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Localized frictional slip and separation slip between two contacting solids caused by an 
incident plane elastic wave of arbitrary form was studied in reference [l]. In that paper 
the angle of incidence of the wave was restricted to produce a disturbance propagating 
along the interface with supersonic speed. The results were obtained in closed form and 
convenient graphical representations were given. Here the investigation is continued in 
the transonic range by using a dislocation formulation that leads to singular integral 
equations. Examples of localized slip, separation-slip and slip-separation-slip are given 
for identical materials. Some of the results are in closed form, while other results are 
obtained by numerical integration. 

1. INTRODUCTION 

When an incident plane stress pulse strikes the frictional interface between two solids in 
contact, a disturbance consisting of localized slip and separation zones may propagate 
along the interface. The speed u with which the disturbance propagates is 

v = co/sin 89, (1) 

where co is the phase velocity of the incident wave and e. the angle of incidence. For 
identical materials u is either supersonic (II > cL) or transonic (cT < u < cL, co = cr). 
Localized separation of a frictionless interface in the supersonic and transonic range was 
studied in references [2] and [3]. The effect of friction was considered in reference [l] 
for the supersonic range. Here the investigation of reference [l] is continued in the 
transonic range, both slip and separation being considered. The formulation resembles 
that of reference [3]. Solids with dissimilar material properties have been considered in 
references [l] and [2]. 

2. FORMULATION 

The geometry of the problem with the incident plane wave and the applied normal 
and shear tractions pm and qm is shown in Figure 1. The elastic constants and wave speeds 
are denoted by A, p, c, and cT in the usual manner. If slip and separation are not 
considered, the normal and shear tractions transmitted by the interface due to the pulse 
only are [4] 

CQAn) = saof(s), ax,(n) =--do cot (2@0) f(n), (233) 

where f(n) is a normalized function determining the shape of the pulse, do is a real 
constant with dimensions of stress and n is a dimensionless co-ordinate moving with 
velocity v. To prevent global slip the restriction lqml < fpm (pm > 0) is imposed, where f 
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Figure 1. Geometry of the problem. 

is the coefficient of friction. No separation will occur if pm> Sa,, it being assumed that 
maxf(q) = 1. 

To allow for the possibility of separation and slip one can introduce arrays of climb 
and glide dislocations with densities B,,(r)) and I?,(n), moving along the interface with 
speed O. The dislocation densities are related to the gap g( 7) and relative tangential shift 
h(n) by 

B,(q) = -dg/dq> B,( 7) = -dh/dn. (475) 

The tractions due to the dislocation arrays have been given in reference [5] as 

(6) 

(7) 

where 

&={(U2/C$)-1}1’2, [*, = { 1 - U2/ Ct}‘? (8) 

The total tractions at the interface are then 

N(rl)=-POO+9Pof(17)+a,D,(77), S(77)=qg)-&Icot(2&Jf(77)+&?l). (9,lO) 

3. SLIP ONLY 

The case of a slip zone only is shown in Figure 2(a). Then 

B,(s) =O. 

For Coulomb’s law of friction, the boundary conditions are 

N(V)<% -co<q<cc, IS(rl)I =fW(77)1, 

IS(l7)l< IN(n 77>&17<% w S(v) =w V(v), 
where V(T) is the slip velocity, 

V(n) = dhldt = k&%(rl), 

(11) 

a<q<P, (12313) 

(Y<n<P, (14,15) 

(16) 
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Figure 2. Arrangement of zones. 

and k, is a normalizing constant with dimension [L]-‘, characteristic of the pulse. 
Introducing 

P =fw V(v) (17) 

one can replace expression (14) by 

S(n) = -pN(77). 

By using equations (6), (9), (10) and (1 l), equation (18) can be written as 

1 4&-G 
J%(n)+- 

7r (l-GY 

The solution of equation (19) bounded at both ends is [6] 

B (~)=251(l+i’)cos2(~A)s4 x /-4l-521)2 0 

tan( VA) 
w(v) a<77<p, 77 

(18) 

(19) 

(20) 

G(~)=(1/~o)~qm-~~“+~o~~-cot(2~o)lf(~)>~ W(T) = (P - dAh - Q,)‘-A> 
(21,22) 

A=(1/7r)tan-‘[-4JT5T/(1-5$)2], +A<l. (23) 

The total shift caused by slip is 

and the condition for 

I P 

D = k. B,(t) d5 
a 

bounded B,( r]) (consistency condition) is 

Substituting equation (20) into equation (24) gives 

(24) 

(25) 

,=2&(1+~z,) 
P(l-527.)2 

&ok, cos ( TA) I ’ W(5) - de. 
w(5) 

(26) 
u 

Inequalities (14), (15) and equation (25) are sufficient for the determination of the 
endpoints (Y and p of the slip zone. The results can be illustrated by an example. For a 
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parabolic pulse 
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(27) 

as in reference [3], and the case in which the slip zone is completely contained within 
the pulse extent (ICY], I/3] < l), the integrations can be carried out and the results are in 
closed form. Equations (25), (26) and (20) become 

(q”-pp”)/&)[-cot(28,)+p]=-1+ CX~+~CX(~-CX)A+~(~-CY)~A(~+A), (28) 

~,~~~=~~~T~~+~~~I~L(~-~~~~I[-~~~~~~+PI~~~~~~~~~~~~~ 

X[v + a + (P - a)Al, (Y<T)<p. 

The normal tractions are 

N(3) =-P”+&)f(l))Y -co<n<cc, 

and the shear tractions in the stick region are 

S(n)=4m-~0c0t(2tWX17)+~o[-cot(2~0)+P] 

X -1+$- 4*- PPrn 

dO[-cot (2e,)+P] 
-(1,-~~)[n+a+(p-cx)Al , 

77 ’ P, 77 < ff. 

Checking inequalities (14) and (15) shows that they are contradictory unless 

2a+(/?-cr)A=O. 

Therefore, p is given by 

/? = -(~(2-A)/A, (Y ~0. 

Substituting expression (34) into equations (28) and (30) gives 

(q”-pp”)/d,[-cot (26’,)+p]=-1+~2(2-A)/A 

~=-~~5r~~+5~~/~L(~-~5:~2l~~~~~-~0~~~~,~+pl[~2(2-AA)IAI~1-~~ 

=-~~Y~~~+5~~l~~~-~~~~l~~~~-A~[-~~cot~28,~+q”+p~~~-p”~l, 

~,~77~=-~~5T~1+121.~/CL~1-52T~2l~~[-CO~~2e0~+Plc0S~~A~ 

X (P - dAh - a)2-A, a<q<p. 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

The parameter (Y is now determined from equation (35). The shear tractions in the slip 
zones can also be simplified by using equation (35): 

s(n)=4m-6cot(26Jf(n)+~0[-c0t(2~0)+~] 

xb?2+~~-177-PIA177-~12-Al, 77 ’ P, 7) < CL (39) 

It can be verified from equation (39) that the shear tractions tend to qm as n + 00. It is 
also clear from equation (39) that the shear tractions have a continuous derivative at the 
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trailing edge of the slip zone and a discontinuous derivative at the leading edge, confirming 
results obtained in quasistatic situations [7]. 

The case (a] > 1 can be treated similarly by numerical evaluation of the integrals 
involved, as in the next section, but it is of no particular interest and it is not pursued 
further. 

4. SLIP AND SEPARATION 

For the case of slip and separation one can consider a tensile pulse with amplitude 
do > pm so that separation occurs in the interval y < n < 6 (see Figure 2(b)). One must 
require 

N(n) =O, Y<77<& N(77)cO, rl< Y, 77 ’ 6. (40741) 

In addition, the boundary conditions (14)) (15) and (18) of the previous section remain 
valid. Although the slip zone depends on the separation zone, the latter can be determined 
independently and the results are identical to those of reference [3], where the frictionless 
interface was considered. For the case in which the separation zone is contained within 
the pulse extent (171, JS( < l), one obtains closed form expressions. The results for a 
parabolic pulse (from reference [3], with minor notation modifications) are 

~=r(l-c)/(2+alr, rso, p”/L?zrB,=1-[(1-c)/2(2+c)]y2 
(42,43) 

q-s c w?)=-~oPb?)-~r8o - - I I[ 3c 77-y +2+C V?- 
(I+C)(I+2C) y* 1 (2+c)2 ’ 71’6, rl< Y> 

(44) 

where C=A-1/2,f(n)=l-T*-f(n) (45246) 

and f(7) is given by equation (27). This solution is valid for 

3(1+C)/2(2+C)<p”/.&<l. (47) 

For lower applied pressures the solution is obtained numerically [3]. The solution of 
equation (18) with N(n) given by equation (44) is still given by equation (20) but with 
G(n) replaced by R(n): 

R(n)=(l/&J[qOO-&cot G%)+d'J(17)1. iw 

The consistency condition can be solved for qm yielding 

-D(5) + .& cot CMJf(5) d5 

w(5) 
(49) 

The shear tractions in the stick region are 

S(rl)=qrn-~0cot(2&M(77) 

+~ 
0 

R(5) d5 
w(5)(5- 11) ’ 

7’ P, ??<a. (50) 

For the numerical integration, the interval (a, /3) is normalized by the change of variables 

v=@-(Y) s+@+cu), (51) 
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and then the Jacobi quadrature given in reference [8] is applied. The discretized 
expressions of the relevant quantities are 

” A!%( u.) 
tan (IrA)? w(sd C ’ ’ , k=1,2 )...) n-l, (52) 

i=l ui - Sk 

qcQ= sin (nA) n 
A ,C, [-pN( ui) + do cot (2edf(ui)IAI”), (53) 

where the Ui are the roots of the Jacobi polynomial Pj;A,-l+A), the Al”’ are the coefficients 
of the corresponding quadrature, 

p1;4_,;-A)( Sk) = 0, k=l,2,...n-1, ei=$(p-a) Ui+$(p+(Y), (55756) 

and the same symbols are used for the functions in the normalized variables. 
As an example, suppose 

80 = 35”, c,lcL=t, f =0*5. (57) 

Figure 3. Normal and shear tractions for (a) p = 0.4 and (b) p = 0.9 
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Then p = -f and V( 7) < 0. This inequality and equation (14) determine U. Equation 
(53) can be used to determine @ ; however it is simpler to assign j3 and compute qrn from 
equation (53) instead. For a fixed separation zone, it is found that for small p the slip 
zone extends over to the right of the separation zone, Q = y, and as /3 increases another 
slip zone appears next to trailing edge of the separation zone. In terms of qm one finds 
that, for qm> 0, as qa increases the slip zones decrease and eventually the left slip zone 
disappears. This is because in the present example slip is dominated by the shear tractions 
due to the pulse, which are of sign opposite to that of qco. For y = -0.3 the left slip zone 
occurs for 0.83 </I < 0.84, and for y = 0.1 for 0.27 < j? ~0.28. Figures 3(a) and (b) show 
the normal and shear tractions for y = -0.3 and p = 0.4 and 0.9, respectively. 
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