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Computer simulations on binary reactions of random walkers (A + A - A) on two- and three-dimensional percohtion 

clusters bear out the recent superuniversality conjecture (integrated reaction rate 0~ f 2f3). nitmover. the fr~ct&to+uclide3n 
crossover (r2’3 to t dependence) pantfels that of the single watker. 

1. introduction 

There has been much recent interest in the fractal 
aspects of heterogeneous chemical reactions [l-6]. 
While most work considered the trapping rate of exci- 
tons or electrons at impurity or defect centers [l-4], 
i.e. where only one reactant moves (the “trap” is fix- 
ed) there has also been some specific work on binary 
chemical reactions where both reactants are free to 

move, i.e. genu~e b~loIecu~r reactions [S---7]. For 
the simplest such reaction, 

A + A -+ products, (1) 

it has been shown via simulation j6] (confirming an 
earlier conjecture [S]) that the reaction of eq. (l), 
when proceeding on a fractai matrix, obeys the fol- 
lowing integrated rate equation: 

j+(c) - p--‘(O) = &ff, (2) 

where p(t) is the reactant density at time t, K, a con- 
stant and 

f=$d, t-3) 

where ds is the specrraf dimension (Tractor?’ dirnen- 

sion) [S]. For a euclidean lattice (homogeneous me- 

dium), d, = 2, i.e. f = 1, and eq. (2) reduces to the 
classical (textbook) result: 
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p-l(t) - ,8(O) = IQ. (4) 

Eq. (4j tells us that the mreflcatiou of the reacfant 
species A (described by the left-hand side) proceeds 
linearly in time. However. for disordered media of 
fractal nature. eq. (2) tells us that this rarefication 
proceeds with a fractal power of the time, prescribed 
by the spectral dimension of the fractal- 

Experimental results for exciton fusion (triplet- 
triplet auctions T + T + products) on binary lat- 
tices [5,6,9] have shown a behavior obeying eq- (2). 
and #tot eq. (4), under appropriate conditions (in refs. 

[5,9] the differential rate equation leading to eq. (2) 
has been used). However, microscopically disordered 
media, such as random binary lattices, have an exact 
fractal nature [&lo] only under very restricted con- 
ditions, i.e. at the critical percolation concentration 
Cc_ The question then arises: How widely spread and 
important is the fractal regime for chemical reactions. 
l-he present work supplies some quantitative answers 
and shows that the regime of fractal behavior is not 

l~ited to some exotically restricted condition. 
The logical premise here (as in ref. [5]) has been 

that the reaction in a system of identicai random wal- 

kers (A) will reflect the motion of a single random 
walker: The same powerfthat determines the explo- 
ration range S(t) of a single random walker, 

S(i) a tf, (5) 

will also determine the reaction kinetics (e.g. eq. (2)). 
We note that, on a discrete lattice or matrix, S(t) re- 
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duces to S(N). the mean number of distinct sites visit- 
ed in N steps: 

S(N) a NI (5’) 

The conjecture that f is given by the spectral dimen- 
sion d, (cq. (3)) [8,10] has been confirmed by many 
simulations [1 I]_ For percolation lattices this con- 
jecture only holds [8-l l] at the percclation thresh- 
old (C,). It has. however, been conjectured that there 
exists a crusso~er from fractal to euclidean behavior 
that is related to the percolation correlation length 
(.$) [4,12]. This crossover can be crudely expressed 
] II] by letting the exponent f vary from _3/3 (the 
magic value at percolation thresholds in all dimen- 
sions [8]) to uwir?p (the value for three-dimensional 

lattices and continua). Here we give quantitative 
simulation results for the single random walker cross- 
overs. We then show that the crossovers o_f reacting 
system of random walkers are completely analogous 
(i.e. the dependence off on the concentration and on 
the time). 

2. Simulations and results 

The methods of the Monte Carlo simulations have 
been described before [6.11.13.14]. Figs. 1 and 7 
show the single-walker exploration versus time for 
square (two-dimrnsional) and simple cubic (tluee-di- 
mensional) lattices, respectively. In each case the low- 

I 1 I I1Illl 

2 3 4 5 6299 2 3 4 5 6799 
1.10 Ill02 lx103 

N 

Fig. 1. S, versus N for a hvo-dimensional square httirc. Top to bottom: C = 1.00. 0.80. 0.70, 0.65. and 0.60. Averagrs of 1000 
runs, except for the 0.60 case where 2290 runs were retained out of 37-83 runs. in order IO discard the wlks on t-mite clusters [ 1 1, 
131. 
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Fig. 2. SN versus N for a 0ueedimensional simple cubic lattice. Top 10 bottom: C = 1.00, 0.80, 0.50. 0.40. 0.36 and 0.32. Avrr- 
ages of 1000 runs except for the 0.32 case where 501 runs were retained out of 1000, in order to discard the walks on finite clus- 
ters [11,13]. 

est curve is close to the threshold (critical concentra- 
tion C,.) and the higher curves are for higher concen- 
trations, up to unity (pure crystal). On both figures 
the lowest curves are quite straight and have a slope 
close to Z/3_ The highest curve for the three-dimen- 
sional case (C = I .O) is also fairly straight, with a 
slope close to unity (only the three-dimensional case 
should bve a slope of strictly unity, and this only at 
r 4 m, because of the logarithmic correction involved 
in the two-dimensional random walk [ 151). We 
would particularly like to emphasize that the lines for 
the ~te~e~ate concen~atio~ are curved, not 
straight. For this regime, at early times, the slope is 
lower, closer to the fractal value (Z/3) while at longer 
times it is higher, close to the euclidean value (1). 

Note that alI “crossover” lines curve in the “upward” 
direction. A quantitative crossover description, in 

terms of effectivefvalues, is given in table 1. 
Figs. 3 and 4 show the reacting nfulker rmefimtion 

versus time, again for square (tw~d~ensio~) and 
simple cubic (tree-d~ension~) lattices, respectjvely. 
The behavior is very similar to that mentioned for 
the single walker. The lowest curves (at about Cc), 

show straight lines with slopes very close to 3/3 (see 
table 1 for exact values), while the highest curves 
show, again, fairly straight lines with slopes close to 
unity (especially for the t~eed~ensiona1 case). 
Again, the curves for the intermediate concentrations 
show a “crossover” from lower (about 2/3) to higher 
(below 1) values, and again these lines curve in the 
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Table 1 

Effectivcfvalucs 

CHEMICAL PHYSICS LETTERS 18 May 1981 

C Smgle walker RexIiny u~lkcrs 

two-dim. (slopes from fii. 1) two-dim. (slopes from fig. 3) 

overt f asymptoticf oversu f asymptoticf 

I .oo 0.889 0.883 0.97-O 3) 0.935 3) 

0.80 0.839 0.812 0.865 0.866 

0.70 0.768 0.785 0.806 0.831 
0.65 0.713 0.722 0.748 0.780 
0.60 0.665 0.67 1 0.676 0.671 

ihrre-dim. (slopes from fig. 2) three-dim. (slopes from fig. 1) 

ovrr;llf assymptoticf overall f xymptolicf 

1.00 0.988 0.989 0.981 0.980 
0.80 0.981 0.987 0.976 0.967 

0.70 0.970 0.9so 
0.50 0.935 0.945 0.91 I 0.961 
0.40 0.850 0.863 0.861 0.912 

0.36 0.151 0.786 0.74s b) 0.763 b, 

0.32 0.709 0.677 0.674 0.687 

a) Ref. [ 161. b) c = 0.35. 
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“upward” direction. A quantitative crossovei descrip- 

tion is given in table 1. columns -I and 5. This compar- 

es very favorably with table 1. coiums 3 and 3. for 
the single walks. 

3. summary 

Evidently there is a very satisfactory analogy be- 

tween the single and rhe reacting multiple random 

walk systems. This bears out earlier conjectures [5,6] 
and demonstrares the usefulness of the concept of 
fiactai rare constant andfiactal-to-classiazl crossoser. 

Most striking. perhaps. is the fact that for the system 
of reacting random walkers we find f = 0.67 for the 
two-dimensional case and 0.69 for the three-dimen- 

4 Fig_ 3. Lopl<p-’ (r)) - <p-1(O))] vusus log I for 3 two-dimerr 
siorul squxe httice Top to bottom: C = 0.80.0.70. 0.65. 

0.60. Averages of 100 runs, 2000 steps each on 200 X 3-00 
lattices, with cyclic boundary conditions. p(O) = 0.02. Forced 
random walks. limited to largest cluster only. 
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25- 

l- 

8.5- 

Fig 4. Log ((p-1(t)f - (p-‘(O)) j versus log t for a three-di- 
mensional sirnpie cubic Janice. Top to bottom: C= 1.00, 0.80, 
0.50. 0.40,0.35, 0.32. Averages of 1000 runs, 2000 steps each, 
on 40 X 40 X 40 lattices, with cyclic boundary conditions. 
p(0) = 0.02. Forced random walks, limited to largest clusters 
only. 

sionl case, in excellent agreement with the single 
random walker result off = 0.67 and 0.68, respective- 
ly, and the superuniversality conjecture of 213. 
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