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THE STRUCTURE OF A RANDOM RELATION WITH AN
APPLICATION TO A NOMINATION NETWORK *

Peter J. LENK **
University of Michigan

Stochastic relations frequently occur in the social sciences; however, their statistical properties are
not well-known. A random relation can be used to model noise or observational error. This paper
characterizes the structure of a random relation by deriving the distribution of the structural vector
from Q-analysis and by simulating random relations. We propose a measure of structure and apply
these concepts to the nominations of esteemed peers by mathematicians.

1. Introduction

Atkin (1974) developed a powerful technique, called Q-analysis or
polyhedral dynamics, to analyze the structure of a relation between two
sets. An implicit assumption in the analysis, as used by most re-
searchers, is that the relation is deterministic. However, relational data
in the social sciences is frequently stochastic in nature, and care must
be used in drawing inferences from a Q-analysis since its statistical
properties are not well-known.

Stochastic relations arise in several contexts. They occur when a large
population is sampled with the objective of estimating population
parameters. In this case, a subset of the entire relation is observed. For
example, Granovetter (1976) samples a large network in order to
estimate average acquaintance volume. Frank (1971, 1978) extensively
discusses sampling from networks. Stochastic relations also occur when
an entire relation is observed, but the observed relation is a sample
from a population of relations. For instance, Rapoport and Horvath
(1961) observe the friendship networks in two junior high schools. They
treat the two data sets as replications and draw inferences about the
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population of friendship networks in junior high schools. Relational
data can also be considered as a realization of a stochastic relation.
Gould and Gatrell (1980) analyze a soccer match. They treat the
relation as being deterministic and analyze the structure of a particular
game by using Q-analysis. However, to draw more general inferences
about the structural play of the two teams, the data should be viewed as
a realization of a stochastic relation since a re-match would produce a
different data set. Observational error is another source of randomness
in relational data that should not be ignored.

In order to treat stochastic relations, probability models with param-
eters that express the essential features of the relation and techniques to
estimate these parameters need to be developed. Rapoport (1979) and
Holland and Leinhardt (1981) have worked in this direction. However,
probability models are not widely used for relations. Typically, re-
searchers combine their expertise of a field with the data to draw
inferences and develop insights. Since they are unable to specify their
prior knowledge and the likelihood of the data due to the lack of
probability models, they are unable to separate their prior information
and the data in the posterior analysis as suggested by Bayesian in-
ference. In this situation, the researcher runs the risk of drawing
conclusions that are not warranted or supported by the data.

Random relations can be used to model observational error or noise
in model building. This paper characterizes the structure of a random
relation by deriving the distributions of the structural vector from
Q-analysis and by simulating random relations. This characterization is
applicable to model building and to the analysis of residuals from
fitting a model to the data. It is also important to recognize this
structure, for inference based on this sort of data may be primarily the
product of the prior information without the researcher being cognizant
of it. Researchers should be careful not to fall into the position of
mistaking the structure of a random relation as being significantly
different from random or, to use a colorful analogy, of seeing patterns
in the clouds.

Section 2 provides a characterization of the structural vector from a
Q-analysis for a random relation. We propose a measure of random
structure that is based on concepts from Q-analysis. This statistic seems
to be useful in measuring the deviance of the structure of a relation
from the structure of a random relation. The reader who is unfamiliar
with Atkin’s work may find Gould’s (1980) introduction to Q-analysis
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insightful. In section 3 we demonstrate the concepts of section 2 with
an example of nominations of esteemed peers in two fields of mathe-
matics. The measure of random structure indicates an asymmetry in the
structure of giving and receiving nominations.

2. The structural vector for a random relation

A relation between two sets identifies elements of the first set with
those of the second. A canonical example in Atkin (1974) has the first
set as people in a community and the second set as activities. The
relation identifies the people that participate in particular activities. A
directed network is also a relation where the elements of the two sets
are nodes, and the relation identified which nodes are linked together.
The nominations of esteemed peers in section 3 is an example of a
directed network where the first set contains the nominators, and the
second lists the nominees. The relation identifies a nominator with his
or her nominees.

A random relation identifies each pair of elements from the two sets
with a constant probability, independently of the other pairs of ele-
ments. A random relation can be considered as modeling observational
error or random noise. An interpretation of a random relation is that it
is non-informative about the phenomenon under consideration. How-
ever, a random relation also exhibits a structure. This section char-
acterizes that structure.

Subsection 2.1 introduces the concepts of Q-analysis, in particular
the structural vector, that are necessary for the rest of the paper.
Subsection 2.2 derives the distribution of the structural vector for a
random relation and qualitatively describes its most likely behavior.
Since the distributions are complex, subsection 2.3 reports the results of
a simulation. The simulation is useful in exploring the operational
characteristics of the structural vector and indicates that its distribu-
tions can be approximated by standard distributions. Subsection 2.4
proposes a measure of random structure and derives its asymptotic
distribution for random relations.

2.1. Definitions and notation

This section is a brief summary of the concepts in Appendix B of Atkin
(1974) that are necessary for the derivation of the distribution of the
structural vector. We will not give a complete introduction or explore
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the philosophical implications of Q-analysis but merely fix ideas and
notation.

Let X={xi}, i=1,....m and Y={yj}, j=1,....n be two, finite
sets. A relation A from X to Y as a subset of the cartesian product of X
and Y. If x is related to y by A, we write xAy. The relation can be
represented as an incidence matrix A = (A(Jj)) with m rows and n
columns where

A(ij)={1 if xiA yj

0 if not

The set of points in Y that are related to a fixed x 1s denoted by
o(x, Y). Similarly, the set of points in X that are related to a fixed y is
denoted by o( y, X). These sets are called simplices. If 6(x, Y) contains
p + 1 elements, it is called a p-simplex, is said to have dimension p, and
is denoted by o,(x, Y) where the subscript makes the dimension
explicit. If o, is a proper subset of o,, then g is less than p, and we write
o0, < o, which is read as “o, is a face of 0,”. If 0, and o, have the same
elements, write o, = 0,.

A collection K of simplices is called a simplical complex if:

1. Each O-simplex is a member of X;
2. If o, is in K and if o, <g,, then o, is in K.
For the relation A define

K(X,Y)={o:0<g0(x,Y)forsomexinX}U{{y}:yinY},
K*(Y, X)={o:0<0(y,X)forsomeyin Y}U{{x}:xinX}.

K and K* are simplicial complices. K* is known as the dual complex of
K. The largest integer N such that a N-simplex is in K is called the
dimension of K and written as dim K. The face relation < is a partial
ordering on K and K*.

The structure of a simplicial complex is determined by the manner in
which the simplices intersect each other. Suppose that o, and o, are

elements of K. If 6, N 0, = 0,, then 0, < ¢, and g, < o,. Two simplices o,

and o, are g-connected if there exists a sequence of simplices o, ,...,0,
such that:

1. 0, <o,

2. Uah<05, fori=l,...,h—l,

3.0,No, =0,



P.J. Lenk / Random relation structure 5

and ¢ is the minimum of the dimensions a,, by, b,,...,b,_4, a,. If two
simplices are g-connected, then they are also ¢-connected for r =0,...,q
-1

Define a relation v, on K or K* by: two simplices are related if they
are g-connected. The relation is an equivalence relation. Then g-con-
nectedness determines the equivalence classes of the quotient set K/v,,
which partitions all simplices of dimension greater than or equal to q.
Consider two simplices in K such that their dimension is greater or
equal to g. They belong to the same equivalence class in K/v, if and
only if they are g-connected. If they are in the same equivalence class at
dimension g, then they are in the same one at all dimensions less than
q.

The cardinality of K/, is denoted by Qg. Hence Qg is the number

of g-connected components or equivalence classes in the quotient set.
The vector @ = (Q(N), Q(N —1),..., Q(0)) where N is the dimension
of the complex K is called the structural vector, and the procedure of
finding Q is called, aptly enough, Q-analysis. For each relation from X
to Y there are structural vectors for K( X, Y) and K*(Y, X). Com-
monly, the results of a Q-analysis is presented in three columns: the
first gives the dimension ¢, the second gives the number of equivalence
classes Qq, and the third lists the equivalence classes.

Before giving an example, we briefly comment on the geometrical
interpretation of the simplices and the simplicial complex. A p-simplex
has p + 1 elements and can be considered as the convex hull of p +1
points in a p-dimensional Euclidian space such that no g+ 1 of the
points lie in a subspace of dimension less than g. In other words, the
p-simplex determines a p-dimensional polyhedron with the elements of
the simplex at the vertices of the polyhedron. For example, 0,(x1, Y) =
(y1, y2, y4) is a triangle in two dimensions, and o;(x2, Y)=
(»1, ¥2, y3, y4) is a tetrahedron in three dimensions. Also o, is a face of
o,. Clearly, they are 2-connected A geometrical representation of a
simplicial complex can be constructed by joining the simplices at their
shared faces.

Consider the relation gives in Table 1. The simplices in K( X, Y') that
are determined by the relation are

0,(x1, Y)=(y1, y2, y4),
o;(x2, Y)=(»1,y2,y3, y4),

o, (x3,Y)=(y1,2,y5).
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Table 1
The Q-analysis for a relation A

|
A=x1]1
x21 1
x311
Q-analysis for K(X, Y)
AN =T J is a matrix of 1's.

components

(x1,x2) (x3)
(x1,x2,x3)

q @
31 (x2)
2 2
1 1

[=R R =]

Q-analysis for K*(Y, X)

A'A—-T

] vyl »2 y3 y4 5
yil2 2 0 1 o
y2 2 0 1 0
»3 0 o0 -1
ya 1 -1
vS 0
q Q components
2 1 (yl.,y2)
1 1 (yl,y2,v4)
0 1 (y1,y2.¥3,y4,55)

and the simplices in the dual K*(Y, X) that are determined by the

relation are

o, (y1, X) = (x1, x2, x3),
02(y2,X)=(x1 x2, x3),
0 (r3, X) = (x2),
01(y4,X)=(x1 x2),

oy (5, X) = (x3).

The Q-analysis for K( X, Y) and K*(Y, X) can be obtained from the
matrices AA" —J and A’A — J, where “A’” indicates the transpose of a
matrix, and J is a matrix of ones of the appropriate order. The matrices
are symmetric, so only the upper triangular elements are listed. The
diagonal elements give the dimensions of the simplices. The off-diago-
nal elements give the dimension of the faces shared by each pair of
simplices; a ‘— 1’ indicates that the simplices are disjoint, a ‘0’ indicates
that they share one vertex, a ‘1’ indicates that they are connected by an
edge, and so on. The Q-analysis for the above example is given in Table

1.
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2.2. Distribution of the structural vector

Let A be a relation from X to Y given by the incidence matrix
A=(A(H)),i=1,....mand j=1,...,n. Suppose that A(ij)’s are inde-
pendent, identically distributed random variables such that

P(A(y)=1)=p,
P(A(§)=0)=1~p.

Such a relation s called random. In this section we derive the marginal
distributions of the structural vector for K(X, Y) and qualitatively
describe the most likely behavior of the distributions as the dimension ¢
varies. The results of this section also hold for the structural vector of
the dual complex with the obvious change in the parameters.

Define a m by m matrix 4 = (A(ij)) = AA’. Then

A(ii)= #a(xi, Y)
A(ij) = #[o(xi, Y)No(x), Y)]

where ‘#’ indicates the cardinality of a set. Note that A(if)=
dimo(xi, Y)+ 1.

Since the A(if) are independent and identically distributed, the A(:7),
i=1,...,m are independent, and the following results are easily ob-
tained. The probability that a y is in the following sets is given by:

yisin a(x, Y) with probability p,

yisina(xi, Y)Na(xj, Y) with probability p2,

yisino(xi, Y)—a(xj, Y) with probability p(1 — p).

The joint distribution of A(ii) —A(if), A(jj)— A(Aij), and A(ij) is

multinomial and given by

(A(ii)—A(ij), A(jj)—A(ij),A(ij))

<(p(1=p) " (p(1 = p))

Xp2A(ij)(1 __p)2(n—A(l’i)-A(jJ'HA(ij))
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for A(ii), A(jj)=0, 1,...,n and A(ij)=0, 1,....min(A(ii), A(jj))
where the first factor is the multinomial coefficient. The marginal
distribution of the A(i)’s are independent binomial B(n, p), and the
A(ij)’s are B(n,pz)t The conditional probability of A(ij) given A(ii)
and A( jj) is

(A(ii)—A(ij), A(njj)—A(ij), A(ij))
(A(nii))*(A(njj))

fora(iy)=0,1,....min( A(ii), A(ji))-

Next define Ug= #{x: dimo(x, Y)=¢g} = #{A(ii)=q+1} for
g= —1,0,...,n— 1. Each of the m elements of X is counted once and
only once. The probability that dim o(x, Y)= g is given by

PAGT) =g+ 1) =, 0 q P (1=p)" "

Denote P(A(ii) = g + 1) by p,. The vector U= (U(n —1),..., U(-1))is
multinomial with parameter m and probabilities p=(p,_,....p_1).
Define Vg=Uqg+ U(qg+ 1)+ ...+ U(n —1). Vg is the number of sim-
plices that are of dimension ¢ or more. Since Vg is the sum of the
components of a multinomial distribution, it is B(m, Pg) where Pqg=p,
tpat o

Define the matrix Ag = (Aq(ij)) by

1 ifd(if)=q+1

Aqly) = {o it A() <q+1.

Aq(ii) indicates those elements whose dimension is greater or equal to
g, and Ag(ij), i not equal to j, indicates the pair of elements that share
at least a g-dimensional face. If A¢(ii) =0, then Aq(ij)=0 for all ;. If
Agq(ij) =1, then Ar(ij)=1 for all r less than ¢. Similarly, if A¢(ij) =0,
then 4s(ij) =0 for all s greater than g. Therefore, the structural vector
QO has the Markov property in that

P(Qq|Q(g+1),....0(n—1))=P(Qq| Q(q + 1)),

and

P(Qq|Q(-1),....0(¢g—1))=P(Qq| 0(q—1)).
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Either set of these conditional probabilities and the marginal distribu-
tion of Q(—1) or Q(»n — 1) specify the joint distribution of Q. Unfor-
tunately, these probabilities are extremely complicated because of the
large number of ways that Q(g + 1) equivalence classes at dimension
g + 1 can change to Qg components at dimension g.

A more tractable problem is deriving the marginal distribution of Q.
Even these are complex and not easily computed. Fix a dimension g,
and suppose that Vg is not zero. There are Vg ones and m — Vg zeros in
the main diagonal of Aq. Suppose that Qg = k and that the k equiva-
lence classes are of size ny, n,,...,n,. Permute the rows and columns of
Ag so that the n, elements of the first component occupy the first n,
rows and columns, the n, elements of the second component occupy
the n, + 1 to n; + n, rows and columns, and so on with the last m — Vg
rows and columns being zeros.

First we compute the joint probability of Qg =k, ny,...,n, given Vg.
In order that the jth component has n; elements, at least n; —1 ones
must appear tin the block above the main diagonal in the area defined
by the intersection of n, + ... +n,_, ton, + ... +n,rows and columns.
The remaining entries in these segments can be either zeros or ones.
The probability that an off-diagonal entry is one is given by the
probability that A(ij) is greater or equal to g + 1 given that 4(ii) and
A( jj) are greater or equal to ¢+ 1. In order that there are & compo-
nents, the remaining entries are zero. If one of these entries were one,
then two elements in different equivalence classes would share a g-face,
which is a contradiction. The number of these entries is

g(ny,...,n)=nmn,+(ny+ny)ns+ ... +(ny+ ...+n,_)n,
koi-1
=) Y an,
i=2 /=1
For Vg> 0
P(Qg=k,n,,....n Vg=v)=f(n,,....n)d" 51 —d )5 "
where
d=P(A4q(ij)=1)

=P(A(j)zq+114>ii)zq+1,4(jj) = q+1),
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min(r,s)

S OY Y (Al =rA(s) =s. () =1)

r=g+1s=qg+1 t=qg+1

d=
2
Pq

and

v
f(n,...on; )= ("1»--0»"/()'
The probability of Qg given Vy is
P(Qg=k|Vq)=) P(Qqg=k,ny,...,n, | Vg)fork=1,....Vq

where the summation is over all combinations of n;,...,n, such that the
n’s are greater than zero, and they sum to Vg. If Vg =0, then

1 ifk=0
P(Qg=k|Vqg=0)= {0 ;therwise'

Finally,
P(Qq=k)=3 P(Qq=k|Vg=v)*P(Vg="0)
v=0

where Vg is a binomial B(m, Pq) distribution.

Despite the complexity of the marginal distributions, it is possible to
make qualitative observations about the most likely behavior of the
structural vector. First we list some facts about the maximum and the
minimum of f and g.

1. Fix v and treat k, n,,...,n, as variables in f.

a. f is minimized by k =1 and »n; = v with f= 1.
b. fis maximized by k =v and n, = ... =n, =1 with f= !

2. Fix v and k. Since f is symmetric, suppose that n, > ... > n,.
Decrease the ith entry by 1 and increase the jth entry by 1 for / <j.
Observe that

f(nl...n,.—1...nj+1...nk)gf(nl...ni...nj...nk)

if and only if n, 2 n, + 1.
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a. fis minimized by ny =v—k+landn,=...=n,=1.
b. f is maximized when all of the components are approximately
equal. Namely,

”1:[0//(]’ ”2:[(0_”1)/(1(_1)]» ”3=[(U_”1_”2)/(k_2)]=

where ‘[a]” denotes the greatest integer less than a.

3. Fix v and k in g. The reasoning here is identical to (2), and the
minimizer of ¢ is the same as in (2a), and the maximizer is the same as
in (2b).

4. Fix v and let k& be variable in g.

a. By (3) the minimum of g with k& and v fixed is

glo—k+1,1...1)=(v=k+1)(k—-1)+max((k—1){k—2)/2,0)

so g is minimized by k =1 and n, = 0.

Table 2
Q-analysis of K( X, Y) for a random relation card X = 30, card Y = 30, and p = 0.25.

q Q components
14 1 1 singleton
13 1 1 singieton
12 1 1 singleton
11 3 3 singletons
10 4 4 singletons
9 5 5 singletons
8 12 12 singletons
7 19 19 singletons
6 20 1 component with 2 elements
19 singletons
5 21 1 component with 5 elements
1 component with 2 elements
19 singletons
4 13 1 component with 14 elements
1 component with 2 elements
11 singletons
3 4 1 component with 27 elements
3 singletons
2 1 1 component with 30 elements
1 1 1 component with 30 elements
0 1 1 component with 30 elements
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b. Using (3) the maximum of g with k& and v fixed is [(k — 1)v/2k].
Treating k as variable gives the maximum at k = v.

A typical result of a simulation with m =n =30 and p =0.25 ap-
pears in Table 2. The reader may find it helpful to compare the
simulated structural vector to the following description of its most
likely behavior based on the above results.

For small values of g (¢ =0 to 2 in the simulation) d is large, and
1 —d is small. Then (1 — d)# dominates f, and (1 — d)* is maximum
when g is minimum which occurs when there is a single, large equiva-
lence class by (4a). For large dimensions (¢ = 7 to 14 in the simulation)
d is small so that the dominant factor is f. The most likely behavior is
to have the Vg elements partitioned into singleton equivalence classes,
i.e. k="Vg as seen from (1b). As the dimension decreases (1 —d)#
begins to dominate f. The transition from a large number of singleton
components to a single equivalence class with Vg elements is not abrupt
but goes through a transitional stage where a relatively few components
have more than one element, and the rest are singletons. This behavior
is seen from treating & as fixed and minimizing g as in (3). (see g =3 to
6 of the simulation.)

2.3. Simulation

The marginal distributions of the structural vectors are mixtures of a
distribution, whose functional form resembles a multinomial distribu-
tion, with a binomial distribution. The underlying parameters for the
relation from X to Y are m = card X, n = card Y, the probability p that
x is related to y, and the dimension ¢. The distributions of the
structural vector Q are complicated functions, that are not amenable to
analysis, of these parameters. However, a simulation indicates that the
marginal distributions, with a few exceptions, can be approximated by
standard distributions.

We studied six random relations. The first three had m =20 and
n = 10; the next three had m = 30 and n = 10. For each choice of m and
n, p was 0.1, 0.2, and 0.3. A uniform random number on (0,1) was
generated for each pair of x and y. If the random number was less than
or equal to p, then x and y were related. For each combination of m, n,
and p, we generated 1000 random relations, performed a Q-analysis for
K(X, Y)and K*(Y, X), estimated the marginal distributions of Q, and
computed the mean and variance of the number of equivalence classes
at each gq.
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The simulation indicates considerable regularity and dependency for
the marginal distributions for different m, n, p, and g. The simulated
distributions for K*(Y, X) when m = 30, n =10, and p = 0.2 are given
in figure 1. The dimensions are labeled on the graphs. The patterns in
Figure 3 recur for the other simulations. As ¢ increases from 0 to 3, the
mode shifts to the right and then to the left as g increases from 4 to 11.
The skewness is to the right for ¢ =0 and 1, almost symmetric for
g = 2, to the left for ¢ = 3, to 5, approximately symmetric at ¢ = 6, and
to the right for ¢ = 7 to 11. The curves are suggestive of a wave starting
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Figure 1. Simulated marginal distributions for the structural vector of K*(Y. X) for a random

relation. Card X = 30, Card Y =10, and p = 0.2. The numbers on the distributions indicate the
corresponding dimension ¢ of the structural vector.
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at the left, traveling to the right until it hits a barrier, and returning.
The simulated distributions are approximated by one of three distri-
butions:

1. Binomial B(n,p),n=1,2, ... and 0 <p < 1.
P(X=k)=(Z)p*’(l—p)"“'forkzo,l,...,n,

with mean M = np and variance V' = np(1 — p).
2. Poisson P(z), z > 0.

P(X=k)=e z¥/k!fork=0,1,...,

with mean M = z and variance V = z.
3. Negative binomial NB(r, p), r is real valued, 0 <p <1.

r+k—1

P(X=k)=("FK

)p’(l —p)Yfork=0,1,...,

with mean M = r(1 — p)/p and variance V =r(1 — p)/p*.

Denote the apparent beginning of the simulated distribution by
min( k). Usually it is zero, but occasionally it is greater than zero. For
example, when ¢ is small, say 0 or 1, the distribution is ‘L’ shaped
starting at 1. Then min(k)= 1. However, min(k) is not always the first
positive frequency of the simulation. When the distribution is skewed to
the left, the first positive frequency in the simulation is greater than
zero, but it appears that the distribution tails off to zero, in which case
min(k) = 0. A better approximation is obtained by fitting X + min( k).
Denote the mean and variance of the simulated distributions by M and
V. If M —min(k) >V, fit B(n, p) by estimating

p=(M—min(k)—V)/(M—min(k)),
n=(M—min(k))/p.

Since n has to be an integer, round the above estimate of n to the
nearest integer, and re-estimate p by

p=(M—min(k))/n.
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Use these new estimates in fitting the binomial. If M — min(k) < V. fit
NB(r, p) by estimating

p=(M—-min(k))/V,

r=p*V/(1-p).

If M —min(k) is approximately equal to V, fit P(z) by estimating
z=M — min(k).

Note that the Poisson distribution is an approximation of the binomial
when n is large, p 1s small, and np = z.

Table 3 reports the mean, variance, min{ k), and the fitted distribu-
tion for the various simulations. The chi-squared statistic, degrees of
freedom, and the p-value for testing the hypothesis that the simulated
distribution follows the fitted distribution are listed in the table.
Generally, the p-values are high which indicates a good fit. However, a
class of distributions cannot be fitted by the above procedure. In the
dual K* the maximum number of equivalence classes i1s 10. When the
simulated distribution has a mode to the right and skewness to the left,
sometimes the procedure for fitting the distributions will try to fit a
binomial distribution with » greater than 10 and significant mass to the
right of 10. The lack of fit in these instances arises from the truncation
of the simulated distribution. Examples are

K* card X=20,p=03,g=3and 4,
K*,card X=130,p=0.2,¢g=2 and 3 (see Figure 1),
K* card X=30,p=03,9g=4.,5.6.

An anomaly also occurred at K, card X =20, p=0.3, and ¢ =2. The
simulated distribution was flat relative to the other distributions and
had two modes, which may indicate that 1000 simulations was not
sufficient to estimate the distribution accurately.

2.4. A measure of random structure

Let A be a relation defined on X into Y with incidence matrix A and
card. X = m and card Y = n. Define 4 = { A(ij)} to be AA’. Subtracting
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a matrix of ones from A is the input for a Q-analysis of K( X, Y), and
A(ii) = #o(xi, Y),
A(ij) = #[o(xi, Y)No(xj, Y)] for i not equal to .

If K(X,Y) is well structured, then the simplices tend to share high
dimensional faces, and 4(ii) — A(ij) will tend to be small. On the other
hand, if K( X, Y) lacks structure, then the simplices tend to be discon-
nected or connected only at low dimensions, 4(ij) is close to 0, and
A(ii) — A(ij) will tend to be large. Therefore, a reasonable measure for
the structure of a relationship should be based on A(if) — A(iy).

The measure of random structure, R, that we are proposing is

R=(S—ES)/(Var §)"*

where

S=Y 3 (i) —A()

i=1 =1

and the expected value ES and the variance Var S are computed under
the assumption that the relation is random with probability p, in which
case A(ii) — A(ij) 1s B(n, p(1 — p)). Then ES is

ES=m(m—1)|n(n=1)p*(1=p)" +np(1-p)]

and Var S is

Var S=m(m—1)C+m(m—1){(m—2)D

where

3

C=—4n(n—1)2n-3)p*(1=p)* +4n(n—1)(n—4)p*(1 - p)

+2n(3n—4)p*(1 —p)2 +np(1—p),
and
3

D=—-8n(n—1)2n-3)p*(1 —p)4+4n(n— 1) (n—4)p*(1—p)

+2n(2n—5)p>(1=p) +np(1—p).
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Typically p 1s unknown and 1s estimated by the maximum likelihood
estimate which is

m

Y A(ii)/mn.

i=1
The distribution of R is complex; however, the following theorem gives
an asymptotic result.

Theorem. Let A be a random relation form X into Y with probability p,
card X =m, and card Y =n. If m and n go to infinity and p goes to
zero so than np converges to a constant and m/n converges to 1, then R
converges to a normal distribution with mean 0 and variance 1.

Proof. Write
S—ES=S"—-ES"+S8"—-ES"+S8S"” —ES",

where

n

S =(m-1)Y A(ii),

i=1

7= —23 A(if) ().

i*j

s =% ali)’

i+

and ES’, ES” and ES " are their expectations under the assumption of
being from a random relation. Now Var S’ = (m — 1)? mF where

F=-2n(n—-1)2n=3)p*+4n(n—1){n—-3)p°
+4n(6n—7)p*+ np.

Then Var §’/Var § goes to 1 as p goes to 0 and m, n tend to infinity.
Since the A(ii), i =1,...,m are independent and identically distributed,
the central limit theorem is enforced, and (S’ — ES’) /(Var §')"/? con-
verges in distribution to a standard normal. Now Var §" and Var S "
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are O(m) while Var S is O(m’). Therefore Var §”/Var § and
Var §” /Var S converge to 0. This implies that

(S —ES”")/(Var )" and (S —ES ") /(Var §)'/*

converge to zero in probability. Hence

R=(Var S'/Var S)/*(S'— ES’) /(Var §')"/* +(S” — ES”) /(Var §)"/*
+(S” —ES"™)/(Var §)*

converges to a standard normal in distribution.

Remarks.

(1) If p is unknown, using the maximum likelihood estimate of p
does not change the theorem since it is a consistent estimator.

(2) Basing R on (A(ii) — A(ij))* leads to a more complicated statis-
tic than the one based on A(ii) — A(ij). However, when we use the
maximum likelihood estimate of p, the quantity

m

(m— 1); A(ii)—=m(m—1)np

1s zero, and the corresponding statistic converges to 0 in probability.
(3) R is related to the concept of “eccentricity” in Q-analysis. The
eccentricity of xi in K( X, Y) is defined as
A(ii)—max {A(ij)}.
i+
The distribution of the eccentricity is not obvious since the 4(ij)’s are

not independent.
(4) There is an obvious dual measure of random structure R* for the

dual complex K*(Y, X).
3. An application: Nominations among mathematicians
Kochen and Blaivas asked editors of selected journals in six fields to

nominate researchers whom they esteem. The nominees were, in turn,
asked to nominate other researchers so that the nominees became
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respondents. This procedure, called snowball sampling by Goodman
(1961), was repeated four times. In this manner, the network of esteemed
colleagues was traced. for a more detailed description of the first three
rounds see Blaivas et a/. (1981) and Blaivas et al. (1982), Crickman et al.
(1982), Kochen er al. (1982), and Lenk (1983).

Two of the fields in the study are topology and differential geometry.
These fields are closely related and interact. In fact, some mathemati-
cians work in both areas. The analysis in this section is for all four
rounds of nominations for the mathematicians. Subsection 3.1 reports
the results of a Q-analysis for the nominations. Subsection 3.2 intro-
duces a graphical technique that synthesizes Q-analysis and multidi-
mensional scaling in a mutually reinforcing manner. The measure of
structure is computed in subsection 3.3 and interpreted for the nomina-
tions.

3.1. Q-analysis of the nominations

Let X be the set of respondents or nominators and Y be the set of
nominees. The card X is 33, and the card Y is 163. Table 4 is the
Q-analysis for K( X, Y), which is the complex for the nominators, and
Table 5 is that for K*(Y, X), which is the complex for the nominees.
The complices K and K* have dimensions 27 and 12 respectively. If the
relation was random, the maximum likelihood estimate of p is 0.06972.
A comparison of the structural vectors of a simulated random relation
with the observed relation indicates that the nominations form non-sin-
gleton components at a higher dimension, and these components re-
main distinct to a lower dimension than in a random relation. This
effect is more pronounced for K* than for K.

Consider the complex K( X, Y) for the mathematicians. A compo-
nent forms around o,,(3) and 6,3(25) at ¢ =11 and another around
0,,{2) at ¢ = 8. These two components merge at g = 6. A component
consisting of o,,(11) and 04(29) forms at ¢ =4 and remains isolated
until ¢ = 1. The structural vector indicates that there is a high degree of
consensus about esteemed peers among respondents in the components
(3, 15, 25, 26) and (2, 22, 31). On the other hand, the high degree of
eccentricity and the large number of singleton components of the other
respondents is similar to the structure resulting from a random relation.

Next consider the dual complex K*(Y, X) of nominees. A compo-
nent forms around 0,,(40) at ¢ =8, and another forms around o0,,(2)
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Table 4
The structural vector for K(X, Y), simplicial complex of the nominators. (Card X =33 and
card Y =163)
q Q components
27 1 (2)
26 1 (2)
25 2 (2)(15)
24 2 (2)(15)
23 2 (2)(15)
22 2 (2)(15)
21 2 (2)(15)
20 2 (2)(15)
19 3 (2)3)(15)
18 4 (2)3)(A5)425)
17 5 (1H2H3)N15)25)
16 5 (12)3)(15)(25)
15 6 (I2H3)I5H21)25)
14 6 (D2)3)15)(21)(25)
13 6 (IN2X3N1I5)21125)
12 8 (I(2H3N15)(21)(25)(26)(30)
11 11 (3250 IU2)ATHAS)K21)(22)(26)(30)(31)(32)
10 14 (3.25)(IU2HONOHTTN14)15)21)(22)(26)(30)31)(33)
9 19 (3,25, 26X 1)2)AOXTHNATNT4)15)(16)(18)(21)(22)(24)(29)(30)
(31)(33)
8 18 (2,22,31)(3,15,25,26)(1)(4X6)THON11)(12)(14)(16)(18)(21)
(24)(29)(30)(32)(33)
7 20 (2,22,31)(3,14,15,25,26)(1)(4)6XTHON11)(12)(13)(16)(18)
(21)(2)(2TH28)29)(30)(32)(33)
6 22 (2,3,14,15,22,25,26)(1 (46X THEX9I)N10)(11)(12)(13)
(16)(1819N21)24)27)(28)(29)(30)(32)(33)
5 20 (2,3,4.14,15,16,22,25,26,31)(6,331)(5X7)
(B)DA0NTTNI2)A3)(TBNIN21)(24)27)(28)(29)(30)(32)
4 13 (1,2,3,4,6,12,14,15,16,19,22,24,25 26,28 31,
32.33)(11,29)S)(THBH (1013 X(18)(20)(21)%27)(30)
3 7 (1,2,3,4,5,6,7,10,12,14,15,16,19,20,21,22,23,24,25,26,27,28,
31,32,33)(11,29)(8)(9)(13)(18)(30)
2 5 (1,2,3,4,5,6,7,8.9,10,12,14,15,16,19,20,21,22,23,24,25,26,27 28,
31,32,33)(11,29)(13)(18)%30)
1 1 all but respondent 17 who nominated only 1 mathematician
0 1 all

and 0,,(34) at ¢ = 9. These two components do not merge until g = 2.
This behavior indicates the existence of two sub-areas which corre-
spond to topologists and differential geometricians.

In K(X, Y) if xi and x/j are in the same component at dimension g,

then the probability that xi nominates yk given that xj nominates yk is
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Table 5
Structural vector of K*(Y, X), simplical complex of the nominees. (Card X = 33 and card ¥ =163.)

q Q components
12 1 (40)

11 1 (40)

10 3 (2)(34)(40)

9 2 (2,34)(40)

8 2 (2,34)(40,54)

7 S (2,34,42)(40,54)(14)(15)(43)

6 7 (2,34,42)(14,40,54)(4)(15)(35)(43)(53)

5 5 (2,10,34,35,42,51)

(4,14,15,40,43,52,54)
(3)(44)(53)

4 11 (2,10,34,3542,51)
(4,14,15,40,43,46,52,54)
(1X(3)(6)(29)(36)(44)(48)(50)(53)

3 5 (2,10,28,34,35,37,41,42,51)
(1,3,4,6,14,15,30,36,38,39,40,43,44,45 46,47.48,50.52,54)
(29)(49)(53)

2 7 (1,2,3,4,6,10,14,15,20,23,28,29,30,34,35,36,37,38,39,40,41,42.43,44,45 .46,
47,48,49,50,51,52,53,54,92,106)(156,161)
(7)(13)(94)(100)(134)

1 5 1 component with 63 elements
4 singletons

0 1 all

large and tends to increase as ¢ increases. The large amount of
randomness in K(X, Y), except for the two exceptional components,
indicates that, in general, this probability is small. In K*(Y, X) if yi
and yj are in the same component at dimension ¢, then the probability
that xk nominates yi given that xk nominates yj is large and increases
with increasing ¢. If they are in different components, this probability
tends to be small and decreases with increasing g. The structure of
K*(Y, X) indicates that if yi and y; work in the same sub-area, they
tend to be nominated together; whereas, if they work in different
sub-areas, they are not. This effect becomes more pronounced at higher
dimensions.

3.2. Graphical representation

This author (1983) uses a common technique to map the nominees so
that if the respondents collectively view two nominees as being ‘close’
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Figure 2. Multi-dimensional scaling for the nominators. The nominators are the circled numbers.
The numbers on the lines are the dimensions of the faces that are shared by the nominators.

together, they are mapped close together in two dimensions. Let A be
an incidence matrix for a relation, and define 4 = AA’. Treat the
columns of 4 as vectors. To each element of X there corresponds a
vector which is called its ‘profile’. Compute the correlations between
each pair of profiles, and use these correlations as a measure of
similarity in a multidimensional scaling program. The program at-
tempts to map X into a low dimensional, usually 2, space so that the
similarities are consistently maintained. If two x’s have a large positive
correlation, they are mapped close together. If they are negatively
correlated, they are mapped far apart. In this sense the scaling gives a
convenient representation of the correlation matrix of the profiles. A
similar procedure can be performed for Y. The connection to Q-analy-
sis is that AA” and A’A are the input to the scaling procedure and the
Q-analysis. The two procedures are consistent with each other and
mutually supportive.

Figure 2 is the multi-dimensional scaling of the respondents, and
Figure 3 is for the 32 nominees with 4 or more nominations. A scaling
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Figure 3. Multi-dimensional scaling for the nominees. The nominees are the circled numbers. The
numbers on the lines are the dimensions of the faces that are shared by the nominees.

of all 163 nominations becomes too chaotic. Figure 2 should be viewed
with the Q-analysis of K(X, Y) in Table 4, and Figure 3 with the
analysis of K*(Y, X) in Table 5. The numbers in the circles represent
the respondents or the nominees. If a line connects two mathemati-
cians, then their simplices share a face with the dimension given by the
number on the line. For example, in Figure 2 nominators 26 and 15
share a 7-dimensional face. In practical terms, they both gave nomina-
tions to the same eight people. Likewise, in Figure 3 the simplices for
nominees 40 and 15 share a 4-dimensional face, i.e. five respondents
nominated both 40 and 15. Note also that if the same number appears
in both figures, it identifies the same person. The figures only show
connections of dimension 4 or more since including the lower order
dimensions produces an illegible graphic.

Consider Table 4 and Figure 2 for K( X, Y) which represents the
nominators. The components (3, 14, 15, 25, 26) and (2, 22, 31) at g =7
give K( X, Y) most of its structure. In Figure 2, (3, 15, 25, 26) and the
second component are completely connected networks at ¢ =7. The
component (11, 29) is isolated. An outstanding feature is the central
role of respondent 15. He is a cut point when only simplices of
dimension 4 or more are considered. If 15 is removed, the left and right
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halves become two separate components. Note also that many of the
nominators on the left side are g-connected where 15 is the intermediate
node. We infer that 15 probably is important in facilitating the trans-
mission of ideas in the invisible college of topologists and differential
geometricians. Inspection of the configuration formed by 15, 6, 33, and
24 seems to indicate the existence of a Q-hole at dimension 4.

The right side (right of 15) of Figure 2 consists of differential
geometricians. Eight of the eleven indicated that they work with mea-
sure theory. Mathematicians 1, 3, 7, 11, 13, 16, 25, 26, 29, and 30 in the
upper left quadrant are topologists, and 4, 6, 9, 14, 15, 19, 21, 24, 27,
32, and 33 in the lower left quadrant are differential geometricians.
None of these indicated an interest in measure theory.

Next consider Table 5 and Figure 3 for K*(Y, X)) which represent
the nominees. The two large components at ¢ =3 in the table are
separated in the scaling. The component (2, 10, 28, 34, 35, 37, 41, 42,
52) consists of differential geometricians, and the other component
consists of topologists and mathematicians who were identified as
working in both areas. At dimension 4 the two graphs of these compo-
nents are disconnected and have an extensive internal structure. At
g =3, the left and right sides remain separate, but each half becomes
well integrated except for 29, 49, and 53 which remain isolated until
g =72. Nominees 2 and 34 are central to the network of differential
geometricians, and 40 is the center of the topologists. These three
researchers also have high dimensional simplices.

3.3. The measure of structure for the nomination relation

Using the maximum likelihood estimate 0.06972 of p, the measure of
random structure R for K( X, Y) the respondents, is 0.87. The p-value
for testing the null hypothesis that the structure of K(X, Y) corre-
sponds to a random structure is 0.3844, ie p-value= P(|Z|> 0.87)
where Z has a standard normal distribution. Therefore, the structure
arising from the process of giving nominations cannot be distinguished
from the structure resulting from a random relation when using the
statistic R. It is important to note that the conclusion does not say that
respondents randomly nominate but that the resulting structure is
similar to that of a random relation. The conclusion supports the
observations in subsections 3.1 and 3.2.

The measure of random structure R* for K*(Y, X), the nominees, is
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4.65. The p-values for testing the null hypothesis that the structure of
K*(Y, X) corresponds to a random structure is approximately 0. This
result indicates that the manner in which nominations are received by
nominees 1s not random. This conclusion is supported by the remarks
in subsections 3.1 and 3.2.

The asymmetry in the structures for giving and receiving nomina-
tions needs a more detailed investigation. We infer that a respondent
nominates at least two types of researchers. The first type is a highly
visible, well established mathematician whose work is applicable to a
large number of problem areas in a sub-field. These mathematicians
appear in Figure 3. The second group consists of mathematicians with
less visibility than the first. His work is relevant to the problem areas of
the nominator, but perhaps not to the entire sub-field. The mathemati-
cians in the first group are consistently nominated by the respondents
in their sub-field, while the ones in the second group receive only one or
two nominations. The number in the first group is small compared to
the second. In fact, the distribution of nominations follow Zipf’s law
(Blaivas er al. 1983).

The result of having these two groups vying for nominations is that
there is little overlap between two sets of nominations for different
nominators. In other words, A(ii) — A(ij) is close to that of a random
relation. Hence, K( X, Y') appears to be random, and R is close to zero.
For the dual define B=A’A. If the relation is random, the average
number of nominations that a nominee receives is 2.3. If a nominee yi is
in the highly visible group, yi is frequently nominated, and B(ii) is
much larger than 2.3. Generally, B(ii) — B(ij) s larger than that for a
random relation — especially if yj is in a different area since then B(ij)
1s close to zero. Therefore, the R* statistic becomes inflated for the
members of the first group. If yi is in the second group, they yi receives
few nominations, and B(ii)— B(ij) is approximately the same as a
random relation. On the whole, the R* statistic becomes significantly
larger than what would be probable if the structure were random.

4. Conclusion
The characterization of the structure of a random relation is a first step

in constructing models for stochastic relations. A random relation can
be used to model the noise component. Further work is needed to
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develop probability models and methods of inference for stochastic
relations. The characterization 1s also an aid in avoiding the error of
making inferences that are not supported by the data when the data is a
realization from a random relation. The measure of random structure is
useful in recognizing random structure.

An application of these concepts to the nomination of esteemed
peers by mathematicians indicates that the structure of giving nomina-
tions has an unexpectedly high degree of randomness; whereas, the
process of receiving nominations is highly structured. This result sug-
gests the hypothesis that two groups are being nominated: a small
group of highly visible mathematicians and a large group of less
well-known researchers.
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