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The gametic model introduced by Gimelfarb (1982, Theor. Pop. Biol. 22, 
324-366) is applied to investigating the dynamics, represented in the model by a 
second-order recurrence equation, the the variance of sex-independent and sex- 
controlled characters under assortative mating. It is shown that, for any additive 
character, there always exists a unique equilibrium for the variance, which is stable. 
Dynamical properties of the variance under positive and negative matings are 
considered, and numerical evaluations of the equilibrium values as well as of the 
dynamical changes of the variance arc presented. Comparisons with results from a 
biological experiment are made. 

INTRODUCTION 

The earliest investigation of the dynamics of quantitative characters under 
assortative mating based on phenotypic resemblance of mates was under- 
taken by Wright in his (1921) paper. In this work he derived, using a genie 
model of inheritance, a recurrence relation for the dynamics of the variance 
and obtained a formula for the equilibrium value of the variance of a 
polygenic character, assuming equal allelic effects, equal allelic frequencies 
and free recombination between all the loci. 

Crow and Felsenstein (1968) generalized Wright’s results to unequal 
allelic effects, unequal allelic frequencies and arbitrary recombinations. 
Nagylaki (1982) obtained additional results based on the classical genie 
model of genetic inheritance. Lande (1977) applied his genie model with 
continuously distributed allelic effects to the dynamics of additive characters 
under weak assortative mating and strong stabilizing selection. 

Feldman and Cavalli-Sforza (1977, 1979) used a zygotic model of genetic 
inheritance as a part of the “complex transmission” model of quantitative 
characters to investigate the dynamics of characters under assortative mating 
and stabilizing selection. Rice et al. (1978) and Cloninger et al. (1979) also 
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QUANTITATIVE CHARACTERS UNDERASSORTATIVE MATING 313 

made use of a zygotic model in their path analysis treatment of assortative 
mating for characters with biological and cultural inheritance. 

Wilson (1973) and Wagener (1976) introduced a model of assortative 
mating which is different from the classical linear model of “pure” 
assortment. This model of “preferential” or “selective” mating, which is 
equivalent to a selection on randomly mating pairs, was further advanced by 
Karlin (1979a, b, 1980) in his works on the dynamics of quantitative 
characters based on the phenotypic model of heredity with Gaussian mode of 
inheritance. 

In this paper, the dynamics of sex-independent and sex-controlled 
characters under phenotypic assortative mating is investigated with the use 
of the gametic model of genetic inheritance suggested in (Gimelfarb, 1982). 

GENERAL DYNAMICAL EQUATION 

The following gametic model was introduced by Gimelfarb (1982) for sex- 
controlled characters. 

The values of a quantitative character of a female X and a male Y are 
represented in the model by sums of the genotypic values x or y and environ- 
mental components e * or e* *: 

X=x+e** (for females), 

y=y+e* (for males). 
(1) 

The environmental component of an individual is assumed to be distributed 
independently of the genotypic value and with zero mean. The genotypic 
value of an individual is a function (developmental function) of the gametic 
effects of the gametes constituting the individual’s genotype: 

Y=f*(a,P), 

x=f**(a,P), 

where a is the effect of the gamete received by an individual from the father, 
and p is the effect of the gamete received from the mother. As a first approx- 
imation, the following expressions for developmental functions of a sex- 
controlled character, implying that the character is additive, were suggested: 

S*(a,P)=a+P (for males), 

f**(a,P)=C(a+/3)+B (for females). 
(3) 

Processes of gametoproduction are incorporated into the model by means 
of the gametogenetic functions H*(il 1 a, p) for males and H**(;i 1 a, /I) for 
females, which are defined as the probabilities for a gamete with effect 1 to 
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be among the gametes produced by an individual whose genotype is formed 
by gametes with effects a and j?. 

For the first moments of the gametogenetic functions, 

m,,(a, /3) =I AH* “(1 I a, P) d& 

and for their second moments, 

(4) 

(5) 

the first degree polynomials 

mda, P> = b,*(a + B> + b,*, 

m**(a,P)=bT*(a+/3)+b,** 
(6) 

and second-degree polynomials 

m$(a,p) = uf(a* + B’) + uz*ap + a,*(a t P) t a$, 

m~*(a,/3)=a~*(a2+~*)tu~*a~+u~*(at/3)tu,** 
(7) 

were suggested as approximations accounting in a generalized form for 
mutations and recombinations. 

Let P:(a, /3) and Pt *(a, p) denote the distributions of genotypes expressed 
in terms of gametic effects among males and among females in a generation 
k. It has been demonstrated (Gimelfarb, 1982), that under any mating 
system, the distribution of genotypes among males is (for k 2 1) the same as 
the distribution among females, i.e., 

Pk*(a, P) = Pk* *(a, P> = PAa, P>, (8) 

and that the following obvious relationships exist between the means and 
variances of the genotypic values in males and in females: 

M;*=CMt+B (k > 11, 

v,** = c’v,* 
(9) 

(k> 1). 

Thus, the dynamics of a sex-controlled character in females is completely 
specified by the dynamics in males, and it is not necessary, therefore, to 
derive and investigate separate dynamical equations for the genotypic mean 
and variance in females. It is sufficient to do it for males only and to 
calculate the mean and variance in females in any generation from (9). 
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The equation for the distribution of genotypes for a sex-controlled 
character under arbitrary nonrandom mating without selection follows from 
Gimelfarb (1982, Eq. (20)): 

Pk+ ,(A, v> = I @k(cf, P; 7, 6) H*o, I a, P> If* *(v I Y> 4 4orpY4, (10) 

where @,Jcz, p; y, S) is the joint distribution of the genotypes expressed in 
terms of gametic effects among parental pairs in generation k. The 
integration here is over variables a, /I, y, and 6. The equations for the mean 
and variance of genotypic values among males are obtained from (10): 

Substituting (6) into (1 la) and introducing the “sex-averaged” coefficients 

iii = f(bjr + b” “) (i=O, 1) (12) 
yields 

AI;+, =2&M; + 2b,. (13) 

This equation is the same as Eq. (93) in Gimelfarb (1982) for the dynamics 
of the mean genotypic value in males under random mating. Thus, the 
dynamics of the mean genotypic (and, hence, phenotypic) value of a sex- 
controlled additive character under any nonrandom mating is the same as 
under random mating. 

Let us assume now that the effect of mutations on the character dynamics 
is negligible (which can be true, if the dynamics are considered during 
relatively short time, say only few dozen generations). In this case, 

b+b,**&,=+, 

b,+b**=b =O 0 0 3 

(14) 

and, according to (13), the mean genotypic value will in this case remain 
unchanged under any nonrandom mating, i.e., 

M*k+1= A4; = ivl*. (15) 

Notice also that, given (14) and (8), it follows that the mean effect of 
gametes received by individuals from their fathers, m,*, is the same as of 
those received from their mothers, mz*, 

m$=m**=m k k, (16) 
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and, hence, 

il4k* = 2m,. 

Because of (15), it follows that 

m ktl=mk=m=$W. 

Introducing the ‘<sex-averaged” coefficients 

(17) 

di = +(a” + a* *> (i=O, 1,2,3), (18) 

the substitution of (6) and (7) into (1 lb) yields 

q+ I = 2a, v; + 2@, - 2&) COV/( + (1/2C) cov, + F(M”), (19) 

where C is a parameter of the developmental function for females from (3) 
and F(M*) is the function 

F(M*) = (a, + a,/2 - f)(M*)* + 2a,A4* + 2a,. (20) 

Comparing this expression with Eq. (93) in Gimelfarb (1982) for the 
genotypic variance dynamics under random mating, we shall see that 

F(M”) = (1 - 2&) P, (21) 
where V’ is the genotypic variance at equilibrium under random mating. 

Cov, in (19) is the covariance of genotypic values of parents in generation 
k: 

cov, = I C(a + P)(Y + 4 @(a, B; Y, d> d(&4 - wf*1*, (22) 

and covk is the covariance of the effects of the gametes constituting parental 
zygotes, i.e., 

covk = ( a/lP,(a, /I) d(a/3) - m2. (23) 

Notice that this expression can be rewritten for k > 1 as 

COVk = 
i 

/Iv@,-, (a, P; Y, 4 H*(13. I a, P) ff**(v I Y, 4 WvaP$) - Sf*>’ 

= m*@,P> m*&, 4 Qk-,(a,P; y, 6) @P$) - Mf*>“. 

From (4) 

covk = + I (a + P>(y + 6) @,_ I(a, P; Y14 d(a, Pr@ - fP*)*, (24) 
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and from (22), 

COVk = (1/4C) cov,- 1. (25) 

Thus, the covariance between the effects of gametes constituting genotypes of 
individuals in a given generation can be expressed through the covariance 
between genotypic values of mating individuals in the previous generation. 
Relation (25) makes it possible to “close” expression (19) and obtain a 
recurrence equation for the genotypic variance. Indeed, substituting (21) and 
(25) into (19), we obtain 

V;+ , = 2a, V; + & (a2 - 2ti,) Cov,- , + & Cov, + (1 - 2E,) v”. (26) 

The covariance of genetypic values of mating individuals can be expressed in 
any generation as 

cov, = pk l/m = cp, vk*, (27) 

where pk is the genotypic correlation of mates. Using (27), the following 
recurrence equation for the dynamics of the genotypic variance of a sex- 
controlled character in males emerges: 

V;+ , = (25, + fp,) V$ + ;(n, - 24) pk-, I’$-, + (1 - ‘X,) V(‘. (28) 

It has been shown in Gimelfarb (1982) that in the gametic model of a 
polygenic, diallic, additive character, 

1 
a:=-- 

2 
nR*, 
n-l 

a*=2R* 2 2 

1 
a3 **=-- 

2 
AR*“, 
n-l 

af*=2R** 3 

(29) 

where n is the number of loci controlling the character. R * and R ** are 
parameters determined by the number of loci and by the recombinations in 
males and in females. These parameters can take values between zero (when 
there is no recombination) and (n - 1)/(4n) (when there is free recom- 
bination between all the loci). Obviously, 

1 
a,=---- 2 

n R, 
n-l 

(30) 
a, = 2R, 
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where I?= ;(z? * + R**). The substitution of (30) into (28) results in the 
equation 

where 

A-l-n2I7, 
n-1 

B=1-2n-12R 
7-F’ (32) 

D=--....- n 2R. 
n-1 

Notice that Eq. (31) is valid only if k > 1. For k = 0, assuming that the 
population in the initial generation (before the assortative mating started) is 
at random mating equilibrium, i.e., cov,, = 0 and V, = p, expression (19) 
yields 

VT = (1 + $7,) P. (314 

We will now make an assumption concerning the type of assortative 
mating by adopting the classical linear model of phenotypic assortment. 
According to this model, the mating is based exclusively on the phenotypes 
of individuals, and the phenotypic “marital” correlation of mates, rk remains 
constant in every generation, i.e., 

rk = r (for all k). 

If we assume also, as usual, that the regression of the individual’s genotypic 
value on the phenotype is linear, then the following expression exists for the 
genotypic correlation of mates, pk in any generation: 

pk=rdVVk*Vk** /[(V,* t vp)(v,** + ue**>1, (33) 

where v,* and vg* are the environmental variances, and Vc/(V,* t VP) and 
V,* */(V,* * + VP *) are the heritabilities in males and in females, respectively. 

Taking into account (33), it follows from (31) that the dynamics of the 
genotypic variance for a sex-controlled additive character under phenotypic 
assortative mating is represented in the gametic model by a nonlinear 
recurrence equation of second order. 
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SEX-INDEPENDENT CHARACTERS 

All hereditary and developmental processes for sex-independent characters 
are identical in males and in females. In the gametic model this means that 
R*=R**=R, v*=v$*=v,, and Vz=V,**=V, for all k. 
Equation (31) is reduced in this case to 

V k+l= (‘4 +iPk) Vk-~Pk-PL +oP, 

and expression (32) for the genotypic correlation of mates takes the more 
familiar form 

Pk = rvk/(vk + ve>. (35) 

By substituting Vk+ , = Vk = Vkp, = v into (34) and after some transfor- 
mations, the following formula for the equilibrium genotypic variance of a 
sex-independent character is obtained: 

P= P/(1 - $), (36) 

where p” is the equilibrium genotypic correlation of mates, and 
y = 1 - 1/(2n). Th e same expression was obtained by Wright (192 l), Crow 
and Felsenstein (1968), and Nagylaki (1982) using genie models. 

It is seen from (36) that the equilibrium genotypic variance of a sex- 
independent additive character is always larger than the random mating 
equilibrium variance, if the mating is positive assortative, and it is always 
smaller, if the mating is negative. 

The substitution of (35) into (36) results in the following quadratic 
equation for the equilibrium variance: 

P’(1 - yr) - P(P - ve) - Pv, = 0. (37) 

It is not difficult to show that this equation always has one and only one 
positive root, 

p= (P - VJ + &v” - v,y - 4(1 - v) Pv, 

2(1 - P-1 

Thus, for a sex-independent character under phenotypic assortative mating, 
there always exists one and only one equilibrium value of the genotypic (and, 
hence, phenotypic) variance,‘which is determined by (38). 

When investigating the dynamics of the genotypic variance, let us first 
consider the case of zero environmental variance, v, = 0. In this case, pk = r 
for all k, the expression for the equilibrium variance is 

P= P/(1 - yr), (39) 
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and Eq. (34) is reduced to a linear recurrence equation with constant coef- 
ficients, 

The corresponding characteristic equation is 

A2 - (A + fr)A + $3 = 0. (41) 

For all 0 < Irl < 1, both roots of this equation are real with absolute 
values less than 1 (see Appendix). One of the characteristic roots is always 
positive, whereas the sign of the other depends on the sign of r: it is positive, 
if I > 0, and it is negative, if r < 0. This means that the equilibrium deter- 
mined by (39) is stable, and the genotypic variance always converges to the 
equilibrium7monotonically under positive assortment or with damped 
oscillations under negative assortment. The oscillatory dynamics of the 
variance under negative assortment was demonstrated by Wright in his 
(1921) paper. 

When the environmental variance is not zero, i.e., u, # 0, an investigation 
of the global dynamics represented by the nonlinear equations (34) and (35) 
is difficult. It is possible, however, to investigate the stability of an 
equilibrium. If Eq. (34) is linearized around an equilibrium (taking into 
account (35)), the linearized equation for the deviations from the equilibrium 
is 

X k+, = (A + fra) xk t $-ah,-, , (J-9 

where xk = Vk - p, and 

a = P(P f 2u,)/(J7+ u,y. 

It is easy to show that for a positive c’, 

(43) 

O<a<l. (44) 

Notice that the characteristic equation corresponding to (42) will be similar 
to (41), except for ra being substituted instead of r. Since the properties of 
the roots of (41) follow for all ) rl < 1 and since 1 ra I < 1, the characteristic 
roots corresponding to (42) must possess the same properties as the roots of 
(41), e.g., both of the characteristic roots are real with the absolute values 
less than 1. Consequently, the equilibrium determined by (38) is locally 
stable. 

Thus, in the case of a sex-independent additive character under phenotypic 
assortative mating, there always exists a unique equilibrium for the genotypic 
(and, hence, phenotypic) variance determined by (38), and this equilibrium is 
locally stable. 
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SEX-CONTROLLED CHARACTERS 

The substitution of (33) into (31) yields in the case of sex-controlled 
characters the nonlinear equation, 

V ktl= A- 
L 

rVk 

2d/(vk + ‘e)(‘k + we) I 
‘k 

rBVi-1 

2d/(vk-1 + ue>(vk-, + we> 

+Dp, (45) 

where V, = Vz, U, = u:, and w = w$*/C’ (omitting the asterisks for e 
notational simplicity). 

By substituting Vk+ , = Vk = V,- 1 = p, the following equation for the 
equilibrium value of the variance is obtained: 

vP’/(P- P>=~u,)(v+ w,j, (46) 

where y = 1 - 1/(2n). Notice that, since the right side of the above equation 
is always positive, any positive solution of it must satisfy the constraint 

P> P (if r > 0), 

P< P (if r < 0). 
(47) 

Equation (46) can be transformed into the fourth-degree equation 

P”(1 - y2r2) + P3(v, + w, - 2P) + P’[(P)’ - 2vO(u, + we) + u,w,j 

+ W[ P(v, + we) - 2v, we] + (vyu, w, = 0. (48) 

It can be shown (see Appendix) that this equation always has two and only 
two positive roots, one and only one of which is located between zero and 
V“. Because of constraint (47), it follows that (46) has a unique positive 
solution. There always exists, therefore, a unique equilibrium value for the 
genotypic variance of a sex-controlled additive character. This value is larger 
than p, if the assortative mating is positive (r > 0), and it is smaller than 
p, if the mating is negative (r < 0). 

The linearization of (45) around a positive equilibrium yields the 
following linear recurrence equation of second order for the deviations from 
the equilibrium: 

X k+ 1 = (A + +rp> xk + $r@xk-, , (49) 
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where xk = V, - f, and 

P= P[(F+ u,)(P+ We) + ;qu, + we> + u,v,] 
[(P+ u,)(P+ w,>]3’2 * (50) 

It can be shown that 

o<p< 1. (51) 

Because of this constraint on p, Eq. (49) is a complete analogy of (42) 
which has been shown to have both of its characteristic roots real with the 
absolute values less than 1. Therefore, a positive equilibrium solution of (45), 
subject to constraint, (47) is locally stable. 

Thus, in the case of a sex-controlled additive character under phenotypic 
assortative mating, there always exists a unique equilibrium for the genotypic 
(and, hence, phenotypic) variance, and this equilibrium is locally stable. 

DISCUSSION 

The main result of the previous sections is that under phenotypic assor- 
tative mating, there always exists a unique equilibrium for the variance of 
sex-independent or sex-controlled additive characters, and this equilibrium is 
locally stable. The equilibrium value of the variance is larger than the 
random mating equilibrium value, if the mating is positive, and it is smaller 
than the random mating equilibrium value, if the mating is negative. 

Table I shows how the equilibrium variance is affected by the “strength” 

TABLE I 

Phenotypic Equilibrium Variance under Assortative Mating.” 

hZ 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 
r 

+l.OO 20.00 12.46 7.61 4.49 40.00 24.46 14.30 7.53 
to.75 3.68 2.53 1.97 1.63 3.72 2.67 2.05 1.69 
-0.50 1.90 1.57 1.37 1.26 1.95 1.59 1.39 1.27 
to.25 1.31 1.20 1.13 1.10 1.32 1.21 1.14 1.10 

0.00 1.00 1.00 1.00 1 .oo 1.00 1.00 1.00 1.00 
-0.25 0.81 0.88 0.91 0.94 0.80 0.87 0.91 0.93 
-0.50 0.68 0.79 0.85 0.89 0.67 0.78 0.85 0.89 
-0.75 0.58 0.73 0.81 0.85 0.58 0.72 0.81 0.85 
-1.00 0.51 0.68 0.77 0.82 0.5 1 0.67 0.77 0.82 

n= 10 n = 20 

a r, Marital” correlation; h*, heritability in random mating equilibrium; n, number of loci. 
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of the assortative mating (measured by the “marital” correlation, r), the 
effect of environment (measured by the heritability in the random mating 
equilibrium, h2 = v”/(V” f 0,)) and the number of loci n. The entries in the 
table are the ratios of the equilibrium variance under assortative mating to 
the random mating equilibrium variance. 

Several conclusions can be drawn from this table. First, there is an 
apparent asymmetry of responses to positive and to negative assortative 
matings. When the “strength” of assortment (measured by the absolute value 
of the “marital” correlation) is the same, the response to the positive mating 
is more substantial than to the negative mating. Under positive mating, the 
equilibrium variance can increase as much as 2n times as compared to the 
random mating equilibrium value (when Y = t 1 and hZ = 1). Under negative 
mating, on the other hand, the equilibrium variance can never drop below 
one-half of the random mating equilibrium value. 

The second conclusion that can be drawn from the table is that within a 
realistic range of parameters (e.g., -0.75 < r < 0.75 and h2 < 0.75), the 
number of loci controlling the character has only a slight effect on the 
equilibrium variance for a large enough number of loci. 

It is also seen that within the realistic range of parameters, the effect of 
assortative mating on the equilibrium variance, as compared to the effect of 
random mating, is not very substantial. It may, therefore, be concluded that 
the phenotypic assortative mating does not in general represent a significant 
evolutionary factor affecting the variation in natural populations. 

The asymmetry of responses to positive and to negative assortative 
matings is not restricted to the equilibrium values of the variance, the 
variance dynamics are also asymmetrical. Figures 1 and 2 depict the 
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FIG. 1. The dynamics of the variance of an additive character under “perfect” positive 
assortative mating. n = number of loci, h* = initial heritability. (a) Recombination = 0.1. (b) 
Recombination = 0.0 1. 
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t I I , ,r i I / r ,t 

0 5 IO 15 20 25 k 0 5 10 15 20 25 k 

FIG. 2. The dynamics of the variance of an additive character under “perfect” negative 
assortative mating. n = number of loci, h2 = initial heritability. (a) Recombination = 0. I. (b) 
Recombination = 0.0 1. 

dynamics during 25 generations of the “perfect” positive (r = +I) and 
negative (Y = -1) assortative matings of the phenotypic variance Vc of a sex- 
independent character, as computed from (34) and (35). It was assumed that 
in the initial generation the population was in the random mating equilibrium 
with Vg= 1. 

It is seen from the graphs that the increase of the variance under positive 
mating is monotonic, whereas the decrease of the variance under negative 
mating is accompanied during early generations by damped oscillations. 

It can also be noticed that an increase in either the number of loci or in 
the rate of recombination has an accelerating effect on the variance 
dynamics, especially noticeable under the positive matings. Lower 
heritability can be seen to have a slowing effect on the variance dynamics. 

The oscillations of the variance in the first generations of the negative 
matings are more pronounced when the number of loci is small. When the 
number of loci is relatively large, the variance drops to almost its 
equilibrium value after the first generation, i.e., all changes of the variance 
under negative assortative mating occur in this case in just one generation. 

It is interesting to compare the predictions of the model with outcomes of 
biological experiments. Laboratory experiments on phenotypic assortative 
mating in Drosophila melanogaster were conducted.’ The number of bristles 
on the fourth and fifth abdominal segments for females and on the third and 
fourth segments for males was chosen as the quantitative character. In the 
wild population, from which the original flies for the experiments were 
sampled, the character was approximately normally distributed in both sexes 
with the mean 39 and variance 17 in females, and 33 and 13, respectively, in 
males. From the literature (Falconer, 1960) as well as from our own 
preliminary experiments, the character shows a high additive genetic 
component. The environmental variance under our laboratory conditions was 

’ The experiments were conducted by Galina Epelman (Ioffe), my colleague in the 
Agrophysical Institute in Leningrad, to whom I express my gratitude. 
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estimated as 47% of the total variance (in females), which is slightly higher 
than the 39% estimation given by Falconer (1960). 

Two experiments, one on the positive and the other on the negative 
phenotypic assortative mating, were done. For both experiments, the initial 
generation was composed of 300 females and 300 males randomly chosen 
from the offspring of the 300 females collected in the wild. The abdominal 
bristle number for every chosen fly was counted, and the flies were arranged 
(separately in two sexes) according to their bristle number. Individual 
matings were then performed for the two mating systems. 

For the positive mating, a female and male of the same rank were placed 
in one vial. For the negative mating, on the other hand, a female and a male 
of opposite ranks were placed into one vial. Then, among the offspring from 
all the 300 individual matings under a given mating system, 300 females and 
300 males were chosen randomly, their bristle number was counted, and they 
were again arranged and individually mated in the same way as previously: 
of the same ranks for the positive mating and of the opposite ranks for the 
negative mating. This was repeated for 8 generations. Under such a 
procedure, the rank correlation of the mating pairs was maintained in every 
generation as + 1 or as -1 for the positive and the negative matings, respec- 
tively. Computations of the “marital” correlations (product-moment 
correlations) revealed that they were not significantly different from +l and 
-1 for respective matings in any generation. Thus, the described procedures 
corresponded to the “perfect” positive and negative phenotypic assortative 
matings. 

Figure 3 shows the dynamics of the ratio of the variance in females in a 
given generation to its initial value, I$ = 17. Considering the complexity of 
the real biological processes and the fact that the parameters of a model, 
which would correspond to the character under consideration, remain 
unknown, it is impossible to make a reasonable quantitative comparison 

1.4- 

0.8 4 

r:+1 
1.2. 

1.0. 
r=- 1 

1 , ,+ 

012345678 k 
FIG. 3. The dynamics of the variance of abdominal bristle number on Drosophila 

melunogaster in laboratory experiments on positive and negative assortative matings. 
r = “Marital” correlation. 
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between the model and the experiment. Some qualitative comparisons can, 
however, be made. There is a noticeable asymmetry of responses to the 
positive and to the negative matings: the increase under the positive mating 
is more pronounced than the decrease under the negative mating. The 
substantial decrease of the variance in the first generation of the negative 
mating as compared to the changes in the following generations is also 
noticeable. Though not verified statistically, these outcomes correspond to 
the predictions of the model. 

APPENDIX 

Let us prove that the roots of the equation 

A2 - (A + ;r>n + frB = 0, 

where 

A=l-- It 2R, 
n-l 

B=1--2R, 

are real with absolute values less than 1. 
To do that, we have to demonstrate that 

(A + tr)” - 2rB > 0. 

(Al) 

WI 

(A3) 

(A4) 

Let us rewrite the left side of this expression as 

(;r + (A - 2B))* + 4B(A - B). 

Since (A -B) = 2R > 0, the above expression is always positive and, hence, 
(A4) is true. 

Let us prove now that the first root of (Al), which is always positive, is 
less than 1, i.e., 

2, = $[(A + fr) + \/(A + $)* - 2rB] < 1. (‘45) 

It is easy to show that (AS) is equivalent to 

(r/2)(1 -B) < 1 -A. (4 
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Since 

l-A=n2R>O, 
n-l 

1-B=s2R>O, 

(A6) implies 
1 

2- l/n ’ 

which is true, since r < 1, whereas the right side is always larger than i. 
The second root of (Al), 

1, = 5 [(A + ;r) - &A + +r)’ - 2rB], Gw 

is positive, if Y > 0 and consequently, 1, < i, < 1 in this case. It remains, 
therefore, to prove that 

A, > -1, if r < 0. (A9) 

The substitution of (A8) into (A9) after some transformations yields 

(1 + A)/(1 -B) > -r/2. (Al01 

Since r > -1, the right side of (AlO) is less than or equal to l/2. On the 
other hand, the left side of (AlO) is always larger than l/2, since even 
(1 -A)/(1 -B) h as been shown to be larger than l/2. Thus, (AlO) is 
satisfied, and, consequently, inequality (A9) is also satisfied. 

In order to prove that Eq. (48) has two positive roots with one and only 
one of them between 0 and p, we shall make use of the Budan-Fourier 
method (Ledermann and Vajda, 1980). Let us first rewrite the equation as 

P4(1 -p*> + P(v + w - 2P) + P(P - v)(P -w) 

+ w(P(v + co) - 2vw) + (P)*vo = 0, 
(All) 

where p* = y2r2 < 1, v = U, > 0, and w = W, > 0. Denoting the left side of 
this as f( 0 and computing its derivatives up to fourth at P = 0, we obtain 

f(0) = (P)*v0, 

f’(0) = P(P(v + w) - 2vo), 

f”(0) = 2( vo - v)( vo - w), 

f”‘(0) = 6(v + u + 2v0), 

f”(0) = 24(1 -p’). 

(Al21 
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It is seen that f(0) > 0 andf’“(0) > 0. It can also be shown that 

f'(0) < 0 implies f iii (0) > 0. 

Indeed, 

is equivalent to 

f’(0) = P(P(v + 0) - 2VW) < 0 

P < 2VW/(V + o), 

implying 

f iii(O) = 6(v + w - 2v0) 

i 

4vw 
>6 vtw-- 

v+co 

6(v - w)’ 
= > 0, 

v+w 

which proves (A13). It can also be shown that 

f iii(O) < 0 implies f i(O) > 0. 

Indeed, 

f”‘(0) = 6(v t o - 2I”7 < 0 

(A13) 

(Al41 

is equivalent to 

implying 

P > gv + co), 

f’(0) = v-y P(v + 0) - 2VW) 

> VO(f(v + wy t 2VO) 

= pyv - w)’ > 0, 

which proves (A14). 
Thus, the sequence of the derivatives (A12) may have the following three 

sign combinations: (+ - ? + +), (t + ? - t), or (t + ? + +). The first two 
combinations have two sign changes indicating that Eq. (Al 1) has either two 
or no positive roots, whereas the third combination may have either two or 

no sign changes, also indicating that the equation has either two or no 
positive roots. 
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Computing the derivatives off(@ at pi= p, we obtain 

f( v”> = -( ~)4Pu2, 

fi( P) = -4( Tp)3$, 

f”(P) = 2((P)* + V”(v + co) + vco - ~(V”)*,U*), (A15) 

f”‘( v”) = 6(2P + (v + w) - 4v0,~*), 

f’“(v”) = 24(1 +I’). 

It is seen that f( v”) < 0, fi( v”) < 0, and f’“( v”) > 0. There are, therefore, 
four sign combinations possible for the sequence of derivatives (A15): 
(----+), (---+ +), (--+ + +), and (--+- +). The last 
combination cannot occur, since it has three sign changes, i.e., more than in 
the sequence (A12), which cannot happen if p > 0. All three of the other 
combinations have one sign change. This implies, of course, that sequence 
(A 12) cannot have unchanged signs and has, therefore, exactly two sign 
changes. 

If N(0) and N( v”) denote the number of sign changes in (A12) and (A15), 
respectively, the number of roots of (A 11) located between 0 and p is equal 
to N(0) - N( v”), w ic h’ h in our case is 1. Thus, Eq. (A 11) has two positive 
roots, one and only one of which is less than I”‘. 
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