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ABSTRACT 

Unless the skewing of radial distribution peaks is properly taken into account, dif- 
fraction analyses of gas molecules may lead to geometrically inconsistent arrays of 
internuclear distances. It is shown how to derive the required nonbonded skew para- 
meter ii for a tetrahedral AX, molecule from its potential constants in the case of an 
ensemble distributed among too many vibrational states to make the standard perturba- 
tion or variation methods feasible. Elements of the transformation tensor relating cur- 
vilinear coordinates si to rectilinear coordinates Si are found and applied in a treatment 
using the “effective potential energy” approach of Miller. Illustrative calculations are 
carried out for hot CF, and SiF, molecules_ It is verified that the contributions to B 
from nonlinear transformations and from Morse stretching deduced by a simple model 
in Part III of this series are in reasonably good agreement with the more rigorous con- 
tributions calculated in this research. It is shown, however, that certain other contribu- 
tions are larger. 

INTRODUCTION 

Electron diffraction studies of hot molecules [l] have revealed unexpec- 
tedly large asymmetries in the radial distribution functions of the geminal 
nonbonded distances. The pronounced skewing, opposite in sense to that 
naturally associated with the curvilinear bending trajectories, was traced to 
a strong contribution by bend-bend-bend cubic constants, a source of 
anharmonicity not easily characterized by spectroscopy [2]. What is most 
significant about this is the appealingly simple pattern of behavior of mole- 
cules that was discovered when potential surfaces for bending deformations 
were examined [3] . Because insufficient spectroscopic information had been 
available to test our hypothesis about the origin of the skewness, a mech- 
anical model of repelling points-on-a-sphere (POS) 13-61 based on the 
valence-shellelectron-pair-repulsion (VSEPR) theory [ 7’1 was introduced to 
estimate magnitudes. When it proved reasonably successful in accounting for 
the diffraction observations [S] its implications were compared with those 
of molecular orbital theory. A remarkable parallel was found [3]. The 
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insight to be gained by pursuing this lead warrant-s the development of a 
practical analysis relating the potential energy surfaces of molecules to their 
electron diffraction patterns. Therefore this problem is addressed in the 
following. 

Prior treatments connecting molecular force fields to electron diffraction 
intensities have been of two kinds: .(a) variational [8] and perturbation 
19-111 calculations applicable to individual vibrational states and (b) 
calculations 163 based on a Boltzmann distribution in poteritial energy. 
Treatment (a) works ‘excellently in cases where thermal populations require 
averages only over a small number of states. It is prohibitive in studies of 
molecules sufficiently hot to manifest the bending anharmonicity conspic- 
uously. Treatment (b) is dubious unless the temperature is high enough to 
make kT S hv. Such severe conditions suggest rapid thermal decomposition 
and amplitudes of vibration so large that the anharmonic potential energy 
may no longer be a small perturbation. A promising approach, retaining the 
simplicity of (b) but substantially improving its accuracy is to carry out 
averages over a Boltzmann distribution in an effective potential energy 
V =, suggested by Miller [12] and already applied to one dimensional an- 
harmonic cases in electron diffraction by Spiridonov et al. [13,14]. Effects 
of the nonlinear transformation from -curvilinear to normal coordinates, 
treated somewhat crudely in prior work [ 151, can readily be incorporatid 
in the V,,, treatment. Details of the treatment, as they apply to A& mole- 
cules of T, symmetry, are outlined in the following. 

Because the characterization of AX bond distributions and their con- 
tributions to diffraction intensities has received extensive and quite suc- 
cessful treatment in existing literature [ll, 15-181 we w-ill focus o-ur atten- 
tion upon asymmetry in geminal nonbond distributions. Such skewing has 
led to heretofore poorly understood “anharmonic shrinkage effects” 
[6,19] but contains valuable information about bending anharmonicity. 

TREATMENT 

Cubic force field 

Following an earlier convention 11203 in which plain symbols correspond 
to rectilinear coordinates and decoration by a tilde implies that an internal 
or symmetry coordinate is a curvilinear coordinate, we write the potential 
energy in its most natural form [21] as 

V = 112’~ ~ f*lSisi + l/6 ~ ~ ~ r,, Sa*jgk + . . . 

i j I j k 

Plausible values of the cubic constants fiik can be derived with the aid of the 
KBFF model [9, 181 (or, for bending, the POS model [3] ) from molecular 
orbital calculations [3, 223 or, occasiorLalzy, from experiment. For the 
vibrational calculations needed subsequently it is farsimpler to work in terms 
of recti@ear symmetry and normal coordinates S, and Q1 for which 



= l/2 x$ffQf + l/6 f: 7 ZQijkQi QjQk + *** 

where Q and S are related by the linear transformation 

S=LQ 

while fi and S are connected nonlinearly by 

s, = S, + I.12 7 2 TikSjSk + - - - 

From eqns. (3) and (4) follow the required transformations [ZO] 

f Jjk = f;:jk + 2 (fFiTik + feTJk f f,kT,“) 

r 

= fljk + f;k 

and [21] 
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CM 

(=I 

(3) 

(4) 

(5) 

(6) 

Elements of the T tensor of eqns. (4) and (5), derived for tetrahedral Ax, 
molecules from considerations of geometry, are listed in Table 1. Cubic 
force constant.s for these molecules corresponding to the KBFF recipe, 
including the stretch-stretch-stretch, stretch-stretch-bend, and stretch- 
bend-bend interactions needed in the present calculations [23,24], are 

fill = -3aK/2 + 2F3/r, (7) 

I%3 = -%K/2 + 2(-F’ + F + F,)/3r, (8) 

f;34 = (2F + F,)/3r, (9) 

633 = (5F’ + 7Ff2 + 2F3)/54112r, (10) 

A22 = (-F’ + F + F3)/6re (11) 

TABLE 1 

Non-zero elements ek of transformation tensoP of eqns. (4) and (5) with i, j, k repre- 
senting symmetry coordinates 1, 20, 3z, or 4z for the AX, molecule with T, symmetry 

i Elements 

1 T == =1/6R 1 T 44 = 1/4R 

2a T t I= = --1/2R T’Z’ - 
a - -6’“/24R T,- = -6-/4R T244 = 6=/8R 

32 T a4 = 6=“/12R I 
4Z T I4 = --1/2R 4 T =3 =--6’“/6R 4 

YSymmetry coordinate convention of ref. 25. R is the AX bond length. 
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fi44 = (-5F’ - 3F + F3)/6r, (12) 

L34 = (-8*12 F’ + F3)/1081/2 re (13) 

in the notation of ref. 9. For the present purposes we use molecular orbital 
results for the bend-bend-bend constants f 212 and fier. It should be noted 
that sign conventions in the above equations conform to those of 
Shimanouchi 1251 and ref. 9, rather than those of Cyvin [26] and Pulay 
et al. [22] . 

Probability density and effective potential energy 

Miller [12] has shown how to obtain a “better than classical” approxi- 
mation for the Boltzmann density matrix by a path integral technique. From 
an effective potential energy V,,, g ‘ven explicitly for a one-dimensional 
problem (eqn. (22) of ref. 12), can be calculated a probability density 

p = N exp(-V,,/kT) (14) 

that is exact if V is quadratic and which quite accurately reflects the first 
three moments of a Morse oscillator distribution at temperatures above 
hv/Bk. Extension to the multidimensional case of eqn. (2b) can be accomp- 
lished with tolerable accuracy by modifying the quadratic and cubic 
constants to 

& = @,iW, (15) 

G1 = ~,~*(l + 3W,,12) (16) 

@Fjj = @,jCwiwj+ Wiil2) 3 Ci+j) (17) 

@yjk =QijA w,wjwk ,(ifj#k) (18) 

where 

wi = (tanh V&/VI 

Wi, = sech2vi - W, 

and 

vi = hvi J2kT 

(19) 

(20) 

(21) 

To simplify the problem further, we separate V,, into its harmonic and 
anharmonic components Vhf f and Vafa and write 

p = N exp (-Vhff /kT) - exp (-Vzff /kT) 

= N exp (-Vgff/kT) - (1 - Yaff/kT) 

treating Gaff /kT as a perturbation. It is readily shown that 

exp (-Vt” /kT) = If i exp (-Qf/2<Qf>) 

where 

(22) 

(23) 
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<Q;) = (huJ&,J coth (ho,/2 kT) (24) 

is the exact mean square amplitude for a wanturn harmonic oscillator 
whatever the temperature. 

Moments and skew parameter 

As outlined elsewhere [6], the radial distribution function of an inter- 
nuclear distance is specified, adequately enough to characterize its con- 
tribution to a diffraction pattern, by its first three moments. Let Q, qer 
and x represent the instantaneous X. - - X distance, the equilibrium distance, 
and the displacement from equilibrium, respectively, in &. From the 
moments 

clc”) = j- x”P(QI, Qz, .**) dQ4Qz (25) 

can be found the mean internuclear distance 

qg = qe + cc> (26) 

the mean-square displacement from the mean 

1; =W)--(rF (27) 

and the skew parameter [6] herein sought 

6 = <(x: - (x>)3>/1; 

= ((x3> - 3(x2> cx) + 2w3)g (28) 

In order to evaluate the integrals of eqn. (25), x for the XI . - -X2 distance 
is expanded in the Taylor series [9] 

x = (2/3)“2(L~1Q1 + 0Q3r f TQ+) + L&&,/3 + - - - 

= YIQI f 72Q2a -+- 73Q3r + -~.,&a= f --- (29) 

where u = L33 + La312 andr = L34 t L&2. When this result, together with 
eqn. (22), is inserted into eqn. (25), integration is straightforward. If Viff 
in eqn. (22) is retained only through cubic terms, and corrections in mom- 
ents, through mean square amplitudes cubed, then the second moment is [9] 

(x2) = r12(Q1*) + y22(Q22) + 732(Q32) + r42(Q42) 

+ (LII <Ql )/rJ [(L22)2 c&z2 )/3 + u2 (Q32> + 7’ (Qa2 )] 

where 

(Q1)- 2 kT - -= (#:I1 (Q12) + 2 &2 (Q22) + 3 9:33 (Q321 + 3 eT4.4 <Qa2)) 

First and third momenti can be expressed as 

(30) 

(31) 

(x)=Z z zz 
i6jC k 

- hfjk (O~~kIkThAQZ)(Qj2) (32) 
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and 

ti3)=ZIzIz-- 
i<j<k 

qf_ik (@Tjk lkT)Yf(Q:)(Qj’) 

X (Cl (812 > + S2 cQ3 + ts(Qq*) + fd(Qa*) (33) 

where coefficients ri are identified in eqn. (29) and Xrjk, vijk, and Silk’ are 
listed in Table 2. From the above moments can be calculated the desired 
distribution function parameters of eqns. (26)-(28). These are related to 
diffraction intensities as illustrated in ref. 6. 

Explicit expressions for the effect of the interactions of greatest interest, 
the purely bending cubic constants f222 and f244, can be written simply if 
the conversion from V to Veif is not made in the anharmonic potential 
energy. Correcting inconsistencies in ref. 6, we write for the bending con- 
tributions to the asymmetry constants 

5222 = --fzz2 (Sz2 l3 l(27ig4kT) (34) 

and 

a244 = --f244 W2*> ((X4*) f 2(s&))*/(6Zg4kT) (35) 

For bending modes of hot molecules the corrections to V,,, are less cruciai 
than to stretching modes. If corrections are made, as seems desirable 
routinely, it is no longer attractive to work in terms of symmetry coordinates 
and expressions (29 j(33) are more appropriate. 

ILLUSTRATIVE CALCULATIONS 

Computations were carried out for illustrative purposes using the force 
fields of Clark and Rippon [273 for CF, and SiF, as if they were bona fide 
quadratic components of an anharmonic force field. Cubic constants for 
stretchstretch-stretch, stretch-stretch-bend, and stretch-bend-bend 

TABLE 2 

Coefficients for calculating moments of eqns. (32) and (33)a 

111 112 312 %,=I3 
122 1 3 71 

2 

133 312 912 71 
, 

134 0 6 0 
144 312 912 71 

, 

222 0 1 0 
233 0 3 0 
234 0 5 0 
244 0 3 0 

Voefficients yi are defined in eqn. (29). 



were KBFF values based on Set II and Set I potential constants and refer- 
e_nce bond lengths taken from ref. 18. Pure bend-bend-bend constants 
f 222 and f244 (d A-3) of -0.628 and -1.287, respectively, for CF4, -0.250 
and -0.473 for SiF4 are from semiempirical molecular orbital calculations 
later closely checked for CFd by ab initio calculations [3]. Differences 
between Set II and Set I may give a rough idea of uncertainties associated 
with force fields. Alternatively, a comparison between our anharmonic 
constants and those of Suzuki and Over-end [28], derived for CF4 with a 
somewhat similar model, can be made in Table 3. 

Listed in Table 4 are mean displacements of nonbonded distances horn 
equilibrium (including ordinary “shrinkage” [26] , namely the foreshorten- 
ing encountered via the nonlinear transformations [20] ). Also in Table 4 
are some of the more important contributions to the asymmetry parameter 
6 including the-substantial effect of the pure bend-bend-bend components 
from fzz2 and fz4. Although these cubic constants are modest in comparison 
with some of the others such as fi 11, their influence is amplified by the large 
amplitudes of the bending modes. Morse and transformation contributions 
to 6 were supposed to have been derivable, approximately, also by the sim- 
plified “predictive model” of ref. 15. Numerical calculations Cl81 made 
prior to the present work do agree approximately with those of the present 
more rigorous approach, as shown in Table 4. 

As forecast in ref. 6, the skew parameter 6 is not strongly dependent upon 
temperature once a molecule is hot enough for the present treatment to be 
valid. This is illustrated in Table 5. If the standard coefficient of skewness [S] 

TABLE 3 

Model cubic constants Ccr: (ia cm-‘) for dimensionless normal coordinated of CF,: 
subset required for calculation of a^,, 

ijk Set Ib Set II= sdsoa 

111 -18.2 -21.4 -27.0 
122 0.8 -7.3 -20.5 
133 -69.1 -57.3 -41.7 
134 -58.3 -46.5 -47.5 
144 -8-Q -20.4 -36.7 
222 -9.0 -9.0 -9.9 
233 -37.1 -35.3 -10.7 
234 34.8 21.0 -11.7 
244 -22.7 -26.2 -32.4 

=Ref. 28. Because the present research uses Shimanuchi’s sign conventions (ref. 25) the 
signs of the Suzuki and Overend constants were changed for Crsa and C,,,. bRBFF 
Set I of ref. 18 for ail but bend-benebend curvilinear constants where MO values of 
ref. 3 were adopted. =As for footnote b except that Set II constants of ref. 18 replace 
Set I constants. In ref. 18 Set II was preferred. 
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TABLE 4 

Selected result+ of computations, x in A, 6 in A*, for nonbonded distributions of CF, 
at 1700 K (top of table) and SiF, at 900 K (bottom) 

Cubic conk lo’tr) lo* tx’ ) 
-b 
~Mcme Gmn, &bb 

CF. 
set II 
Set II BoItze 
Set I 

SiF, 
Set II 
Set II Boltze 
Set I 
rtr, only 
ti odel, ref. 15 

17.5 106.2 0.32 -9.65 
0.36 -0.68 

13.8 0.32 -0.65 
-5.9 0 -0.66 

0.58 -0.59 

6.8 126.5 0.18 -1.26 
0.24 -1.45 

3.7 0.18 -1.26 
-8.9 0 -1.26 

0.14 -1.13 

1.33 
1.38 
1.33 
0 

2.01 1.27 
2.11 1.31 
2.01 1.08 
0 -1.26 

2.15 
2.29 
1.55 

-9.65 

:See footnote b and c of Table 3 for meanings of Sets I and II. bContribution from 
f 1z1 and fias- CContribution from nonlinear transformation from Si to Si. dContribution 
of pure bend-bend-bend curvilinear MO conskxnts. 
V (anharmonic) instead of using Vzff. 

eSimple Boltzmann average over 
Correct harmonic probability density adopted. 

TABLE 5 

Selected resuIts of computation for nonbonded distribution of CF,, Set 114 x in A, d 
in A*, ‘at various temperatures 

Parameter Temperature (K) 

1300 1500 1700 

%ot 2.113 2.135 2.153 
lo4 ((X - (X1)2) 70.5 94.2 106.2 
10’ w 14.29 15.84 17.46 

aSee footnotes, Table 3. 

or the frequency modulation parameter K for scattering intensities, namely 

K = Z,4/6 

had been tabulated instead, a larger temperature dependence would have 
been seen. That is one reason for choosing 6 to characterize asymmetry, 
although it is well established that, for Morse diatomic oscillators, 6 is 
appreciably lower when kT Q hv than at higher temperatures where it levels 
off [6, IS] . 
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DISCUSSION 

It is fair to ask whether the present considerations are fundamentally 
different from the “curvilinear effects” treated more simply by Gershikov 
et al. [29] and whether diffraction%% should be concerned about the asym- 
metry parameter, 8, in practical structure analyses. After all, few molecules 
can be as well characterized as the simple Td molecules treated in the fore- 
going and the treatment looks bothersome. General treatments of more 
compIex molecules would need even more intricate computations and some 
source of information on the relevant anharmonic potential constants. A 
few comments on the latter problem of feasibility are appropriate before 
addressing the first questions. 

For simple molecules (e.g. AX4, AX6) a brief program for a microcomputer 
quickly carries out the necessary calculations. For more general molecules 
a modest extension of a program built around the L tensor of Hoy et al. 
[21] should suffice. Plausible cubic parameters are readily guessed from 
quadratic force constants if the POS model 15, S] is invoked for bends and 
the KBFF model [9, 181 for most of the remainder. Meanwhile, the present 
illustrative calculations offer an indication of magnitudes involved. 

The kinematic treatment of cu-bilinear effects for bending motions by 
Gershikov et al. [29] is supposed to interrelate, approximately, the ru and 
r’g parameters for the bonds of linear ABI and planar AB3 molecules, despite 
its neglect of potential energy considerations_ Now, bending in linear ABI 
and out-of-plane bending in ABB contribute nothing, in first approximation, 
to 2(BB) either by nonlinear transformation or by pure bend cubic constants 
(zero by symmetry in these special cases). In-plane bends of AB3 do, of 
course, contribute to C(BB) but are not addressed by the kinematic treat- 
ment [29]. Because an extension of this treatment to more general cases 
could not account for the major part of the skew parameters so far observed, 
the kinematic treatment cannot be considered an alternative approach to 
the present problem. 

Effects of the skewing of geminal nonbond distributions, if not taken into 
account, may distort least squares refinements by over 0.01 .S for hot, 
fairly rigid molecules [l] and up to 0.1 A for certain pseudorotating mole- 
cules [30], by virtue of large bending amplitudes. Not only may the inter- 
nuclear distances be influenced by neglect of asymmetry. Even amplitudes 
of vibration of neighboring peaks have been found, in practice, to be altered. 
In the case of hot A& and AX6 molecules, temperatures inferred from AX 
and XX mean-square amplitudes failed to agree wit.h each other until suitable 
6 values were adopted [31] . Rational analyses extracting the full informa- 
tion implicit in diffraction intensities require appropriate asymmetry 
parameters. 
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