’M;TM,) = (2S+ 1)-“2(S’M$km~SMs)(nST~/BkllPS’T). 

Under bra/ket interchange the spin-reduced matrix elements of table 1 change by the factor (-l)‘+“. 
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Finally, for exchange term (5), with (ij) = (36): 

wa, aq3 =g-& exp[-&a2+a’2)+~(a* a’)] 

x+(v,.v, -fVVQ 

533 

(18) 

with 

v=&-Ql). 

The [a X a]$’ of eq. (13a) can be expressed in terms of dibaryon spin operators. 
For potentials coupling different dibaryon channels (e.g. NN to NA coupling terms 
or S to S’ # S coupling terms) such expressions may be complicated, and it may be 
most convenient to express these dibaryon spin operators solely through their 
spin-reduced matrix elements as given in table 2. For tensor potentials for a single 
channel composed of two spin-i baryons the operators [CT X a]:? can be related to 
the dibaryon spin tensor operator [uu, X ugJC2) through 

La x ul(;) = ([BIJ%ISJII[~~ X ~jl’2’GII[B~B21ST) LuB1 x (r e 
([WM~~IIh, x ~B,~‘~‘~~PW,IW 

l(2) 
BZ ’ (19) 

where the spin reduced matrix element of the numerator can be read from table 
2; and e.g. 

c1411 m%J, x uB,]“‘ll[&l ?-) = 245. (20) 

For the NN, channel with (ST) =(ll), e.g., the first entry of table 2A gives 
(NNl ll][~s X uJ~‘P~~IINN~~) = &JS. Thus, in this case, [U X u]Li'(ij)=(56) = 

iduN * X uNJc2) In this case, therefore, exchange terms of type (2) give the following 
contribution to the full k(a, a’) of eq. (13a): 

- &hc 3ti2 27 1 

4m2c2b3 
x-$x4x-- 

5fi 7T2 
exp[-g(a2+a’2)+$(a* a’)] 

X [ W( V2> -4 epv2]-+([ V X Vlc2' * [uN, X uJ”)(& , (21) 

where V = &$(a - 3~‘). The color matrix element ((A, * Ah)) = --g can be read from 
fig. 1, the weighting factor of 4 accounts for the fact that terms with (ij) = (56), 
(46), (13), (23) give equal contributions to this exchange term. By adding the 
analogous contrib_utions of exchange terms of types (3), (4), and (5) to the above, 
the full kernel K(u, a’) for the tensor term is constructed in explicit analytic 
form. 
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TABLE 2 

Spin-reduced matrix elements (‘~STl71J[ai X Uj]‘*‘P,S,T[lpS’T) 

(A) Symmetric combinations 

alP 
(ST) (S’T) b, CM “) (ij) = (56) (ij) = (26) (ij) = (25) (ij) = (36) 

(1) NN/NN 

(11) (11) 

(2) NN/NA 

(11) (11) 

(11) (21) 

(3) NN/AA 

(00) (20) 

(11) (11) 

(11) (31) 

(4) NA/NA 

(11) (11) 

(12) (12) 

(11) (21) 

(12) (22) 

(21) (21) 

(22) (22) 

(5) NA/AA 

(11) (11) 

(12) (22) 

(11) (31) 

(22) (02) 

(21) (11) 

(22) (22) 

(21) (31) 

(6) AA/AA 

(00) (20) 

(02) (22) 

(11) (11) 

(13) (13) 

(11) (31) 

(13) (33) 

(20) (20) 

(22) (22) 

(31) (31) 

(33) (33) 

A/81 

A/81 

Jj/27 

J%i/27 

J?/Sl 

J%i/27 

&/324 

A/36 

J5/108 

&I12 

vG/108 

fi/lOS 

g;; 

h/405 

J5/45 

Jz,;;5 

fi/27 

J105/27 

J%/45 

J%i/5 

2 

-7 

-3 

-2 

10 

0 

29 

1 

-15 

5 

1 

13 

41 

1 

-3 

-5 

-1 

5 

1 

-2 

2 

1 

-1 

-3 

3 

-1 

1 

-2 

2 

2 5 34 

23 2 -20 

7 -2 -20 

4 -3 -4 

-14 22 8 

2 -1 -4 

29 -58 -8 

1 -2 8 

25 -26 40 

-3 -2 -8 

1 -2 -8 

13 6 8 

-37 

-1 

1 

7 

9 

-1 

1 

1 

-1 

1 

-1 

2 

-2 

-1 

1 

-2 

2 

14 52 

-2 4 

-2 4 

-6 -4 

2 -4 

6 4 

-2 4 

0 2 

0 -2 

16 -34 

-16 34 

2 2 

-2 -2 

0 -2 

0 2 

-2 -2 

2 2 
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(B) Antisymmetric combinations 
TABLE 2 (cont.) 

al@ 
(ST) (S’T) 9 

CM “) (ij) = (56) (ii) = (26) (ij)=(25) (ij) = (36) 

(1) NN/NN 

(10) (10) 

(2) NN/NA 

(01) (21) 

(3) NN/AA 

(01) (21) 
(10) (10) 

(10) (30) 

(4) NA/NA 

(11) (11) 

(12) (12) 

(11) (21) 

(12) (22) 

(21) (21) 
(22) (22) 

(5) NA/AA 

(12) (12) 

(11) (21) 

(12) (32) 

(21) (01) 

(22) (12) 

(21) (21) 
(22) (32) 

(6) AA/AA 

(01) (21) 

(03) (23) 

(10) (10) 

(12) (12) 

(10) (30) 

(12) (32) 
(21) (21) 

(23) (23) 

(30) (30) 

(32) (32) 

&I27 

~$81 

&Sl 

~$36 

&OS 

l/54 

l/18 

&i/18 

&/162 

l/18 

v%/81 

J30/9 

X5/135 

4 4 1 -22 

-5 -5 0 20 

-10 20 -15 -20 
10 -14 22 8 

0 2 -1 -4 

1 1 -6 8 

23 23 -10 -56 

-1 7 -10 8 

3 -5 -2 -8 

7 7 6 -40 

3 3 -2 8 

41 

5 

-3 

-25 

-1 

25 
1 

-2 

2 

1 

-1 

-3 

3 
-1 

1 

-2 

2 

-37 

-5 

1 

35 

9 

-5 
1 

1 

-1 

1 

-1 

2 

-2 
-1 

1 

-2 

2 

14 52 

-10 20 

-2 4 

-30 -20 

2 -4 

30 20 
-2 4 

0 2 
0 -2 

16 -34 

-16 34 
2 2 

-2 -2 
0 -2 

0 2 
-2 -2 

2 2 

“) CM = common multiplier (multiply the numbers in each row by CM to obtain the spin- 
reduced matrix element). 

‘) Under bra/ket interchange (ij) = (25) or (36) terms are changed by the factor (-1)“s; also 

(ps’7j[a, x c@‘P~~]]aST) = (-1)sfs’ (cuS7jl([a* X o,]‘2’Pf,,~~ps’ T) . 
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2.2. SPIN-ORBIT TERMS 

For the symmetric and antisymmetric spin-orbit terms it is convenient to define 
the dimensionless vector operators 

O~~‘=Kijs g nf[l;lX(pifh)]* 0 (22) 

The cases n = 3 (one-gluon exchange terms), ft = 1 (linear confinement spin-orbit 
terms) and n = 0 (quadratic confinement spin-orbit terms) are of greatest interest. 
The symmetric spin-orbit terms gain contributions only from exchange terms of 

type (4) and (9, ( see fig. 1; the orbital integrals for exchange terms (l), (2), (3) 
are identically zero). The antisymmetric spin-orbit terms gain contribl~tions only 
from exchange terms of type (2) and (3). [It should perhaps be mentioned that 
Warke and Shanker “) consider only exchange terms of type (3), (4) and (5) and 
omit type (2).] 

The orbital factors of the exchange kernels are given by the vectors (see eq. (13b)) 

~~1~(u,~‘)=~~exp[-~(u2+u’2~+~(u~u’)J}[uXa’] (23) 

where the factors F are the following: 
(i) Symmetric spin-orbit terms. For O$), type-(4) exchange, with characteristic 

(ij) =(25): 
/ 

3: 

.=s 1: 

0: F=-_iALLxl 
i 32fi -‘12 

(244 

VW 

(24~) 

with 

V=&l+a’). 

For O$), type-(5) exchange, with (ij) = (36): 

044 

i 
3: F_-jZ J;; 1 -- 

16 7r3/= Ia - u’j3 

n= 1: 

i 

F_;27 J? 1 
32rr3/2la_a’l 

0: 
81 1 F=i- -Xl. 

32h r3j2 

1254 

Wb) 

WC) 
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(ii) Antisymmetric spin-orbit terms. For O$), type-( 2) exchange, with characteris- 
tic (ij) = (56): 

3: 
81 1 F=i-- 

20410 r2 
‘WV’) 

n= 1: 

/ 

F=i& $4; h(V) -$W( V)] 

I 0: F=i--$=&xl 
7T 

(264 

(26b) 

with 

V=J&(a-3a’). (264 

For OiT), type-(3) exchange, with characteristic (ij) = (26), the factors F are given 
by eqs. (26a-c) but now with 

V=J&~-34. (27) 

The vectors k”‘( a, a’) must be combined with the appropriate spin-vector operators 
(see eq. (13b)) to construct the full g(a, a’). The ueff are expressible in terms of 
the spin-reduced matrix elements of (oi * oj)P&$,. Those for (oi + Uj)Ps,T are given 
explicitly in table 1; those for (oi -uj)Pic can be deduced from this table (see the 
first footnote to the table). 

3. The baryon-baryon spin-orbit interaction 

It is the great advantage of the nonrelativistic RGM formalism that very specific 
quantitative results can be obtained directly, and all quark-gluon exchange terms 
can be treated on an equal footing. Since some earlier quark-model treatments of 
the baryon-baryon spin-orbit interaction, both relativistic and nonrelativistic, have 
been incomplete or have singled out specific quark-gluon exchange mechanisms, it 
is worthwhile to give a more detailed quantitative treatment of the spin-orbit terms. 
The kernels of sect. 2 are nonlocal operators acting on the baryon-baryon relative 
motion function. To get an intuitive picture of their role it is useful to recast them 
in the form of equivalent local potentials. The simplest possible method of construct- 
ing such potentials, which does not require the solution of the full RGM equation, 
is based on the local momentum approximation used in ref. “) to study the short- 
range central part of the NN interaction. This method may not simulate the relative 
motion function as accurately as more elaborate techniques 23), but it gives a quick 
and direct way of arriving at an effective potential and has the advantage that it is 
relatively insensitive to other (short- and long-range) terms of the interaction. Since 
the emphasis in this investigation is on one part of the NN interaction, this method 
is particularly suitable for a study of the short-range spin-orbit interaction. 
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The spin-orbit quark-exchange kernels are first converted into momentum-depen- 
dent operators. These are then approximated by their Wigner transforms, Kw, 

where the K$? are related to the k(a, a’) of eqs. (12) and (13b) by 

Kg) (a2 q* (a. qy ([a xq] * 9 9 7 a,*)) 

=_gx2c c(ij) I dt eicq(k(‘)(u -it, u +$t) * u,&~). (28) 
ij 

For the symmetrized dibaryon functions of the form of eq. (3) and the exchange 
kernels of the form of eq. (12), the factors K(a, a’) and k(u, -a’) give equal 
contributions to the full Wigner transform [cf. ref. ‘)I, accounting for the factor 2 
in eq. (28). In the final expression the c-numbers q* and (a. q)* are to be replaced 

by 

q*==$ $M,(E- U(R)) ) 

(a. q)*=!?5$ ( E- u(&~+,;y ) 
B 

(29) 

where the baryon reduced mass MB,MBJ(MB, + MBz) has been approximated by 
fMB, cf. also eq. (10). In this local momentum approximation, the U(R) are the 
equivalent local potentials for the full interaction. These can be evaluated in this 
WKB approximation from simple transcendental equations ‘). To estimate the 
strength of the spin-orbit terms it will be sufficient to evaluate the Wigner transforms 
of the exchange kernels for the quark-quark spin-orbit interaction as functions of 
a and q. (Note that )q*) ranges from O+ -2 as ]E - U(R)] ranges from O+ 
-350 MeV.) 

The spin-orbit parts of the one-gluon-exchange quark-quark interaction give rise 
to the following Wigner transforms: For the symmetric spin-orbit interaction, 
(L,* (oi+ui) terms), eqs. (28), (13b), (24a), (25a) give 

exp[-$(a*+q*)] 

- wr&*)([u x q] * up) -- 

where W( V’) is given by eq. (16). Note that w( V*) is positive and monotonically 
decreasing. 

For the antisymmetric spin-orbit interaction, (Kij* (Ui-uj) terms), eqs. (26a), 
(27) give 

X duu2exp[-&(u2-q2)~2]~~~[~(u~q)~2] (31) 
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A spin-orbit potential generated by a linear confining potential (with assumed 
scalar coupling) gives rise to a Wigner transform of similar form. For the symmetric 
part of this spin-orbit interaction, (L,* (ai+aj) terms), eqs. (24b), (25b) give 

u’h2c2 1 Kg) cc_ b ,2c4exp[-b2+q2)] 

where f( V2) = [$v& h( V) -&W( V2)]. 
(The strength factor (a:h*c*/ b) is determined by the potential constant a: of the 

linear confining potential o,(r) = -ukr, see eq. (8).) 
For the antisymmetric part of this spin-orbit interaction (Kij. (ui -ai) terms) 

eqs. (26b), (27) give 

X du(l-U2)exp[-&(u*-q2)U2]cos[$(Q*q)u2] 

(33) 
A spin-orbit potential generated by a quadratic confining potential gives rise to 

the simple Wigner transform (see eqs. (24c), (25c), (26c), (27)) 

Kg) 
a h2C2 

=LEexp[-$(u2+q2)]{[aXq]. (u~~~)-u~~~~-u~~~)-u~~~))~))). 

m2c4 4 (34) 

(The strength factor (u,h2c2) is determined by the potential constant of the quadratic 
confining potential, D,(T) = --a,r2.) Eq. (34) contains both the symmetric and anti- 
symmetric parts of this spin-orbit term through the ueff with (ij) = (36), (25) and 
(56), (26), respectively. 

3.1. THE NN SPIN-ORBIT INTERACTION 

The dibaryon spin vectors, a$) in eqs. (30)-(34) are determined through the 
spin-reduced matrix elements of the operators (ai + Uj)Pfz for (ij) = (25) and (36) 
and (oi-uj)I’S,T for (ij) = (26) and (56); (see table 1, and note that uiL6’= a$$“). 
For spin-orbit potentials coupling different dibaryon channels (e.g. NN to NA 
coupling terms or S to S’ # S coupling terms) these spin operators may be compli- 
cated. For the spin-orbit potentials for a single channel composed of two spin-4 
baryons (e.g. BIB2 =NN) the operators a$’ can be related to the baryon spin 
operators sg, + sBz = S through the relation 

&) _ (BIB2STll(ai,@ +sB ) 

(BI%S%B, +uB,(IBIB,S~) B1 * . (354 
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For two spin-i baryons, coupled to S = 1, the baryon spin-reduced matrix element 
has the simple value 

& s = 1 T](UB, +o&s=lT)=2J6. (35b) 

For the spin-isospin symmetric NN channel with S = 1 T = 1 the first entry of table 
1 together with eqs. (35a-b) thus gives 

ueff (25) = ‘0s 
81 7 ueff 

(36) = 22s 
7 

@) = ,+5$’ = 2s 
eff (35c) 

With these relations and eqs. (30)-(34) it is possible to evaluate the strength 
coefficients of the various [a X q] * S = (l/h)[R X P] * S = La S terms as functions of 
a(R), q”, and (a * q)*; [R XI'] is reinterpreted as the orbital angular momentum 
operator. 

Figs. 2a-d give characteristic examples for two quark-quark interaction para- 
meters used in recent RGM calculations for NN scattering. The parameters selected 
are those for the most recent calculations of Ohta et al. 24) and Faessler et al. “) 
(see the figure caption and table 3). The figures are drawn for q2=0 and show 
curves for both the (ST) = (11) NN channel (L = 1) and the (ST) = (10) NN channel 
(L = 2). The symmetric spin-orbit potentials (from one-gluon exchange terms, 
designated L * S”‘) are negative in the 0.3 to 1 fm range, in the triplet-odd (ST) = 

(11) channel, and positive in the triplet-even (ST) = (10) channel; that is they have 
the correct sign for a nuclear spin-orbit interaction. The antisymmetric one-gluon- 
exchange spin-orbit potential, the K* S’-’ term of fig. 2, has the opposite (wrong) 
sign, as does the spin-orbit term generated by a confining potential. The one-gluon- 
exchange (L * SC+) and K * St-‘) terms are insensitive to a wide selection of recent 
quark-quark interaction parameters. This is a reflection of the fact that the parameter 
combination ((~,/m~b~), has been fitted to the observed A-N mass difference by all 
recent investigators. The parameter sets of table 3, in agreement with most recent 
choices, have also been based on the “consistency condition” whereby the potential 
constants are chosen to minimize the nucleon mass as a function of b, the oscillator 
length parameter. However, the choice of b is made arbitrarily, usually to be 
consistent with nucleon size and/or the philosophy of the little bag. In ref. 24) some 
consideration has also been given to the position of the Roper resonance, the nucleon 
breathing mode excitation [see the state ]B*> of ref. ‘“)I. The above considerations 
do not lead to a unique set of interaction parameters and also fail to fit the nucleon 
mass (see table 3). Since the interactions do not attempt to account for the long-range 
parts of the NN interaction, and the effects of the mesonic cloud are not included 
in the quark models, it is not clear that a fit to the nucleon mass should be required. 
However, entry III of table 3 shows that a set of parameters intermediate to OOAY 
and FFLS, also based on the consistency condition, gives a fit to both the nucleon 
mass and the A-N difference. Since it involves a small decrease in b relative to 
OOAY, the approximate fit to the Roper resonance is also preserved (and actually 
somewhat improved). Table 3 shows that a small change in the philosophy of fitting 
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Fig. 2. Strength of the spin-orbit potentials. Curves marked L. SC+) and K. S’-’ give the contributions 

arising from the symmetric and antisymmetric spin-orbit terms of the one-gluon-exchange quark-quark 

interaction. Curves marked Conf. give the strengths of the spin-orbit terms generated by the confining 
potentials. Curves marked Mq give the strengths due to an alternate mass-confinement mechanism arising 

from one-body Thomas dm’/dr terms, according to a simple model defined through eqs. (36)-(39). 

Curves (a) and (b) are for the recent parameters of Ohta et al. 24), see OOAY of table 3. Curves (c) 

and (d) are for the LOGEP potential of ref. ‘), see FFLS entry of table 3. (Note the different energy 
scale of fig. 2(a).) Both OOAY and FFLS use linear confining potentials. Curves marked Mq use the 

parameters mc’ and b of table 3. 
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TABLE 3 

Interaction parameters and predicted baryon masses 

2 
Interaction a: 

(fi) (EV) 

(M4 --&&a 

(MeV . fm-‘) us WV) 

OOAY 24) 14.317 1.9514 0.6 355 681 293 
FFLS 6, 133.07 1.12 0.5 350 1936 299 
III 34.66 1.741 0.578 355 938 292 

the parameters of the quark-quark interaction can lead to a rather large spread in 
the confinement parameters a: or a,. This reflects itself in the large differences of 
the spin-orbit terms arising from confinement potentials. These large differences, 
however, are due to the different magnitudes of the confining potential constants. 
Note that both the OOAY and FFLS quark-quark interactions of fig. 2 use a linear 
confining potential, but with very different magnitudes. 

The spin-orbit terms arising from confinement potentials, however, are quite 
insensitive to the nature of the radial dependence. This is illustrated by fig. 3 which 
compares such spin-orbit terms for two interactions which differ only in the radial 
character of the confining potential but use the same quark mass, oscillator length 

I I 

0.2 0.6 1.0 

R(fm) 

Fig. 3. Spin-orbit terms generated by confining potentials. Comparison of linear and quadratic confining 

potentials. The parameters are the “Oka-modified” parameters of ref. 6, with linear confinement, 

a’ = 61.6 MeV . fm-‘, and the parameters of ref. 6, with quadratic confinement, a, = 34.5 MeV . fm-a. 

Bith use the same b = 0.475 fm, mc2 = 355 MeV, and (Ye = 0.97. Upper curves for NN (ST) = (1 l), lower 

curves for NN (ST) = (10). 
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parameter, b, and (Y,. Note that in this case the linear and quadratic confining 
potentials generate spin-orbit terms of almost identical strength. The uncertainty 
in the strengths of the confining potentials, however, makes it difficult to draw 
conclusions regarding the relative importance of the one-gluon-exchange and con- 
finement spin-orbit terms. For the FFLS parameters of fig. 2, e.g., the K * S’-’ and 
confinement spin-orbit terms together overwhelm the L * SC+) term. Apart from the 
uncertainty in the strengths of the spin-orbit terms generated by the confining 
potentials, it is also not completely clear whether these additional spin-orbit terms 
should be included since no satisfactory theory of quark confinement exists. 

A quite different confinement spin-orbit effect is obtained if quark confinement 
is built into the model in the spirit of the MIT bag model through a mass term in 
the relativistic single-particle equation, with a mass which rises to infinity outside 
the bag. If both the quark mass, to be denoted by m’, and V in the single-particle 
Dirac equation are permitted to be functions of r, the distance from the bag center, 
the Thomas term will have the form 

V 
Th _ --k 1 

4m2c2 r 
(36) 

The requirement (2m’c2- V) > 0 outside the bag, needed to avoid Klein-paradox 
difficulties, makes it natural to set V = 0 and require m’ + cc outside the bag. To 
make contact with nonrelativistic harmonic oscillator quark models, it is convenient 
to build a model based on the simple assumption 

v=o, 1 h2 
m’c’ = mc2 +z xr2 , (37) 

where mc2 and b are chosen to be consistent with the numerical values of table 3. 
In eqs. (36) and (37) the single-particle r, and its conjugate p are defined relative 
to the bag center, and for two separated bags of three quarks vTh does not give rise 
to a baryon-baryon interaction. In the limit of extremely small separation between 
the two bags, however, r must be defined relative to the common six-quark bag 
center, and in this limit the single-particle terms, vTh, will generate spin-orbit terms 
in the baryon-baryon interaction through the quark-exchange mechanism; that is, 
through a term -3 CF=, vTh(ri)P3h( 1 - 9) in the exchange kernel, eq. (5). 

Assuming that this confinement mechanism is independent of color, and with 
P,,(color) matrix element = f for the dibaryon system, this leads to the exchange 
kernel 

. 243 hc 4 1 

r512&rr3/’ b m3c6 0 
-exp[-$(a2+af2)+i(a* a’)] 

(3% 
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In the notation of eqs. (30)-(34) this has a Wigner transform 

-exp[-l(a2+q2)]{[axq] a (u$~)-u$~))} (39) 

to be considered valid only in the extreme short-range limit of very small a. This 
“mass-confinement” spin-orbit term is plotted for R =S 0.5 fm in fig. 2 (designated 
MJ mainly to show that it has a sign opposite to that of the spin-orbit terms arising 
from a quark-confining scalar coupling term. 

To understand this difference in sign, it may be useful to convert the 2-body 
quark confining potentials, such as u’(rij) = (hi * hj)(-U,rs), to equivalent l-body 
form, such as the V(r) of eq. (36), by performing properly weighted summations 
over j for each i. For a colorless three-quark system this gives V(r) = -$(-u,)Kr2, 

with a positive weighting factor K. For a colorless six-quark system this gives 

V(r)= 
--$I,+~~, 

It +n (-U,)Kr2 = +&Kr2 

a 5 

where rr, = 9, rr, = 6 are the color-antisymmetrically and symmetrically coupled 
quark pairs, respectively. That is, the single-particle V(r) equivalent to the confining 
potential has a derivative dV/dr of the same sign as dm’/dr. Since these terms 
appear with opposite sign in eq. (36), through the opposite signs of m and V in 
the Dirac equation for the small components of $, the opposite signs of the two 
types of confining mechanism can be understood. Finally, it should perhaps be 
mentioned that some recent relativistic quark models 25) use a constant “mass” and 
a “potential” of the form 4( 1 + yo)ur2, which eliminates the r-dependence in the 
Dirac equation for the small components of II, and would thus lead to no spin-orbit 
terms. This discussion is included mainly to show that even the sign of spin-orbit 
terms arising from quark-confinement mechanisms may be model-dependent and 
hence open to question. The subsequent discussion will therefore first focus on the 
one-gluon-exchange spin-orbit potentials alone. 

The energy dependence of the one-gluon-exchange spin-orbit potentials is illus- 
trated in fig. 4 for both the (ST) = (11) (triplet-odd) and (ST) = (10) (triplet-even) 
NN channels. For the OOAY parameters used in fig. 4, /q21 = 1 corresponds to a 
value of IE - U(R)1 = 170 MeV, see eq. (29). For large R, E - U(R) > 0, and 
therefore q2 > 0. As R + 0, q2 changes sign because of the repulsive short range 
character of the full equivalent potential, U(R). A more complete picture of the 
R-dependence of the spin-orbit potential would therefore be given by a curve which 
starts out with positive q2 at large R, switches over to q2 = 0 at R - 0.4-0.5 fm, and 
finally to negative values of q2 at very small values of R. In the triplet-odd NN 
channel, therefore, the spin-orbit term is negative in the 0.6 fm-O.8 fm region, a 
sign in agreement with phenomenological potentials derived from NN scattering 
data. However, its magnitude of -50 MeV is too small by a factor of -3-5. 
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R(m) 

Fig. 4. The q2-dependence of the one-gluon exchange spin-orbit potentials. The curves give the strength 

for the full one-gluon exchange terms, L. S (+)+ K. S’-‘. The curves are for the parameters OOAY of 

fig. 2. For these, (q*l = 1 corresponds to IE - U(R)1 - 170 MeV. 

Since the near cancellation of positive and negative contributions to the spin-orbit 
potential are crucial for the 0.5-1.0 fm region of the triplet odd NN channel, it is 
instructive to shoy the q*-dependence of the full spin-orbit potential arising from 
one-gluon-exchange terms and the confining potential terms. For this purpose the 
parameter set III of table 3 which fits both MN and MA has been selected. Fig. 5 
shows that this full spin-orbit potential is very shallow in the 0.5-1.0 fm region of 
the triplet-odd (ST) = (11) (L = 1) channel. For E = 200-400 MeV, the full R- 
dependence of the potential can be gleaned from a curve which starts at q* - +2 
crosses over toward q* = 0 at R - 0.4-0.5 fm and tends toward negative q* as R + 0. 

-200u 
R (fm) 

(MCV) 

300 

100 

0 

-1ooL I 
0.2 0.6 1.0 

R (fm) 

Fig. 5. The q*-dependence of the full spin-orbit potentials, one-gluon exchange+confining potential 

terms. The curves are for parameter set III of table 3 which fits both MN and M,+ For these parameters 

/q*/ = 1 corresponds to IE - u(R)I - 185 MeV. 
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0.2 0.6 1.0 

R(fm) 

Fig. 6. The symmetric spin-orbit potentials, L* S (+I. The curves give the separate contributions of 
exchange terms of type (4), (ij) = (25) and type (5), (ij) = (36). The curves are for the parameters OOAY 

of fig. 2. 

For the triplet-even channel (ST) = (10) (L= 2) the curves are in reasonable 
agreement with phenomenological potentials derived from NN scattering data. 

The results shown in figs. 4 and 5 gain contributions from both symmetric and 
antisymmetric parts of the spin-orbit potentials, and therefore include the effects 
of all types of quark-gluon exchange terms. Since some recent relativistic treat- 
ments 14726) of the spin-orbit interaction have been based on a single quark-gluon 
exchange mechanism corresponding to term (5) of fig. 1, with (ij) = (36), it is 
interesting to show separately the contributions of the. (ij) = (36) and (ij) = (25) 
terms to the symmetric spin-orbit (L * SC’) potential. This is illustrated for the 
(ST) = (11) NN channel in fig. 6. It is interesting to note that the (ij) = (36) term 
by itself can give a large negative short-range spin-orbit potential, but for R 6 0.2 fm 
this is completely reversed by the positive contribution of the (ij) = (25) term (see 
eq. (30)). In the relativistic treatments of refs. 149*6) the quark exchange of the 
(ij) = (36) term, through a Fierz transformation, causes the vector coupling of the 
one-gluon exchange to be converted to a coupling of the form S - P - 1 V + $A. The 

(ij) = (25) term corresponds to a four-body quark-quark interaction. It may there- 
fore be appropriate to augment the vector coupling of quarks 2 and 5 with a 
multiplicative factor (J/“(3)Jr(6)>(4lr’(6)11/(3)) = (~(3)~oJ/(6))(4i;(6)yo31(3)). This 
would lead to a vector coupling of quarks 2 and 5 augmented by a factor 

{1-2(R:)+A$(R:)2}pS,T +,4(R:)*P&) 

where the relativistic wave function is given by 

(40) 

(41) 
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and where x is a 2-component spinor. The large and small components of the wave 
function are normalized such that (R$+(R:)= 1. It has been argued I’) that 
exchange terms other than the simple (ii) = (36) term may become negligible in the 
relativistic limit. For (R:) = (Ri) this would be true. Note, however, that the factor 
of eq. (40) is of order (1 - 2(R:)). In the MIT bag model, with quarks of zero rest 
mass, (R:)=0.26, so that this factor would be -4, and it is therefore doubtful 

whether the exchange terms of type (ii) = (25) can be neglected. Note also that the 
antisymmetric spin-orbit coupling arises solely from exchange terms of type (ii) = 
(26) and (56) and is therefore also neglected in ref. 14). Although a nonrelativistic 

RGM treatment may be open to question, it does give a strong indication that a 
proper inclusion of all quark-gluon exchange terms is required in a relativistic 
treatment of the spin-orbit interaction. 

3.2. THE N-HYPERON SPIN-ORBIT INTERACTION 

The spin-orbit potential of A- and Z-hypernuclei has become a subject of some 
recent interest. The nonrelativistic model of the present investigation lies closest to 
a model in which mass differences between strange and u- and d-quarks can be 
neglected; that is, to a model of good SU(3)-flavor symmetry. In this model, also, 
N, A, and 2 are to be considered as different states of the S = 4 baryon. To extend 
the investigation of the spin-orbit interaction to NA and NZ states, it will be 
convenient to transform the symmetrically (antisymmetrically) spin-isospin coupled 
states of eq. (3) to spin, SU(3)-flavor-coupled states of the same symmetry with 
the use of simple SU(3) flavor 1 SU(2) isospin X U( 1) hypercharge Wigner 
coefficients. E.g., for NA states coupled to S = 1 

~~{[~,(123)x~,(456)1,=,,,=,,,+[~,(123)x~~(456)1~=1,~=1,2} 

= 3x&c$(“)x ~~11~](s2f~,y~~,~~l,~+~~[~~11~~ c#~~~)](S:$&T=~,~, (42) 

while 

&&.,( 123) x 4,, (456)] = s l,T 1,2-[~,(123)x~~(456)1s=l,,=l,2~ = 

=-&‘“‘X~ ~~~~](so_,y~l,~~~,2+~[~~~~~x ~(11)]~:)l’l;ll,T=l,2 : (43) 

On the left side of eqs. (42)-(43) the square bracket denotes spin and isospin 
coupling; on the right side it denotes spin and SU(3)-flavor coupling. The notation 

(AP) is used for the SU(3)-flavor states ((AP.) = (ll), (22), and (03) correspond to 
the 8, 27, and m flavor representations, while p = 1 (and p = 2) designate the 
antisymmetric or F-coupling (and the symmetric or D-coupling) of the two 8- 
dimensional representations to resultant dibaryon g-dimensional representation with 
(AP) = (11)) Note that the symmetrically coupled spin-flavor states of eq. (42) 
contain only dibaryon states with (hp.) = (22) and (11) p = 2 (D-coupling); (the 
l-dimensional representation (APL) = (00) cannot accommodate the hypercharge 
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TABLE 4 

Spin-reduced matrix elements fuST/(oi +~~)Ps;f/@s’T) for N-hyperon systems 

(A) Symmetric combinations (B) Antisymmetric combinations 

a/P 
t-t (S’TJ 

(ij) = (25) (ij) = (36) a/P 
(ST) (ST) 

(ij) = (25) (ijf = (36) 

(1) NA/NA (1) NA/NA 

co;, (1;) -&9 (W (14) J3/18 -&9 

(If) (1;) 4&/9 (It) (14) A/9 -Z&/9 

(2) NE/NE (2) NI/NT 

(O& (14) -&/6 &I3 (Of) t If, -J5/6 &3 

(1;) (14) J6/81 -4&27 (It) (14) J8/9 -2&f 9 

(0% (1% 0 0 ? (@I (15, 0 0 

(1% (1;) lO&/Sl 14&/27 (1% (1%) -z&/27 2&/ 3 

Under bra/ket interchange multiply by (-l)‘+“. 

Y = 1, isospin T = i quantum numbers). Similarly, the antisymmetrically coupled 
spin-flavor states of eq. (43) contain only dibaryon states with (A/A) = (03) and (11) 
p = 1 (F-coupling); ((A/A) = (30) is again missing because of the restriction Y = 1, 

T=f). 

Once the N-hyperon states have been converted to the spin, SU(3) (flavor)- 
coupled form, the SU(Z) X SU(2) spin-isospin arithmetic “) used to calculate the 
spin-reduced matrix elements of (oi *uoli)P fz can be extended to the analogous 
SU(2) X SU(3) spin-flavor arithmetic to calculate the spin-reduced matrix elements 
Of (Ui *Wj)Ps’f 36, where Psbf now acts on the spin-flavor degrees of freedom of quarks 
3 and 6. Results for the NA and NE states are shown in table 4. The second entry 
of this table shows, e.g., that the symmetrically coupled spin-flavor combination 
for NA with S = 1, (eq. (42)), leads to values of a:$51 and a$61 which are 6 and 
# of the corresponding triplet-odd NN states with (ST) = (11). In a model of good 
SU(3)-flavor symmetry therefore, the NA spin-orbit interaction would be expected 
to be only slightly weaker than the NN spin-orbit interaction. This is shown in more 
detail in fig. 7. 

Fig. 7a compares the NA and NZ: spin-orbit interaction for the symmetric 
spin-flavor states coupled to S = 1 with the corresponding triplet-odd NN states 
with (ST) = (ll), while fig. 7b makes the comparison of the antisymmetric spin- 
flavor NA and N-Z states with S = 1 with the corresponding triplet-even NN states 
with (ST) = (10). The interaction for the NA states is somewhat weaker than that 
for the corresponding NN states. For the N-Z states with S = 1 the interaction 
strength for one of the two possible T-values is identical (or nearly equal) with that 
for the corresponding NN state. For the other T-value it has the opposite sign for 
the larger R-values (or for the whole range of R-values). The strength of the NE 
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,NJJ(NLT=3/z) 
\ 

q2=o 

l I I 
0.2 0.6 1.0 

R(fm) 

-6OOp , , , “‘, 1 

0.2 0.6 1.0 

R (fm) 

Fig. 7. Comparison of NN and NA, NX spin-orbit potentials, for triplet states, S = 1: (a) is for symmetric 

(d = even), (b) for antisymmetric (0 = odd) dibaryon spin-flavor states. Contributions for symmetric 

spin-orbit terms (solid lines) and antisymmetric spin-orbit terms (dashed lines) are shown separately. 

The strength parameter (a,/m2b3) is that of the OOAY potential of fig. 2. 

spin-orbit interaction can thus be expected to be weaker than the NN spin-orbit 
interaction. It is interesting to note that this result, valid for a model of good 
SU(3)-flavor symmetry, is quite different from the predictions of ref. 14) which takes 
into account only one of the possible exchange diagrams of fig. 1. Ref. 14) is based 
on a model in which the N-hyperon spin-orbit interaction arises from interactions 
among nonstrange quarks only. In this model of strongly broken W(3)-flavor 
symmetry the AN spin-orbit interaction vanishes, in seeming agreement with experi- 
mental results *‘), whereas the Z-nucleus spin-orbit potential is predicted to be 
stronger than the N-nucleus spin-orbit potential by a factor of $ [refs. 14,2”)]. Since 
some vestige of SU( 3)-flavor symmetry must be expected to be present in a realistic 
model, the predictions from quark-gluon exchange mechanisms must certainly be 
expected to lie somewhere between these two extremes. If the A-N mass difference 
is incorporated into the model so that A and N become distinguishable particles, 
the NA states can become linear combinations of the spin-flavor symmetric and 
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antisymmetric states. Since the NA potentials of figs. 7b and 7a have the opposite 
sign this can lead to a reduction of the NA spin-orbit strength. The NX potentials 
of figs. 7b and 7a have the same sign, so that this effect would strengthen the N.Z 
spin-orbit potentials, therefore going toward the experimental results. 

4. Summary 

Quark-exchange kernels have been constructed in very explicit analytic form for 
the tensor and spin-orbit terms of the one-gluon-exchange quark-quark Breit 
interaction and for spin-orbit terms generated by quark-confinement mechanisms. 
The effective vector and tensor spin operators needed for these kernels are defined 
through their spin-reduced matrix elements which have been tabulated in tables 1, 
2, and 4. Some emphasis is given to the coupling of NN to NA and AA channels 
for which short-range tensor and spin-orbit coupling potentials may be of particular 
relevance “-i3). For a full discussion of potentials coupling the NA to NN or AA 

channels the earlier tabulations “) of the spin-isospin factors of (ai * oj)-dependent 
central terms have to be extended to include the NA channels. These factors are 
therefore included through table 5. 

The very explicit results of the nonrelativistic RGM formalism have made it 
possible to give a quantitative analysis of the dibaryon spin-orbit interaction arising 
from quark exchange kernels. Effective spin-orbit potentials are generated through 
the Wigner transforms of these kernels using a local momentum approximation. 
This has made it possible to study the relative importance of various spin-orbit 
terms in the quark-quark interaction and the relative importance of the various 
possible quark-gluon exchange terms. If only the symmetric spin-orbit term of the 
one-gluon-exchange quark-quark interaction is retained, the spin-orbit interaction 
derived from the corresponding RGM quark-exchange kernel has a sign and magni- 
tude in the 0.5-0.8 fm range not in disagreement with the short-range part of 
phenomenological potentials derived from NN-scattering data. With the inclusion 
of the antisymmetric spin-orbit one-gluon-exchange terms and spin-orbit terms 
generated by confining potentials, the strength of the full triplet-odd NN spin-orbit 
potential is greatly reduced and its sign may even be reversed, the uncertainties in 
the magnitude of this effect being related to uncertainties in the strengths of the 
quark-confinement potential constants. The results of this investigation of the 
baryon-baryon spin-orbit interaction are therefore consistent with studies of P-wave 
baryons *“) where similar cancellations have been found in the three-quark matrix 
elements of the full spin-orbit interaction. The uncertainties associated with spin- 
orbit terms generated by quark-confinement mechanisms are emphasized by an 
alternate model in which confinement is built into the quark model through a dm’/dr 
term (a mass which rises to infinity outside the quark bag). The single-particle 
Thomas terms of such a model generate spin-orbit terms in the NN interaction 
through the quark-exchange mechanism, and it is shown that such a model of 
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TABLE 5 

The spin-isospin coefficients C$$ = (aSTIO”“P~~(&ST) 

a/P 
(ST) 

c(O) 
ST 

C(l) 
ST 

c(2) 
ST- 

CO’ 
ST 

c(4) 
ST 

C’S’ 
ST 

(A) Symmetric combinations 
(1) NN/NA 

(11) 40/81 -32181 

(2) NA/NA 

(11) 31/81 22181 

(12) -l/9 2/9 

(21) -l/9 219 
(22) 719 -219 

(3) NA,AA 

(11) 20,81 20181 

(22) 419 419 

(B) Antisymmetric combinations 
(4) NA,NA 

(11) 113 219 
(12) l/21 lo,27 
(21) I,27 10127 
(22) l/3 -213 

(5) NA,AA 
(12) 4&,27 4&27 
(21) 4&J27 4&,27 

-44181 

-11,81 -11/81 

-l/9 -l/9 

-l/9 -l/9 

119 119 

-lo/81 20181 

-219 419 

-l/9 -l/9 
-5127 -5127 

-5127 -5127 

113 113 

-2v%, 27 
-2JJf 21 

445127 
4&, 27 

16181 4181 

-29181 

-l/9 

-l/9 

113 

-40/H -20/81 
0 -419 

-l/3 119 
-5121 35127 

l/9 11127 
-l/3 1 

-8J5,27 -4x&,27 
0 -4&,21 

-40,81 

5,81 
1319 

519 
519 

@J’=l. @qo4. u ). p, (us. 0,); e3’= (u* . ue); cY4)=(u2. 0,); @‘=(a, u,& 
For (~/‘p =NN/NN, %/AA, NN/AA see table 2 of ref. ‘). 

For bra/ket interchange CL’$ and C(& must be interchanged; all others are invariant to bra/ket 

interchange. 

confinement leads to spin-orbit terms of the opposite sign from those generated by 
a confining potential derived from a scalar coupling. 

The nonrelativistic RGM quark-exchange kernels gain contributions from four 
types of quark-gluon exchange terms. In one of these (type (5) of fig. 1) only a 
single quark pair participates in the quark-gluon exchange process. The remaining 
three types of exchange terms involve either three or four of the quarks of the 
six-quark system. Some recent relativistic treatments 14315.28) are based on exchange 
mechanisms of the first kind in which only a single quark pair participates. This 
exchange term in the RGM formalism by itself leads to an attractive spin-orbit 
interaction in the triplet-odd NN channel with a strength which ranges from -400 
to 100 MeV in the 0 to 0.8 fm range. It should be noted, however, that the remaining 
three types of exchange terms all give important contributions of the opposite sign. 
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Relativistic models in which such exchange terms are neglected are therefore open 
to question. 

The quark-exchange kernels generated in the RGM formalism can give very 
specific answers regarding the nature of the short-range spin-orbit and tensor parts 
of the baryon-baryon interaction. To remove the remaining uncertainties a better 
description of quark confinement is clearly needed. 

One of the authors (Y.S.) thanks H. Kanada for directing his attention to the 
importance of tensor terms for the dibaryon resonance problem and the University 
of Michigan for its hospitality. 
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