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Computer simulations on binary reactions of random walkers (A + A — A) on two- and three-dimensional percolation
clusters bear out the recent superuniversality conjecture (integrated reaction rate « 72/3), Morcover, the fractal-to-cuclidean
crossover (273 1o ¢t dependence) parallels that of the single walker.

1. Introduction

There has been much recent interest in the fractal
aspects of heterogeneous chemical reactions [1—-6].
While most work considered the trapping rate of exci-
tons or electrons at impurity or defect centers [1—4],
i.e. where only one reactant moves (the “trap™ is fix-
ed) there has also been some specific work on binary
chemical reactions where both reactants are free to
move, i.e. genuine bimolecular reactions [S—7]. For
the simplest such reaction,

A + A - products, ¢}

it has been shown via simulation [6] (confirming an
earlier conjecture [5]) that the reaction of eq. (1),
when proceeding on a fractal matrix, obeys the fol-
lowing integrated rate equation:

P @)~ o~ @) = Kot/ @
where p(f) is the reactant density at time ¢, K a con-
stant and

f=1dg €)

where d is the spectral dimension (*“{racton” dimen-
sion) [8]. For a euclidean lattice (homogeneous me-
dium), d =2, i.e. f=1, and eq. (2) reduces to the
classical (textbook) result:
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Eqg. (4) tells us that the rarefication of the reactant
species A (described by the left-hand side) proceeds
linearly in time. However, for disordered media of
fractal nature. eq. (2) tells us that this rarefication
proceeds with a fractal power of the time, prescribed
by the spectral dimension of the fractal.

Experimental results for exciton fusion (triplet—
triplet annihilation: T + T > products) on binary lat-
tices [5,6,9] have shown a behavior obeying eq. (2),
and #not eq. (4), under appropriate conditions (in refs.
[5,9] the differential rate equation leading to eq. (2)
has been used). However, microscopically disordered
media, such as random binary lattices, have an exact
fractal nature [8,10] only under very restricted con-
ditions, i.e. at the critical percolation concentration
C.. The question then arises: How widely spread and
:mportant is the fractal regime for chemical reactions.
The present work supplies some gquantitative answers
and shows that the regime of fractal behavior is not
limited to some exotically restricted conditions.

The logical premise here (as in ref. [5]) has been
that the reaction in a system of identical random wal-
kers (A) will reflect the motion of a single random
walker: The same power f that determines the explo-
ration range S(?) of a single random walker,

S(6) =7, )

will also determine the reaction kinetics (e.g. eq. (2)).
We note that, on a discrete lattice or matrix, S{¢) re-
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duces to S(N). the mean number of distinct sites visit-
ed in N steps:

SV = N (5"

The conjecture that f'is given by the spectral dimen-
sion d, (eq. (3)) [8,10] has been confirmed by many
simulations [11]. For percolation lattices this con-
jecture only holds [8—11} at the percclation thresh-
old (C,). It has, however, been conjectured that there
exists a crossover from fractal to euclidean behavior
that is related to the percolation correlation length
(%) [4,12]. This crossover can be crudely expressed
[11] by letting the exponent f vary from 2/3 (the
magic value at percolation thresholds in all dimen-
sions [8]) to unity (the value for three-dimensional

[
2
=

S(N)
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lattices and continua). Here we give quantitative
simulation results for the single random walker cross-
overs. We then show that the crossovers of reacting
systems of random walkers are completely analogous

(i.e. the dependence of f on the concentration and on
the time).

2. Simulations and results

The methods of the Monte Carlo simulations have
been described before [6.11.13.14]. Figs. I and 2
show the single-walker exploration versus time for
square (two-dimensional) and simple cubic (three-di-
mensional) lattices, respectively. In each case the low-
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Fig. 1. Sp; versus N for a two-dimensional square lattice. Top to bottom: C = 1.00, 0.80, 0.70, 0.65, and 0.60. Averazes of 1000
runs, except for the 0.60 case wherc 2290 runs were retained out of 3283 runs, in order 10 discard the walks on finite clusters [11,

13].
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Fig. 2. §p; versus NV for a three-dimensional simple cubic lattice. Top to bottom: C = 1.00, 0.80, 0.50, 0.40. 0.36 and 0.32. Aver-
ages of 1000 runs except for the 0.32 case where 501 runs were retained out of 1000, in order to discard the walks on finite clus-

ters [11,13].

est curve is close to the threshold (critical concentra.
tion C) and the higher curves are for higher concen-
trations, up to unity (pure crystal). On both figures
the lowest curves are quite straight and have a slope
close to 2/3. The highest curve for the three-dimen-
sional case (C = 1.0) is also fairly straight, with a
siope close to unity (only the three-dimensional case
should have a slope of strictly unity, and this only at
t —» oo, because of the logarithmic correction involved
in the two-dimensional random walk [15]). We
would particularly like to emphasize that the lines for
the intermediate concentrations are curved, not
straight. For this regiine, at early times, the slope is
lower, closer to the fractal value (2/3) while at longer
times it is higher, close to the euclidean value (1).
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Note that all “crossover” lines curve in the “upward”
direction. A quantitative crossover description, in
terms of effective f values, is given in table 1.

Figs. 3 and 4 show the reacting walker rarefication
versus time, again for square (two-dimensional) and
simple cubic (three-dimensional) lattices, respectively.
The behavior is very similar to that mentioned for
the single walker. The lowest curves (at about C),
show straight lines with slopes very close to 2/3 (see
table 1 for exact values), while the highest curves
show, again, fairly straight lines with slopes close to
unity (especially for the three-dimensional case).
Again, the curves for the intermediate concentrations
show a “crossover” from lower (about 2/3) to higher
(below 1) values, and again these lines curve in the
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Table 1
Effective f valucs
C Single walker Reacting walkers
two-dim. (slopes from fig. 1) two-dim. (slopes from fig. 3)
overall asymptotic f overall f asymptotic f
1.00 0.889 0.883 0.920 ?) 0.935 )
0.80 0.839 0.822 0.865 0.866
0.70 0.768 0.785 0.806 0.831
0.65 0.713 0.722 0.748 0.780
0.60 0.665 0.671 0.676 0.674
three-dim. (slopes from fig. 2 three-dim. (slopes from fig. 4)
overall f asvmptotic f overall f asymptotic f
1.00 0.988 0.989 0.981 0.980
0.80 0.981 0.987 0.976 0.967
0.70 0.970 0.980
0.50 0.935 0.945 0.941 0.961
0.40 0.850 0.863 0.861 0.912
0.36 0.757 0.786 0.738 b) 0.763 D)
0.32 0.709 0.677 0.674 0.687
3) Ref. [16]. PYC=0.35.
4-
“upward” direction. A quantitative crossover descrip-
25 tion is given in table 1. columns 4 and 5. This compar-
es very favorably with table 1. colums 2 and 3. for
the single walks.
3_
3. Summ
- 254 ary
1
-]
:- Evidently there is a very satisfactory analogy be-
T 2- tween the single and the reacting multiple random
= walk systems. This bears out earlier conjectures |3,6]
B 5. and demonstrates the usefulness of the concept of
fractal rare constant and fractal-ro-classical crossover.
Most striking, perhaps. is the fact that for the system
14 of reacting random walkers. we find f=0.67 for the
two-dimensional case and 0.69 for the three-dimen-
05 4
Fig. 3. Lozp 1 (&) — (p~1(0»M] versus log ¢ for a two-dimen-
0 — —T T T 1 sional square Iattice. Top to botiom: C = 0.80. 0.70, 0.65.
0 1 4 0.60. Averages of 100 runs, 2000 steps each, on 200 X 200
lattices, with cyclic boundary conditions, p(0) = 0.02. Forced
1og (TINE)

random walks, limited to largest clusier only.
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Fig. 4. Log [{o71 (1) ~ (57 1{O»] versus log £ for a three-di-
mensional simple cubic lattice. Top to bottom: C = 1.00, 0.80,
0.50, 0.40, 0.335, 0.32. Averages of 1000 runs, 2000 steps each,
on 40 X 40 X 40 lattices, with cyclic boundary conditions,
p(0) = 0.02. Forced random walks, limited to largest clusters
only.

stonl case, in excellent agreement with the single
random walker result of f=0.67 and 0.68, respective-
ly, and the superuniversality conjecture of 2/3.
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