Platelet Alpha₂-Adrenergic Receptors in Schizophrenic Patients Before and After Phenothiazine Treatment

Henry E. Rice, Charles B. Smith, Kenneth R. Silk, and Jules Rosen

Received September 26, 1983; revised version received March 16, 1984; accepted April 4, 1984.

Abstract. The specific binding to isolated platelet membranes of ³H-clonidine, an α₂-adrenergic receptor partial agonist, and ³H-yohimbine, an α₂-adrenergic receptor antagonist, was measured in male, drug-free schizophrenic patients. The maximum number of binding sites (B_max) for ³H-yohimbine was significantly lower in these patients than in normal subjects. Treatment with chlorpromazine (CPZ) for 2 weeks further decreased the B_max for both ligands. Plasma catecholamine levels were determined before and after treatment. Before treatment, levels of dopamine and norepinephrine (NE) were within a normal range, while epinephrine (E) levels were significantly elevated. CPZ treatment significantly increased plasma NE levels, but decreased E levels to a normal range. These observations suggest that schizophrenia might be associated with abnormal noradrenergic function that is reflected by a decreased number of platelet α₂-adrenergic receptors.

Key Words. α₂-Adrenergic receptor, chlorpromazine, human blood platelets, norepinephrine, schizophrenia.

Increasing evidence suggests that abnormal noradrenergic neuronal or receptor function, or both, may be involved in schizophrenia (Hornykiewicz, 1982). While antipsychotic medications are thought to have their primary therapeutic effects through blockade of dopamine receptors (Bunney, 1974; van Kammen, 1979), these drugs have potent α-adrenergic blocking activity as well (Janssen and Van Bever, 1978). Postmortem studies of catecholamine content of various brain areas of schizophrenic patients show increased amounts of norepinephrine (NE) in the limbic forebrain (Farley et al., 1978), corpus striatum (Crow et al., 1979), and brainstem (Carlsson, 1979). Sternberg et al. (1982) found that clonidine decreases plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) content less in schizophrenic patients than in normal subjects, a finding that suggests a functional subsensitivity of α₂-adrenergic receptors in such patients.

The α₂-adrenergic receptor that is located on nerve endings is an autoreceptor which regulates the release of NE (Langer, 1977; Starke, 1977, 1981). The α₂-adrenergic receptor is also located on other tissues, one of which is the human blood platelet (Garcia-Sevilla et al., 1981a). Through the use of receptor binding techniques, the
α-adrenergic receptor on human platelets was shown to be of the α₂-subtype and was found to be similar in its pharmacological and biochemical characteristics to those found in the rat brain (García-Sevilla et al., 1981a; Smith et al., 1981). Abnormal numbers of platelet α₂-adrenergic receptors have been observed in a variety of psychiatric disorders, which include panic-anxiety disorder (Cameron et al., 1983) and major depressive disorder (García-Sevilla et al., 1981b; Smith et al., 1983). Recently, an increased number of α-adrenergic receptors on blood platelets has been reported for schizophrenic patients (Kafka and van Kammen, 1983).

The purpose of the present study was to assess further the possible existence of an α₂-receptor abnormality in schizophrenic patients and to determine the effect of chlorpromazine (CPZ) treatment. The specific binding of 3H-clonidine, an α₂-adrenergic receptor partial agonist, and 3H-yohimbine, an α₂-adrenergic receptor antagonist, was used to determine the maximum number of binding sites (Bmax) and dissociation constants (Kd) for the two ligands. In addition, plasma levels of NE, dopamine (DA), and epinephrine (E) were assessed before and after treatment to determine whether the number of platelet α₂-adrenergic receptors was correlated with circulating catecholamine levels.

The present study shows that in male, drug-free schizophrenic patients, the number of platelet α₂-adrenergic receptors as measured by 3H-yohimbine binding is decreased compared to normal subjects. CPZ treatment further decreased the number of α₂-adrenergic receptors as measured by the specific binding of either 3H-clonidine or 3H-yohimbine. Treatment with CPZ also significantly elevated plasma NE levels.

Methods

Diagnostic Procedure. All participants in the study were chronic schizophrenic male inpatients at the Ann Arbor Veterans Administration Medical Center. Each patient was interviewed by a senior attending psychiatrist and was included in the study if he met Research Diagnostic Criteria (Spitzer et al., 1978) for schizophrenia. Patients were kept drug free for a period of at least 2 weeks before the study. Several patients were drug free for 1 year or more. Control subjects were drug-free, age-matched male volunteers who had no history of any psychiatric or nonpsychiatric disorder.

Of a total of 13 patients who initially consented to participate in the study, three completed the study but were later eliminated from the results because a diagnosis of primary affective disorder could not be ruled out. Of the 10 remaining patients, 9 were diagnosed with subtypes of paranoid (2), hebephrenic (1), or undifferentiated schizophrenia (6). One patient was diagnosed as having schizoaffective disorder. All patients were administered the Hamilton Depression Rating Scale (HDRS) (Hamilton, 1960), Beck Depression Inventory (BDI) (Beck et al., 1961), Global Assessment Scale (GAS) (Endicott et al., 1976), Brief Psychiatric Rating Scale (BPRS) (Overall and Gorham, 1962), and Affect Rating Scale (ARS) for affective flattening and affective overreactivity. The administration of the scales coincided with pretreatment and posttreatment platelet receptor binding studies.

All patients received CPZ for 14 days with a dosage range of 200-800 mg/day (average dose = 458 mg/day). All patients who began treatment with CPZ completed the 14-day drug treatment period.

Platelet Isolation and Ligand Binding Assays. Approximately 70 ml of blood were obtained by venipuncture from either schizophrenic patients (mean age = 30.1 ± 12.0 years) or healthy control subjects (mean age = 29.0 ± SD 7.6 years), and the specific binding of 3H-clonidine and 3H-yohimbine to platelet membranes was assessed as described previously.
(Garcia-Sevilla et al., 1981a). Plasma levels of DA, NE, and E were determined by a single isotope radioenzymatic assay (Peuler and Johnson, 1977). Ligand binding to platelet membranes and plasma catecholamine levels were determined when patients were drug free for at least 2 weeks and after 2 weeks of CPZ treatment. All blood samples were drawn from subjects in a sitting position between 8 and 9 a.m.

Competition Studies. The inhibitory constant \((K_i)\) of CPZ for the \(\alpha_2\)-adrenergic receptor was calculated against the binding of 4.0 nanomolar (nM) \(^3\)H-clonidine and 4.0 nM \(^3\)H-yohimbine on normal human platelets and against 4.0 nM \(^3\)H-clonidine on rat brain hippocampal membranes as described previously (Garcia-Sevilla et al., 1981a).

Analysis of Results. For the statistical evaluations, Student's two-tailed \(t\) test was used. The level of significance was chosen as \(p < 0.05\). All results are expressed as mean values \pm the standard deviation (SD).

Results

The specific binding of \(^3\)H-clonidine and \(^3\)H-yohimbine to platelet membranes was a saturable process of high affinity. Specific binding represented 89 \pm 3\% \((n = 25)\) of the total binding for \(^3\)H-clonidine and 92 \pm 2\% \((n = 25)\) of the total binding for \(^3\)H-yohimbine at concentrations of \(4 \times 10^{-9} M\) and \(2 \times 10^{-9} M\), respectively. Scatchard analysis (Scatchard, 1949) of individual saturation curves showed a marked difference in the maximal number of binding sites \((B_{max})\) for the two radioligands. In one patient, two separate \(^3\)H-clonidine binding sites were observed with different affinities \((K_d)\) and binding capacities.

Schizophrenic patients had lower \(B_{max}\) values for the specific binding of \(^3\)H-yohimbine to platelet membranes than did controls \((27\%, \ p < 0.025)\) (Table 1). The \(B_{max}\) values for \(^3\)H-clonidine were decreased \((17\%)\), but not significantly, from control values. The \(K_d\) values for the schizophrenic patients were significantly higher than for controls \((K_d\) for \(^3\)H-clonidine, 10.1 \pm 2.1 nanomolar \((nM), \ p < 0.005; K_d\) for \(^3\)H-yohimbine, 5.3 \pm 0.3 nM, \(p < 0.05)\).

After 2 weeks of CPZ treatment, the \(B_{max}\) values for the specific binding of both \(^3\)H-clonidine and \(^3\)H-yohimbine were decreased significantly from pretreatment values. A 35\% decrease in the mean \(B_{max}\) for \(^3\)H-clonidine \((p < 0.005)\) and a 41\% decrease in the mean \(B_{max}\) for \(^3\)H-yohimbine \((p < 0.01)\) were observed. A significant change in \(K_d\) values after CPZ treatment was observed only for \(^3\)H-yohimbine \((45\%, \ p < 0.025)\).

Pretreatment plasma E levels were significantly higher than control values \((86\%, \ p < 0.05)\), while NE and DA levels were the same as in controls (Table 2). After 2 weeks of CPZ treatment, E levels were significantly decreased compared to pretreatment values \((p < 0.05)\) and were within a normal range. Posttreatment levels of both DA and NE were increased from pretreatment levels; however, only the NE increase was statistically significant \((105\%\) increase, \(p < 0.025)\).

The \(K_i\) of CPZ was \(1.0 \pm 0.3 \times 10^{-7} M\) \((n = 4)\) for displacement of \(^3\)H-clonidine and \(3.7 \pm 1.9 \times 10^{-7} M\) \((n = 4)\) for displacement of \(^3\)H-yohimbine from the platelet \(\alpha_2\)-adrenergic receptor. The \(K_i\) of CPZ, as measured by \(^3\)H-clonidine displacement from rat hippocampal membranes, was similar \((6.4 \pm 2.4 \times 10^{-7} M; n = 3)\).
Table 1. Tritiated clonidine and yohimbine binding to platelet membranes of schizophrenic patients

<table>
<thead>
<tr>
<th>Patient/Age</th>
<th>Clonidine</th>
<th></th>
<th>Yohimbine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before treatment</td>
<td>After treatment</td>
<td>Before treatment</td>
<td>After treatment</td>
</tr>
<tr>
<td></td>
<td>B_{max}</td>
<td>K_d</td>
<td>B_{max}</td>
<td>K_d</td>
</tr>
<tr>
<td>1/28</td>
<td>30</td>
<td>10.2</td>
<td>12</td>
<td>10.0</td>
</tr>
<tr>
<td>2/22</td>
<td>25</td>
<td>10.0</td>
<td>24</td>
<td>14.4</td>
</tr>
<tr>
<td>3/36</td>
<td>20</td>
<td>2.3</td>
<td>17</td>
<td>14.4</td>
</tr>
<tr>
<td>4/32</td>
<td>24</td>
<td>9.6</td>
<td>17</td>
<td>11.5</td>
</tr>
<tr>
<td>5/22</td>
<td>—</td>
<td>—</td>
<td>18</td>
<td>4.4</td>
</tr>
<tr>
<td>6/23</td>
<td>23</td>
<td>3.3</td>
<td>19</td>
<td>2.7</td>
</tr>
<tr>
<td>7/30</td>
<td>34</td>
<td>21.4</td>
<td>19</td>
<td>40.7</td>
</tr>
<tr>
<td>8/27</td>
<td>39</td>
<td>12.5</td>
<td>20</td>
<td>10.0</td>
</tr>
<tr>
<td>9/34</td>
<td>39</td>
<td>5.1</td>
<td>19</td>
<td>17.1</td>
</tr>
<tr>
<td>10/39</td>
<td>36</td>
<td>10.1</td>
<td>22</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Mean ± SD (age, 30.1 ± 12.0 years) $29 ± 10.1 ± 19 ± 17.7 ± 121 ± 5.3 ± 70 ± 7.6 ± 35 ± 3.5 ±$

Note. The maximum number of binding sites (B_{max}) and apparent dissociation constants (K_d) were calculated by Scatchard analysis of full saturation curves for platelets from each subject. B_{max}, femtomoles/mg protein; K_d, nanomolar (nM). Control subjects were age-matched (age = 29.0 ± 7.6 years, $n = 16$). Control values for tritiated clonidine binding were: $B_{\text{max}} = 35 ± 12$ fmole/mg protein; $K_d = 5.5 ± 12.4$ nM. Control values for tritiated yohimbine binding were: $B_{\text{max}} = 165 ± 44$ fmole/mg protein; $K_d = 4.0 ± 2.0$ nM.

1. $p < 0.005$ when compared with K_d of control subjects.
2. $p < 0.005$ when compared with pretreatment value.
3. $p < 0.025$ when compared with B_{max} of control subjects.
4. $p < 0.05$ when compared with K_d of control subjects.
5. $p < 0.01$ when compared with pretreatment value.
6. $p < 0.025$ when compared with pretreatment value.

Discussion

The present study indicates that in chronic schizophrenic patients there is a significant decrease in the number of platelet α_2-adrenergic receptors when measured by the specific binding of tritiated yohimbine, an α_2-adrenergic receptor antagonist. In contrast, the specific binding to platelet membranes from schizophrenic patients of tritiated clonidine, a partial agonist at α_2-adrenergic receptors, does not differ from binding of tritiated clonidine to platelet membranes from control subjects. The specific binding of the two ligands to platelet membranes isolated from patients with other psychiatric disorders differs from that observed in the present study. The specific binding of tritiated clonidine to platelet membranes has been found to be increased in patients with major depressive disorder (Garcia-Sevilla et al., 1981b). A number of studies have shown that the specific binding of tritiated yohimbine to platelet membranes is not significantly different in patients with major depressive disorder than in normal subjects (Daiguji et al., 1981; Smith et al., 1983; Stahl et al., 1983). In contrast, patients with panic-anxiety disorder have a decreased number of binding sites on platelet membranes for tritiated yohimbine but a normal number of binding sites for tritiated clonidine.
Fig. 1. Saturation curves and Scatchard plots for 3H-clonidine binding to platelet membranes of patient 4 before (circle) and after (square) chlorpromazine treatment.

See Table 1 for changes in binding parameters.

Fig. 2. Saturation curves and Scatchard plots for 3H-yohimbine binding to platelet membranes of patient 3 before (circle) and after (square) chlorpromazine treatment.

See Table 1 for changes in binding parameters.
Table 2. Plasma catecholamine levels

<table>
<thead>
<tr>
<th>Patient</th>
<th>DA</th>
<th>E</th>
<th>NE</th>
<th>DA</th>
<th>E</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.5</td>
<td>115.5</td>
<td>473.8</td>
<td>71.6</td>
<td>64.3</td>
<td>702.4</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>116.7</td>
<td>281.2</td>
<td>67.7</td>
<td>44.3</td>
<td>684.1</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>201.2</td>
<td>210.0</td>
<td>69.1</td>
<td>47.5</td>
<td>742.9</td>
</tr>
<tr>
<td>4</td>
<td>16.1</td>
<td>183.6</td>
<td>559.0</td>
<td>81.0</td>
<td>125.7</td>
<td>939.5</td>
</tr>
<tr>
<td>5</td>
<td>24.3</td>
<td>130.6</td>
<td>485.9</td>
<td>40.2</td>
<td>37.8</td>
<td>547.5</td>
</tr>
<tr>
<td>6</td>
<td>15.1</td>
<td>22.1</td>
<td>325.0</td>
<td>0.0</td>
<td>0.0</td>
<td>425.1</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>42.7</td>
<td>489.8</td>
<td>808.1</td>
<td>0.0</td>
<td>1982.7</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>24.6</td>
<td>464.7</td>
<td>137.7</td>
<td>0.0</td>
<td>1217.2</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>80.0</td>
<td>281.1</td>
<td>27.1</td>
<td>64.7</td>
<td>355.9</td>
</tr>
<tr>
<td>10</td>
<td>27.6</td>
<td>26.7</td>
<td>381.6</td>
<td>9.6</td>
<td>41.8</td>
<td>523.9</td>
</tr>
</tbody>
</table>

Mean ± SD: 10.4 ± 11.3, 94.4 ± 66.1, 395.2 ± 115.7, 130.2 ± 241.3, 42.0 ± 38.6, 612.1 ± 482.6

1. Plasma catecholamine levels are expressed in units of picogram/ml. Control values for catecholamine levels were: dopamine (DA), 12.5 ± 39.6; epinephrine (E), 57.0 ± 69.6; norepinephrine (NE), 273.8 ± 164.4.
2. p < 0.05 when compared with control subjects.
3. p < 0.05 when compared with pretreatment value.
4. p < 0.025 when compared with pretreatment value.

(Cameron et al., 1983). There is considerable evidence that adrenergic agonists differ from antagonists in binding to different affinity states of the α2-adrenergic receptor on platelet membranes (Garcia-Sevilla et al., 1981; Bylund and U'Prichard, 1983). Studies such as the present one suggest that the differences between the specific binding of adrenergic agonists and adrenergic antagonists to platelet membranes might be characteristic of certain psychiatric disorders.

The observation in this study of a decreased number of α2-adrenergic receptors as measured by 3H-yohimbine binding differs from the previous report of an increased number of platelet α-adrenergic receptors in schizophrenic patients as measured by the binding of 3H-dihydroergocriptine, an α-adrenergic receptor antagonist (Kafka and van Kammen, 1983). A number of studies have reported differences in the binding of 3H-yohimbine and 3H-dihydroergocriptine to platelet membranes, and Bylund and U'Prichard (1983) have suggested that greater selectivity might exist in the affinity of 3H-yohimbine binding for the α2-adrenergic receptor as compared to 3H-dihydroergocriptine. There might be other explanations for the differences between the present study and that of Kafka and van Kammen (1983). In that study, the male patients were hospitalized for longer periods of time (average hospitalization = 2.1 ± 0.7 years) than the patients in the present study, who were neither under chronic care nor long-term medications at the time of the study. Since CPZ is a potent α-receptor antagonist, the increase in receptor number reported by Kafka and van Kammen (1983) might be an effect of long-term blockade of α2-adrenergic receptors by neuroleptics. Preliminary studies in this laboratory on rats have found an increase in α2-receptors in specific brain areas following long-term, but not acute, CPZ treatment (Spengler and Smith, 1982).
Treatment of schizophrenic patients with CPZ for 2 weeks resulted in marked increases in plasma NE content and appreciable decreases in the specific binding of both 3H-clonidine and 3H-yohimbine to isolated platelet membranes. Similar increases in plasma NE content in schizophrenic patients treated with CPZ have been reported by other investigators (Naber et al., 1980; Castellani et al., 1982). An increase in plasma NE content has also been observed in both schizophrenic and normal control subjects after treatment with clozapine, a benzodiazepine antipsychotic agent (Sarafoff et al., 1979). These increases in plasma NE content would be expected to result from blockade of the α_2-adrenergic receptor by CPZ, since this receptor regulates the neuronal release of NE by a feedback inhibitory mechanism (Langer, 1977). Furthermore, CPZ also blocks the neuronal uptake of NE (Barth et al., 1982).

An interesting finding of the present study is the apparent inverse relationship between plasma NE content and the number of α_2-adrenergic receptors on platelet membranes. Similar relationships between increases in plasma NE levels and decreases in platelet α_2-receptor number have been observed in patients with congestive heart failure (Weiss et al., 1983) and in patients with panic-anxiety disorder (Cameron et al., 1983) both before and after treatment. Although incubation of platelet membranes with high concentrations of epinephrine for 4 to 22 hours probably does not down-regulate the absolute number of α_2-adrenergic receptors (Karliner et al., 1982), elevations in circulating NE content over a period of several weeks might cause decreases in receptor number such as those observed in the present study.

The observation that the dissociation constant (K_d) of 3H-yohimbine increases slightly after CPZ treatment suggests that CPZ might be competitively interacting directly with the α_2-adrenergic receptor. CPZ displaced 3H-clonidine and 3H-yohimbine from platelet membranes with a K_i in the 10^{-7} M range, which is much greater than plasma levels of CPZ as reported in patients undergoing similar drug therapy (Schooler et al., 1976) and suggests that the decrease in receptor number after drug treatment is not due to competition between CPZ and the radioligands. CPZ also displaced 3H-clonidine from rat hippocampal membranes with a K_i in the 10^{-7} M range, which correlates well with previously reported values for CPZ displacement of 3H-clonidine in whole rat brain homogenates (Peroutka et al., 1977). These findings indicate that CPZ has a similar affinity for both the neural and platelet receptor.

The results of the present study support earlier findings which suggest that there is abnormal noradrenergic function in schizophrenia (Farley et al., 1978; Hornykiewicz, 1982; Sternberg et al., 1982) and that neuroleptic drugs might act in part through noradrenergic mechanisms. This study also suggests that plasma NE levels might be related to platelet α_2-adrenergic receptor number, as has been previously suggested for patients with severe congestive heart failure (Weiss et al., 1983) and with panic-anxiety disorder (Cameron et al., 1983). Finally, the study suggests that differences in the binding characteristics of adrenergic agonists and antagonists might be of value in assessing psychiatric disorders and response to drug therapy.

Acknowledgments. This research was supported in part by USPHS grant MH-36225. We gratefully thank Joanne J. Geer and Sarah J. Moss for their technical assistance.
References

