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Brunovsky and Chow [ 1 ] have recently proved that for a generic C2 
function with the Whitney topology, the “time map” r(.,f) (see [4]) 
associated with the differential equation U” +f(u) = 0 with homogeneous 
Dirichlet or Neumann boundary conditions, is a Morse function. In this note 
we give a simpler proof of this result as well as some new applications. Our 
method of proof is quite elementary, uses only Sard’s theorem and the 
implicit function theorem for functions in C’(lF?‘, R), and avoids the use of 
transversality in function spaces. 

An annoying difficulty that one has to face is that the domain of T varies 
with f: We get around this by constructing a continuous function H(f) 
which, if positive, implies that T is a Morse function. Thus our task is to 
prove that the set off with H(f) > 0 is generic. Of course, openness is 
trivial. To prove the denseness, we take anyf, perturb it by a monomial CU”, 
and consider the map 8: (u, c) + T’(u,p), wherej(u) =f(u) + CU”. We show 
that 0 is a regular value of 0 by checking explicitly that the relevant 
derivative has the form ~ln + b, where a # 0, and b is bounded. Thus for 
large n, the linear term dominates and this yields the density statement. 

One consequence of this result is that iff(u) < 0 for u > M, then there are 
a finite number of (positive) stationary solutions of the equation 
U, = u,, +f(u), with homogeneous Dirichlet boundary conditions and, 
generically, we can completely describe all solutions of this partial 
differential equation. 

1. ELEMENTARY FACTS 

We consider the associated first-order system U’ = v, v’ = -j”(u), and its 
flow dl. Let F’ =f, F(0) = 0; then F(u) + v2/2 is constant on orbits. If for 
p > 0, #,(O,p) = (0, -p), for some t > 0, we define the “time map” by 
T(p,f) = inf{t > 0: Q,,(O,p) = (0, -p)}. We will write T(p,f) = T(p) if there 
is no chance of confusion. Observe that if p,, is in the domain of T, and 
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0 < p < pO, then the (positive) orbit through (0, p) enters the region bounded 
by the u axis and the orbit segment $t(O,po), and, hence, must either leave 
this region in positive time, or approach a rest point. This gives 

PROPOSITION 1 [ 1, Lemma 4.11. Zf f(u)’ +f’(u)’ > 0, u E R + the 
domain of T is an open interval (O,/?(f)) minus a discrete set, Mjhere 
p(f)’ = 2 sup{F(u): u E R + }. Note that this interval may be finite, infinite, 
or void. 

If p E domain(T), then by symmetry, &,(O,p) = (a(p), 0), where 
2F(a(p)) =p*. This gives (see [4]) the explicit formulas for T and T’, 

(i) T(p) = 1:‘“’ (2dF(<))-‘/* da, 

(4 T’(P) =p[4p)f(a(p))l-’ S~‘p’((2AF(r)-A~f(r))/(2AF(r))3’2)dU. 

In these formulas, we are using the notation dg(<) = g(a(p)) -g(u), for any 
function g. 

PROPOSITION 2. [ 1, Lemma 4.21. Zf 0 c PO < P(f), SW2 +f’(u)’ > 03 
UER+, and p0 fZ domain(T), then lim,,O T(p) = limp,O_ T’(p) = 
-limp+po+ T’(p) = co. Zf IimP,,,,- a(p) < co, then limp+BV)- T(P)= 
Jim,,bm- T’(p) = 01). 

Proof. If $,(O,p,) = (u, v) with v > 0, then for p near pO, 
#N(O,p) = (zi, 6) with t7 > 0. Hence, T(p) > N/2 and lim,,O T(p) = 00; 
similarly lim, +nv, T(p) = co. Next, from (ii) 

- 3/2 

T’(p) zz @-- 

af (a> 

-A U(C) 

W(5)) 3’2 

where a(po) = limp+,,- a(p) and E > 0 is chosen so that f(x) + xf’(x) < 0 
for a(~+,) - E < x < a(pO). (Note thatf(a(p,)) = 0, andf’(a(p,)) < 0.) Then 
-AQ’X) = I:: - (f(x) + xf ‘(x)) dx > 0, for a&) - 6 < u G a(p) < a(&. 
Thus tne second integral in (1) is nonnegative, the first is bounded on 
HPO) - &/2, a(~ an d since T(p) -+ cc as p-+pO-, we see T’(p)-+ co as 
p -+pO. The same argument with p. =/I(f) shows T’(p ) + cg as p -+ ,8(f )-. 

Finally, for p > pO, let E(p,) = lim a(p) as p -+pO+, and write 

T’(p) = f (a:p)) [j~~“)-e+j~~~~~~tj~~o~-.+j~~~~~] 5 

and note that the first two integrals are bounded for p > pO, as is the third if 
f(C(p,)) # 0. If E is small, we may estimatefby its linear part near a(pJ in 
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the last integral (a(u - cx)p,,)) (f(u) < b(u - a(p,,))) and explicitly evaluate 
the integral. This gives lirnp,O+ Izg$‘:= -co, and iff(E(p,)) = 0, the same 
argument works for the third integral. 

2. THE WHITNEY TOPOLOGY 

Let C“(lR+) denote Ck functions f: R, -+ R with the @-Whitney 
topology, that is, U is a neighborhood of f if there is a function 
a: R + + R +\{O} such that 

1 g E Ck : i 1 g”‘(u) -f’(u)l < c(u) ( s CT. 
i=O 

Let A = {fE C2(R +):f(x)’ +f’(x)’ > 0, Vx E R + }; then it is easy to see 
that A is open and dense in C*(iR+). 

If fl,f, E C2P+)9 and If,(u) -f2(u)/ < (1 + u2)-*, then their respective 
primitives, F,, F, are simultaneously bounded or unbounded from above. 
Thus C2(R +) = 3 U %, where 9 and % are open and consist of those f’s 
which have bounded and unbounded primitives, respectively. 

For~E?YnA,wedetineH(f):R+\{O}-+R by 

H(f)(p) = min(L T’(P)~ + T”(JJ)~) ifp E domain T, 

= 1 otherwise, 

where T is the associated time map. Proposition 2 implies that H(f) is 
continuous. Similarly, if fE 5%’ n A, we define the continuous function 
H(f): (0,1)-t R, by 

H(f)(t) = min[ 1, T’(tPdf))’ + T”(@V))‘] if t/I(f) E domain T 

= I otherwise. 

For any compact C in R+\{O}, Hdf)lC is a continuous function off in %; 
that is, given f E A, a compact C in the domain of H(J) and E > 0, there is 
an open set 0 such that if fE 0, IHf (x) - H~(x)[ < E for all x in C. This 
holds since T’ and T” as well as p(f) depend continuously on f E C2(R +). 
Similarly, if C is a compact set in (0, l), and f E 9, then Hdf)I C is 
continuous in f E B. 

Now let 

.v= {fEA:I-z(f)>O}, 
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and note that 5?’ consists of Morse functions. We can write 

,~=(,~n~)u(.~nnS)-.~~U,~~, 

.Y?” = (f~ 2: H(f)] Ik-‘, k] > 0}, 

and 

cY;i”= (fE 9: H(f)1 [k-l, 1 -k-l] > 0). 

Then we note that ,Y”= nk,L+ .FF,F9= nksZ+ .Yf. Also by the above 
remark, FF is open since (k-l, k] is compact; similarly, Ff is open. We 
will show that for all k, Ff is dense in 2! and Ff is dense in 9. Then by 
the Baire category theorem, .F is residual in C’(W+). 

THEOREM 3. 11, Theorem 3.11. ‘6 is residual in C*(R + ). 

Proof We will show that ,Z’c f7 P # d for any nonvoid open set F c ?/; 
the proof for .?9 is virtually identical. Choose f, E F n A, and let 
M= (km’, k]\{p: H(f,)(p)),f}. Consider the map 0: M X (--E, E)--, R, 
defined by B(p, x) = T’(p,f), where?(u) =f(u) + J&,(U), and 

b,(u) = un if O<u<k+l, 

=o if u > k + 2, 

is a C* function; b, has compact support, but for computational purposes, it 
is just u”. Note that 13 is C’. (If 0 c 9, replace k in the definition of b, by 
P(fo)*) 

We claim that 0 is a regular value of 19 if E is sufficiently small and n is 
sufficiently large. By differentiating under the integral, we have 

a Lly+l 
I 

)A dt;f(r) ( + 2) du, 
0 (n + 1)(2AF(<))3’2 I 2 dF(r) - It i 

when x = 0 and T’ = 0. Note that for p E A?, f (a(p)) > 0 so &f(<)/dF(<) is 
bounded if 0 < u < a(p), by L’Hospital’s rule. Thus for large n, 13T’/ax < 0 
if p E a, T’(p,f) = 0, and x = 0. Thus aT’/ax < 0 for p E 2, T’(p,f”) = 0, 
and 1x1 < E for some e > 0. Thus 0 is a regular value of 0, and so F’(O) is a 
C’ curve C in M x (--E, E). Note that if x,, is a regular value of the projection 
map 71: C + (--E, E), then the map p + T’(p,S) has 0 as a regular value for 
p E M. But by Sard’s theorem, the regular values of 71 are dense in (-a, E) so 
we may choose x0, a regular value of x sufficiently small so that fE d and 
H(P)(p) > 0 if H(f)(p) > i. Then H(P)(p) > 0 for p E M and for 
H(f,(p) > 1; that is, for any p E [k-l, k] and, hence, FE .YFn@. This 
completes the proof. 

505/52/3 I I 
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COROLLARY 4. Suppose that T(pi) = L for i = 1,2, 3,.... Then 
a(p,) + m as i -+ co if either: (a) f E .F or (b) L is a regular value of T. 

ProoJ: Suppose that a(p,) <N for all i; then p’ < sup{2]F(u)]: u <N}. 
Suppose hypothesis (a) holds. Then by Rolle’s theorem, there exist pi, 
Pi <Pi <Pi+1 with T’(p,) = 0, or T is not defined for ~7~. Since f has only a 
finite number of zeros on 0 < u <N, it follows that there are only a finite 
number of pi in the latter class. Let U be a neighborhood of P = {pi : i E L + } 
with T’ # 0 on U/P, and let c = limp,. Then T/ (C\U) is a Morse function 
and has only finitely many points where T’ = 0; thus P is finite. In case (b), 
we approximate f by fsuch that L is a regular value for T(.,y), and JE Y, 
and then use part (a). This is possible since P is a compact subset of domain 
(T). Thus we may say that a(p,) - co as i+ co for generic f and generic L. 

3. REMARKS AND APPLICATIONS 

(1) If we consider the Neumann problem, we may write (cf. [4]), 
T(P) = T,(P) + T,(P), w h ere T, is the time map we have just considered, 
and T,(p) = inf{t: $--21(p) = (0, -p)}. Defining the map 19 as in the proof of 
the theorem, (and setting b,(u) = 0 for u < 0) we see that T, is independent 
of x so that dT/ax = aT,/ax, 0 is again a regular value, and thus our result 
also holds for Neumann boundary conditions. 

(2) When T is a Morse function, the critical points of T can accumulate, 
a priori, only at 0 or at /3(f). In fact, iff(0) > 0, one can define T(0) = 0 
and then T is differentiable from the right with T’(0) # 0. If f (0) < 0, one 
again has T’(0) # 0. If f (0) = 0 and f ‘(0) > 0, then generically, in the C* 
topology, T’(0) # 0 by the results in [3]. If f (0) = 0 and f ‘(0) < 0 then, 
barring a saddle to saddle connection, T’(0) # 0 and, hence, generically for 
the Dirichlet problem, T is a Morse function on [O,/?(f)) minus a discrete 
set. Note however, if P(f) < co, and a(P(f)) < co this discrete set is finite 
since f can have only a finite number of critical points on [0, aCJ(f))] for 
f E A. If, however, p(f) < co and a(/3(f)) = co, then the critical points of T 

FIGURE I 
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can accumulate at /?. For example, if F(u) = (1 - e-“) cos U, we find p = 4 
and a(&) = 00, see Fig. 1. Thus T’(p)% co as p-‘/S. This example 
contradicts Lemma 4.2(ii) of [ 11. 

Note also that the perturbation which we have defined in the proof of the 
theorem does not affect f(0). 

(3) For the Neumann problem, critical points of T may accumulate at 0 
iff(0) = 0, but, using the results in [4], these can be generically eliminated 
in the C3 topology (cf. [2]), by using a cubic approximation off near 0. 

(4) We turn now to some new applications. 

PROPOSITION 5. 
;- 

Suppose that lim F(u)/u* < 0 or lim ]F(u)(/u* = 0 as 
u + co, where F’ =J: Then the equation T(p) = L has at most a finite 
number of solutions p for generic L or generic f. 

Proof. Let T(pi) = L, ai = a(~,); then lim ai = co by Corollary 4. But 

fi T(pi) = jri (Fca ,> OF) l/z 
I 

ai 
= 

i d 

1 du -wG 
0 (F(ai) - F(u)>/ai - u dG m 

for 0 < ci < a, by the mean-value theorem. In case (a), 

In case (b), we have, for 0 < ri ( ai, 

fi T(PJ = jri aid& = l/dF(ai) - F(ti) + 00 r 
as i+ a3. 

COROLLARY 6. If f is any polyonomial then (a) for generic L, T(p) = L 
has only a finite number of solutions; and (b) if f # A’u, then f may be 
approximated arbitrarily close in C2 by an f’with T(p,fs) = L having only a 
finite number of solutions for any L. 

Proof. (a) If f is not linear, then 2F(u) - uf (u) is monotone for large u 
and so from (2) T’ # 0 for large a. Also, f (a) # 0 for large a so we cannot 
have T(a,) = T(aj) for ai, aj > N. Thus the result follows from Corollary 4. 
If f is linear, then T(.,f) 3 c, and so T(p) = L has no solutions if L # c. 

(b) Choose fE .% near J Then for large u we still have J’(U) # 0, and 
2F(u) - ufl~) is monotone. The conclusion again follows from Corollary 4. 



438 SMOLLERANDWASSERMAN 

Note that A% can be approximated by, say 1% + ~(1 + u’)-’ which has a 
monotone time map T, thus T(p) = L has at most one solution. But this 
approximation is not small in the C2 Whitney topology. We do not know if 
/1’u can be approximated arbitrarily close in C2(R +) with T(p) = L having 
only a finite number of solutions for all L. 

Finally, we remark that these last results enable us to generically give a 
complete qualitative description of all the solutions of the associated 
parabolic equation U, = u,, +f(u), having homogeneous Dirichlet boundary 
conditions. This follows from Theorem 24.15 of [5]. 
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