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THE STRUCTURE OF A RANDOM RELATION WITH AN 
APPLICATION TO A NOMINATION NETWORK * 

Peter J. LENK ** 
Unrorrsq of M/chtpri 

Stochastic relations frequently occur in the social sciences; however, their statistical properties are 
not well-known. A random relation can be used to model noise or observational error. This paper 
characterizes the structure of a random relation by deriving the distribution of the structural vector 
from Q-analysis and by simulating random relations. We propose a measure of structure and apply 
these concepts to the nommations of esteemed peers by mathematicians. 

1. Introduction 

Atkin (1974) developed a powerful technique, called Q-analysis or 
polyhedral dynamics, to analyze the structure of a relation between two 
sets. An implicit assumption in the analysis, as used by most re- 
searchers, is that the relation is deterministic. However, relational data 
in the social sciences is frequently stochastic in nature, and care must 
be used in drawing inferences from a Q-analysis since its statistical 
properties are not well-known. 

Stochastic relations arise in several contexts. They occur when a large 
population is sampled with the objective of estimating population 
parameters. In this case, a subset of the entire relation is observed. For 
example, Granovetter (1976) samples a large network in order to 
estimate average acquaintance volume. Frank (1971, 1978) extensively 
discusses sampling from networks. Stochastic relations also occur when 
an entire relation is observed, but the observed relation is a sample 
from a population of relations. For instance, Rapoport and Horvath 
(1961) observe the friendship networks in two junior high schools. They 
treat the two data sets as replications and draw inferences about the 
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population of friendship networks in junior high schools. Relational 
data can also be considered as a realization of a stochastic relation. 
Gould and Gatrell (1980) analyze a soccer match. They treat the 
relation as being deterministic and analyze the structure of a particular 
game by using Q-analysis. However, to draw more general inferences 
about the structural play of the two teams, the data should be viewed as 
a realization of a stochastic relation since a re-match would produce a 
different data set. Observational error is another source of randomness 
in relational data that should not be ignored. 

In order to treat stochastic relations, probability models with param- 
eters that express the essential features of the relation and techniques to 
estimate these parameters need to be developed. Rapoport (1979) and 
Holland and Leinhardt (1981) have worked in this direction. However, 
probability models are not widely used for relations. Typically, re- 
searchers combine their expertise of a field with the data to draw 
inferences and develop insights. Since they are unable to specify their 
prior knowledge and the likelihood of the data due to the lack of 
probability models, they are unable to separate their prior information 
and the data in the posterior analysis as suggested by Bayesian in- 
ference. In this situation, the researcher runs the risk of drawing 
conclusions that are not warranted or supported by the data. 

Random relations can be used to model observational error or noise 
in model building. This paper characterizes the structure of a random 
relation by deriving the distributions of the structural vector from 
Q-analysis and by simulating random relations. This characterization is 
applicable to model building and to the analysis of residuals from 
fitting a model to the data. It is also important to recognize this 
structure, for inference based on this sort of data may be primarily the 
product of the prior information without the researcher being cognizant 
of it. Researchers should be careful not to fall into the position of 
mistaking the structure of a random relation as being significantly 
different from random or, to use a colorful analogy, of seeing patterns 
in the clouds. 

Section 2 provides a characterization of the structural vector from a 
Q-analysis for a random relation. We propose a measure of random 
structure that is based on concepts from Q-analysis. This statistic seems 
to be useful in measuring the deviance of the structure of a relation 
from the structure of a random relation. The reader who is unfamiliar 
with Atkin’s work may find Gould’s (1980) introduction to Q-analysis 
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insightful. In section 3 we demonstrate the concepts of section 2 with 
an example of nominations of esteemed peers in two fields of mathe- 
matics. The measure of random structure indicates an asymmetry in the 
structure of giving and receiving nominations. 

2. The structural vector for a random relation 

A relation between two sets identifies elements of the first set with 
those of the second. A canonical example in Atkin (1974) has the first 
set as people in a community and the second set as activities. The 
relation identifies the people that participate in particular activities. A 
directed network is also a relation where the elements of the two sets 
are nodes, and the relation identified which nodes are linked together. 
The nominations of esteemed peers in section 3 is an example of a 
directed network where the first set contains the nominators, and the 
second lists the nominees. The relation identifies a nominator with his 
or her nominees. 

A random relation identifies each pair of elements from the two sets 
with a constant probability, independently of the other pairs of ele- 
ments. A random relation can be considered as modeling observational 
error or random noise. An interpretation of a random relation is that it 
is non-informative about the phenomenon under consideration. How- 
ever, a random relation also exhibits a structure. This section char- 
acterizes that structure. 

Subsection 2.1 introduces the concepts of Q-analysis, in particular 
the structural vector, that are necessary for the rest of the paper. 
Subsection 2.2 derives the distribution of the structural vector for a 
random relation and qualitatively describes its most likely behavior. 
Since the distributions are complex, subsection. 2.3 reports the results of 
a simulation. The simulation is useful in exploring the operational 
characteristics of the structural vector and indicates that its distribu- 
tions can be approximated by standard distributions. Subsection 2.4 
proposes a measure of random structure and derives its asymptotic 
distribution for random relations. 

2. I. Definitions and notation 

This section is a brief summary of the concepts in Appendix B of Atkin 
(1974) that are necessary for the derivation of the distribution of the 
structural vector. We will not give a complete introduction or explore 
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the philosophical implications of Q-analysis but merely fix ideas and 
notation. 

Let X= {xi}, i= l,... ,m and Y={vj}, j=l,..., n be two, finite 
sets. A relation h from X to Y as a subset of the Cartesian product of X 
and Y. If x is related to y by X, we write xXy. The relation can be 
represented as an incidence matrix A = (A( ij)) with m rows and n 
columns where 

A(ij) = 
i 

1 if xiXyj 
0 if not 

The set of points in Y that are related to a fixed x is denoted by 
a( x, Y). Similarly, the set of points in X that are related to a fixed y is 
denoted by a( y, X). These sets are called simplices. If a( x, Y) contains 
p + 1 elements, it is called a p-simplex, is said to have dimension p, and 
is denoted by a,(~, Y) where the subscript makes the dimension 
explicit. If url is a proper subset of up, then q is less than p, and we write 
uq < up which is read as “uq is a face of up’,. If a4 and up have the same 
elements, write a4 = up. 

A collection K of simplices is called a simplical complex if: 
1. Each O-simplex is a member of K; 
2. If up is in K and if a4 < up, then uq is in K. 
For the relation X define 

K(X, Y)= {u: usu(x, Y) forsomexinX} U{{r}:Yin Y}, 

K and K* are simplicial complices. K* is known as the dual complex of 
K. The largest integer N such that a N-simplex is in K is called the 
dimension of K and written as dim K. The face relation < is a partial 
ordering on K and K*. 

The structure of a simplicial complex is determined by the manner in 
which the simplices intersect each other. Suppose that a, and u.~ are 
elements of K. If a, f’ a, = u4, then a4 < a, and a4 < a,. Two simplices a,. 
and a, are q-connected if there exists a sequence of simplices a,,, . . . , a,,, 
such that: 

1. uq<u,, 

2. uaah -=c us, for i = 1 ,...,h- 1, 

3’ Da, f- aa ,+, = ‘b, 
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and q is the minimum of the dimensions a,, b,, b,,. . . ,b,-,, u,,. If two 
simplices are q-connected, then they are also t-connected for t = 0,. . . , q 
- 1. 

Define a relation y, on K or K* by: two simplices are related if they 
are q-connected. The relation is an equivalence relation. Then q-con- 
nectedness determines the equivalence classes of the quotient set K/y,, 
which partitions all simplices of dimension greater than or equal to q. 
Consider two simplices in K such that their dimension is greater or 
equal to q. They belong to the same equivalence class in K/y, if and 
only if they are q-connected. If they are in the same equivalence class at 
dimension q, then they are in the same one at all dimensions less than 

4. 
The cardinality of K/y, is denoted by Qq. Hence Qq is the number 

of q-connected components or equivalence classes in the quotient set. 
The vector Q = (Q(N), Q( N - l), . . . , Q(0)) where N is the dimension 
of the complex K is called the structural vector, and the procedure of 
finding Q is called, aptly enough, Q-analysis. For each relation from X 
to Y there are structural vectors for K( X, Y) and K*( Y, X). Com- 
monly, the results of a Q-analysis is presented in three columns: the 
first gives the dimension q, the second gives the number of equivalence 
classes Qq, and the third lists the equivalence classes. 

Before giving an example, we briefly comment on the geometrical 
interpretation of the simplices and the simplicial complex. A p-simplex 
has p + 1 elements and can be considered as the convex hull of p + 1 
points in a p-dimensional Euclidian space such that no q + 1 of the 
points lie in a subspace of dimension less than q. In other words, the 
p-simplex determines a p-dimensional polyhedron with the elements of 
the simplex at the vertices of the polyhedron. For example, a,(xl, Y) = 
(~1, ~2, ~4) is a triangle in two dimensions, and 9(x2, Y) = 
(~1, ~2, ~3, ~4) is a tetrahedron in three dimensions. Also u2 is a face of 
u3. Clearly, they are 2-connected A geometrical representation of a 
simplicial complex can be constructed by joining the simplices at their 
shared faces. 

Consider the relation gives in Table 1. The simplices in K( X, Y) that 
are determined by the relation are 

u,b~, Y)= (YLY~,Y~), 

+(x2, Y) = (~1, ~2, ),3,y4), 

u,(~3, Y) = (YLY~,Y~). 
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Table 1 
The Q-analysis for a relatmn A 

Q-analysis for K( A’, Y) 
AA’-J J is a matrix of 1’s. 

I xl x2 x3 

xl 2 2 1 
x2 3 1 
x3 2 

q Q components 

3 1 (x2) 

2 2 (x1.x2) (x3) 

1 1 (x1.x2,x3) 

Q-analysis for K*( Y. A’) 
A’A- J 

.v 1 Y2 Y3 .Y4 y5 

Jl 2 2 0 1 0 

Y2 2 0 1 0 

.Y3 0 0 -1 

Y4 1 -1 
Y5 0 

q Q componenrs 

2 1 (Yl.Y2) 

1 1 (~14.~4) 
0 1 (.~~l.y2..~3,.~4,.~5) 

and the simplices in the dual K*( Y, X) that are determined by the 
relation are 

&4 x> = (XL x2, x3), 

a,(yL X) = (XL x2, x3), 

q)(y3, x) = (x2), 

q(y4, x) = (XL x2), 

qdy5, x) = (x3). 

The Q-analysis for K( X, Y) and K*( Y, X) can be obtained from the 
matrices AA’ - J and A’A - J, where “A”’ indicates the transpose of a 
matrix, and J is a matrix of ones of the appropriate order. The matrices 
are symmetric, so only the upper triangular elements are listed. The 
diagonal elements give the dimensions of the simplices. The off-diago- 
nal elements give the dimension of the faces shared by each pair of 
simplices; a ‘ - 1’ indicates that the simplices are disjoint, a ‘0’ indicates 
that they share one vertex, a ‘1’ indicates that they are connected by an 
edge, and so on. The Q-analysis for the above example is given in Table 
1. 
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2.2. Distribution of the structural vector 

Let X be a relation from X to Y given by the incidence matrix 
A =(A(ij)), i= l,..., m andj= l,... , n. Suppose that A ( ij)‘s are inde- 
pendent, identically distributed random variables such that 

P(A(ij) = 1) =p, 

P(A(ij)=O)=l -p. 

Such a relation is called random. In this section we derive the marginal 
distributions of the structural vector for K( X, Y) and qualitatively 
describe the most likely behavior of the distributions as the dimension 4 
varies. The results of this section also hold for the structural vector of 
the dual complex with the obvious change in the parameters. 

Define a m by m matrix A = (A( ij)) = AA’. Then 

A(ii) = #a(xi, Y) 

A(ij)= #[a(xi, Y)nu(xj, Y)] 

where ‘#’ indicates the cardinality of a set. Note that A(ii) = 
dim a(xi, Y) + 1. 

Since the A( ij) are independent and identically distributed, the A( ii), 
i=l , . . . ,m are independent, and the following results are easily ob- 
tained. The probability that a y is in the following sets is given by: 

JJ is in a(x, Y) with probabilityp, 

y is in u(xi, Y) nu(xj, Y) with prolxbilityp2, 

y is in u(xi, Y) -u(xj, Y) with probabilityp(1 -p). 

The joint distribution of A(ii)-A(Q), A(jj)-A(Aij), and A(ij) is 
multinomial and given by 

i A(ii) -A(g), A;Ij) -A(Q), A(ij) i 

NPO -P)) 
AWA(IJ)( p(l -p))A(ww 

XP 
WW(~ -p) Z(n-A(rr)-A(I/)+A(r/)) 
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for A(ii), A(jj)=O, l,..., n and A(ij)=O, l,..., min(A(ii),A(jj)) 
where the first factor is the multinomial coefficient. The marginal 
distribution of the A(i)‘s are independent binomial B( n, p), and the 
A( 0)‘s are B( n, p*): The conditional probability of A( ij) given A( ii) 
and A(j) is 

for a(ij)=O, l,..., min(A(ii), A(j)). 
Next define Uq= #{x: dima(x, Y)=q)= #(A(ii)=q+l} for 

q = - 1, 0,. . ,n - 1. Each of the m elements of X is counted once and 
only once. The probability that dim a(x, Y) = q is given by 

P(A(ii)=q+ l)= lq: I)p4t1(l -P)“-~-‘. 

DenoteP(A(ii)=q+l)byp,.ThevectorU=(I/(n-l),...,Ii(-l))is 
multinomial with parameter m and probabilities p = ( p,,- ,, . . . ,p-,). 
DefineVq=Uq+U(q+l)+...+U(n-1). Vqisthenumberofsim- 
plices that are of dimension q or more. Since Vq is the sum of the 
components of a multinomial distribution, it is B( m, Pq) where Pq = py 
+pq+l + . . . +p,-1. 

Define the matrix Aq = (Aq( ij)) by 

Aq( ij) = 
1 ifA(ij)zq+l 

0 ifA(ij)<q+l. 

Aq(ii) indicates those elements whose dimension is greater or equal to 
q, and Aq(ij), i not equal toj, indicates the pair of elements that share 
at least a q-dimensional face. If Aq( ii) = 0, then Aq( ij) = 0 for all j. If 
Aq( ij) = 1, then Ar( ij) = 1 for all r less than q. Similarly, if Aq( ij) = 0, 
then As( ij) = 0 for all s greater than q. Therefore, the structural vector 
Q has the Markov property in that 

I Q(q+ l),..., Qb - 1)) = P(Qq I Q(q + I))> P(Qq 
and 

P(Qq IQ(-l>,...,Q(q-l))=P(QqIQ(q-1)). 
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Either set of these conditional probabilities and the marginal distribu- 
tion of Q( - 1) or Q( n - 1) specify the joint distribution of Q. Unfor- 
tunately, these probabilities are extremely complicated because of the 
large number of ways that Q( q + 1) equivalence classes at dimension 
q + 1 can change to Qq components at dimension q. 

A more tractable problem is deriving the marginal distribution of Q. 
Even these are complex and not easily computed. Fix a dimension q, 
and suppose that Vq is not zero. There are Vq ones and m - Vq zeros in 
the main diagonal of Aq. Suppose that Qq = k and that the k equiva- 
lence classes are of size n,, n,, . . , n,. Permute the rows and columns of 
Aq so that the n, elements of the first component occupy the first n, 
rows and columns, the n, elements of the second component occupy 
the n, + 1 to n, + n, rows and columns, and so on with the last r~ - Vq 
rows and columns being zeros. 

First we compute the joint probability of Qq = k, n,, . . ,nk given Vq. 
In order that the jth component has n, elements, at least 17, - 1 ones 
must appear tin the block above the main diagonal in the area defined 
by the intersection of n, + . . . + n,-, to n, + . + n, rows and columns. 
The remaining entries in these segments can be either zeros or ones. 
The probability that an off-diagonal entry is one is given by the 
probability that A( ij) is greater or equal to q + 1 given that A( ii) and 
A( jj) are greater or equal to q + 1. In order that there are k compo- 
nents, the remaining entries are zero. If one of these entries were one, 
then two elements in different equivalence classes would share a q-face, 
which is a contradiction. The number of these entries is 

g(n ,,..., n,)=n,n,+(n,+n,)n,+ . ..+(n.+ . ..+n.-,)n, 

k 1-1 

= C 2 n,nj. 
,=2 /=I 

For Vq > 0 

P(Qq=k, n,,.. .,nk~Vq=o)=f(n,,...,nk)d”-“(I -d)R(nl”“‘nA) 

where 

d= P(Aq(ij)= 1) 

=P(A(ij)~q+11A(ii)~q+l,A(jj)~q+l), 
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min(r. s) 

2 i C P(A(ii)=r,A(jj)=s,A(ij)=t) 

d= 
r-q+1 s=q+l f=q+l 

p4’ 

and 

The probability of Qq given Vq is 

P(Qq=k)Vq)=z P(Qq=k,n ,,..., n,IVq)fork=l,..., Vq 

where the summation is over all combinations of n,, . . . , nk such that the 
ni’s are greater than zero, and they sum to Vq. If Vq = 0, then 

P(Qq=kI Vq=O)=(; ;t;e;w;se. 

Finally, 

P(Qq=k)= f P(Qq=k( Vq=u)*P(Vq=u) 
u=o 

where Vq is a binomial B(m, Pq) distribution. 
Despite the complexity of the marginal distributions, it is possible to 

make qualitative observations about the most likely behavior of the 
structural vector. First we list some facts about the maximum and the 
minimum off and g. 

1. Fix u and treat k, n,,. . . ,nk as variables in f. 
a.fisminimizedbyk=landn,=uwithf=l. 
b. f is maximized by k = IJ and n, = . . . = nk = 1 with f = v! 

2. Fix u and k. Since f is symmetric, suppose that n, 2 . . . 2 nk. 
Decrease the i th entry by 1 and increase the jth entry by 1 for i <j. 
Observe that 

f(nl,..n,- l...nj+ l...n,)Lf(n,...n ,... n ,... nk) 

if and only if n, 2 n, + 1. 
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a.fisminimizedbyn,=u-k-t1 andn,=...=n,=l. 
b. f is maximized when all of the components are approximately 

equal. Namely, 

n,=[u/k], n,=[(u-n,)/(k-l)], ~,=[(u-~,-n,)/(k-2)], 

. . . n,=u-rz-n2- . ..-nk-. 

where ‘[a]’ denotes the greatest integer less than a. 
3. Fix u and k in g. The reasoning here is identical to (2) and the 

minimizer of q is the same as in (2a), and the maximizer is the same as 
in (2b). 

4. Fix u and let k be variable in g. 
a. By (3) the minimum of g with k and u fixed is 

g(u-k+l,l...,l)=(u-k+l)(k-l)+max((k-l)(k-2)/2,0) 

so g is minimized by k = 1 and n, = u. 

Table 2 
Q-analysis of K( X, Y) for a random relation card X = 30, card Y = 30. and p = 0.25 

9 Q components 

14 1 
13 1 
12 1 
11 3 
10 4 

9 5 
8 12 
7 19 
6 20 

5 

4 

3 

2 
1 
0 

21 

13 

4 

1 singleton 
1 singleton 
1 singleton 
3 singletons 
4 singletons 
5 singletons 

12 singletons 
19 singletons 

1 component with 2 elements 
19 singletons 

1 component with 5 elements 
1 component with 2 elements 

19 singletons 
1 component with 14 elements 
1 component with 2 elements 

11 singletons 
1 component with 27 elements 
3 singletons 
1 component with 30 elements 
1 component with 30 elements 
1 component with 30 elements 
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b. Using (3) the maximum of g with k and u fixed is [(k - 1) u/2k]. 
Treating k as variable gives the maximum at k = u. 

A typical result of a simulation with m = n = 30 and p = 0.25 ap- 
pears in Table 2. The reader may find it helpful to compare the 
simulated structural vector to the following description of its most 
likely behavior based on the above results. 

For small values of q (q = 0 to 2 in the simulation) d is large, and 
1 - d is small. Then (1 - d)g dominates f, and (1 - d)” is maximum 
when g is minimum which occurs when there is a single, large equiva- 
lence class by (4a). For large dimensions (q = 7 to 14 in the simulation) 
d is small so that the dominant factor is f. The most likely behavior is 
to have the Vq elements partitioned into singleton equivalence classes, 
i.e. k = Vq as seen from (lb). As the dimension decreases (1 - d) R 
begins to dominatef. The transition from a large number of singleton 
components to a single equivalence class with Vq elements is not abrupt 
but goes through a transitional stage where a relatively few components 
have more than one element, and the rest are singletons. This behavior 
is seen from treating k as fixed and minimizing g as in (3). (see q = 3 to 
6 of the simulation.) 

2.3. Simulation 

The marginal distributions of the structural vectors are mixtures of a 
distribution, whose functional form resembles a multinomial distribu- 
tion, with a binomial distribution. The underlying parameters for the 
relation from X to Y are m = card X, n = card Y, the probability p that 
x is related to y, and the dimension q. The distributions of the 
structural vector Q are complicated functions, that are not amenable to 
analysis, of these parameters. However, a simulation indicates that the 
marginal distributions, with a few exceptions, can be approximated by 
standard distributions. 

We studied six random relations. The first three had m = 20 and 
n = 10; the next three had m = 30 and n = 10. For each choice of m and 
n, p was 0.1, 0.2, and 0.3. A uniform random number on (0,l) was 
generated for each pair of x and y. If the random number was less than 
or equal to p, then x and y were related. For each combination of m, n, 
and p, we generated 1000 random relations, performed a Q-analysis for 
K( X, Y) and K*( Y, X), estimated the marginal distributions of Q, and 
computed the mean and variance of the number of equivalence classes 
at each q. 
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The simulation indicates considerable regularity and dependency for 
the marginal distributions for different m, n, p, and q. The simulated 
distributions for K*( Y, X) when m = 30, n = 10, and p = 0.2 are given 
in figure 1. The dimensions are labeled on the graphs. The patterns in 
Figure 3 recur for the other simulations. As q increases from 0 to 3, the 
mode shifts to the right and then to the left as q increases from 4 to 11. 
The skewness is to the right for q = 0 and 1, almost symmetric for 
q = 2, to the left for q = 3, to 5, approximately symmetric at q = 6, and 
to the right for q = 7 to 11. The curves are suggestive of a wave starting 
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Figure 1. Simulated marginal distributions for the structural vector of K*( Y. X) for a random 
relation. Card X = 30. Card Y = 10. and p = 0.2. The numbers on the distributions indicate the 
corresponding dimension q of the structural vector. 
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at the left, traveling to the right until it hits a barrier, and returning. 
The simulated distributions are approximated by one of three distri- 

butions: 

1. Binomial B( n, p), n = 1, 2, . and 0 <p < 1. 

P(X=k)=(i)pk(l-p)“-‘fork=O,l,...,n. 

with mean M = np and variance V = np( 1 - p). 
2. Poisson P(z), z > 0. 

P(X=k)=e-‘z”/k! fork=O, l,..., 

with mean M = z and variance V = z. 
3. Negative binomial NB( r, p)? r is real valued, 0 < p < 1. 

P(X=k)=(‘+i-l)p’(l-p)“fork=O.l,..., 

with mean M = r(1 - p)/p and variance V = r(1 - p)/p2. 
Denote the apparent beginning of the simulated distribution by 

min( k). Usually it is zero, but occasionally it is greater than zero. For 
example, when q is small, say 0 or 1, the distribution is ‘L’ shaped 
starting at 1. Then min( k) = 1. However, min( k) is not always the first 
positive frequency of the simulation. When the distribution is skewed to 
the left, the first positive frequency in the simulation is greater than 
zero, but it appears that the distribution tails off to zero, in which case 
min( k) = 0. A better approximation is obtained by fitting X + min( k). 
Denote the mean and variance of the simulated distributions by it4 and 
V. If M - min( k) > V, fit B( n, p) by estimating 

p=(M-mm(k)-V)/(M-mm(k)), 

n = (M- min(k))/p. 

Since n has to be an integer, round the above estimate of n to the 
nearest integer, and re-estimate p by 

p = (M- min(k))/n. 



Use these new estimates in fitting the binomial. If A4 - min( k) < V, fit 
NB( I’, p) by estimating 

p = (M- min(k))/V, 

r =p’V/(l -p). 

If M - min(k) is approximately equal to V, fit P(z) by estimating 

z = M- min(k). 

Note that the Poisson distribution is an approximation of the binomial 
when n is large, p is small, and np = z. 

Table 3 reports the mean, variance, min( k), and the fitted distribu- 
tion for the various simulations. The chi-squared statistic, degrees of 
freedom, and the p-value for testing the hypothesis that the simulated 
distribution follows the fitted distribution are listed in the table. 
Generally, thep-values are high which indicates a good fit. However, a 
class of distributions cannot be fitted by the above procedure. In the 
dual K* the maximum number of equivalence classes is 10. When the 
simulated distribution has a mode to the right and skewness to the left, 
sometimes the procedure for fitting the distributions will try to fit a 
binomial distribution with n greater than 10 and significant mass to the 
right of 10. The lack of fit in these instances arises from the truncation 
of the simulated distribution. Examples are 

K*, card X = 20,~ = 0.3, q = 3 and 4, 

K*, card X= 30, p = 0.2, q = 2 and 3 (see Figure l), 

K*, card X= 30,~ = 0.3, q = 4, 5, 6. 

An anomaly also occurred at K, card X = 20, p = 0.3, and q = 2. The 
simulated distribution was flat relative to the other distributions and 
had two modes, which may indicate that 1000 simulations was not 
sufficient to estimate the distribution accurately. 

2.4. A measure of random structure 

Let X be a relation defined on X into Y with incidence matrix A and 
card. X = m and card Y = n. Define A = { A( ij)) to be AA’. Subtracting 
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a matrix of ones from A is the input for a Q-analysis of K( X, Y), and 

A(C) = #a(xi, Y), 

A(ij) = #[a(xi, Y) nu(xj, Y)] for i not equal toj. 

If K( X, Y) is well structured, then the simplices tend to share high 
dimensional faces, and A( ii) - A( ij) will tend to be small. On the other 
hand, if K( X, Y) lacks structure, then the simplices tend to be discon- 
nected or connected only at low dimensions, A( ij) is close to 0, and 
A( ii) - A( ij) will tend to be large. Therefore, a reasonable measure for 
the structure of a relationship should be based on A( ii) - A( ij). 

The measure of random structure, R, that we are proposing is 

R = (S - ES)/(Var S)“’ 

where 

s= C 1 (A(+A(Q))‘, 
I=1 J=l 

and the expected value ES and the variance Var S are computed under 
the assumption that the relation is random with probabilityp, in which 
case A(ii)-A(ij) is B(n,p(l -p)). Then ES is 

[+ - UP20 -PI’+ RP(1 -PI] ES=m(m-1) 

and Var S is 

VarS=m(m- 

where 

l)C+m(m-l)(m-2)D 

c= -4n(n-1)(2n-3)p4(1-p)4+4n(n-l)(n-4)p3(1-p)3 

+2n(3n - 4)p2(1 -p)‘+ np(1 -p), 

and 

+2n(2n - 5)p2(1 -p)‘+ np(l -p). 



Typically p is unknown and is estimated by the maximum likelihood 
estimate which is 

The distribution of R is complex; however, the following theorem gives 
an asymptotic result. 

Theorem. Let A be a random relation form X into Y with probability p, 
card X = m, and card Y = n. If m and n go to infinity and p goes to 
zero so than np converges to a constant and m/n converges to 1, then R 
converges to a normal distribution with mean 0 and variance 1. 

Proof Write 

S - ES = S’ - ES’ + S” - ES” + S If’ - ES ‘I’ , 

where 

S’ = (m - 1) f A(ii)2, 
I=1 

S”= -2FA(ii)A(ij), 
‘21 

S “’ = 2 A(ij)f 
‘#J 

and ES’, ES” and ES I” are their expectations under the assumption of 
being from a random relation. Now Var S’ = (m - 1)2 mF where 

F= -2n(n - 1)(2n - 3)p4 + 4n(n - l)(n - 3)p3 

+4n(6n - 7)p2+ np. 

Then Var S’/Var S goes to 1 as p goes to 0 and m, n tend to infinity. 
Since the A( ii), i = 1,. . , m are independent and identically distributed, 
the central limit theorem is enforced, and (S’ - ES’)/(Var S’)“’ con- 
verges in distribution to a standard normal. Now Var S” and Var S “’ 
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are O(m) while Var S is 0( m3). Therefore Var S”/Var S and 
Var S “’ /Var S converge to 0. This implies that 

(S” - ES”)/( Var S)“’ and (S “’ - ES “‘)/( Vur S)“’ 

converge to zero in probability. Hence 

R = (Var S’/Var S)“‘( S’ - ES’)/(Var S’)“* + (S” - ES”)/(Var S)“l 

+ ( s “I - ES “‘)/(Var S)“* 

converges to a standard normal in distribution. 

Remarks. 
(1) If p is unknown, using the maximum likelihood estimate of p 

does not change the theorem since it is a consistent estimator. 
(2) Basing R on (A(ii) -,4(q))’ leads to a more complicated statis- 

tic than the one based on A(ii) -A( ii). However, when we use the 
maximum likelihood estimate of p, the quantity 

I?, 
(m-l)CA(ii)-m(m-l)np 

I=1 

is zero, and the corresponding statistic converges to 0 in probability. 
(3) R is related to the concept of “eccentricity” in Q-analysis. The 

eccentricity of xi in K( X, Y) is defined as 

A(C)-yy,x{A(‘j)}. 

The distribution of the eccentricity is not obvious since the A( ij)‘s are 
not independent. 

(4) There is an obvious dual measure of random structure R* for the 
dual complex K*( Y, X). 

3. An application: Nominations among mathematicians 

Kochen and Blaivas asked editors of selected journals in six fields to 
nominate researchers whom they esteem. The nominees were, in turn, 
asked to nominate other researchers so that the nominees became 
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respondents. This procedure, called snowball sampling by Goodman 
(1961) was repeated four times. In this manner, the network of esteemed 
colleagues was traced. for a more detailed description of the first three 
rounds see Blaivas et al. (1981) and Blaivas et al. (1982), Crickman et al. 
(1982), Kochen et al. (1982), and Lenk (1983). 

Two of the fields in the study are topology and differential geometry. 
These fields are closely related and interact. In fact, some mathemati- 
cians work in both areas. The analysis in this section is for all four 
rounds of nominations for the mathematicians. Subsection 3.1 reports 
the results of a Q-analysis for the nominations. Subsection 3.2 intro- 
duces a graphical technique that synthesizes Q-analysis and multidi- 
mensional scaling in a mutually reinforcing manner. The measure of 
structure is computed in subsection 3.3 and interpreted for the nomina- 
tions. 

3. I. Q-analysis of the nominations 

Let X be the set of respondents or nominators and Y be the set of 
nominees. The card X is 33, and the card Y is 163. Table 4 is the 
Q-analysis for K( X, Y), which is the complex for the nominators, and 
Table 5 is that for K*( Y, X), which is the complex for the nominees. 
The complices K and K* have dimensions 27 and 12 respectively. If the 
relation was random, the maximum likelihood estimate of p is 0.06972. 
A comparison of the structural vectors of a simulated random relation 
with the observed relation indicates that the nominations form non-sin- 
gleton components at a higher dimension, and these components re- 
main distinct to a lower dimension than in a random relation. This 
effect is more pronounced for K* than for K. 

Consider the complex K( X, Y) for the mathematicians. A compo- 
nent forms around a,,(3) and a,,(25) at q = 11 and another around 
a,,(2) at q = 8. These two components merge at q = 6. A component 
consisting of a,,( 11) and ~~(29) forms at q = 4 and remains isolated 
until q = 1. The structural vector indicates that there is a high degree of 
consensus about esteemed peers among respondents in the components 
(3, 15, 25, 26) and (2, 22, 31). On the other hand, the high degree of 
eccentricity and the large number of singleton components of the other 
respondents is similar to the structure resulting from a random relation. 

Next consider the dual complex K*( Y, X) of nominees. A compo- 
nent forms around u,,(40) at q = 8, and another forms around ~,~(2) 
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The structural vector for K( X, Y), simplicial complex of the nominators. (Card X = 33 and 
card Y = 163) 

q Q components 

27 1 
26 1 
25 2 
24 2 
23 2 
22 2 
21 2 
20 2 
19 3 
18 4 
17 5 
16 5 
15 6 
14 6 
13 6 
12 8 
11 11 

10 14 
9 19 

8 18 

7 

6 

20 

22 

20 

13 

7 

5 

1 
1 

(2) 
(2) 
(2)(15) 
(2x15) 
(2)(15) 
(2)(15) 
(2)(15) 
(2)(15) 
(2)(3)(15) 
(2)(3)(15)(25) 
(1X2)(3)(15)(25) 
(1KU3U5W) 
(1)(2)(3)(15)(21)(25) 
(1)(2)(3)(15)(21)(25) 
(1)(2)(3)(15)(21)(25) 
(1)(2)(3)(15)(21)(25)(26)(30) 
(3.25)(1)(2)(11)(15)(21)(22)(26)(30)(31)(32) 
(3,25)(1)(2)(6)(9)(11)(14)(15)(21)(22)(26)(30)(31)(33) 
(3.25,26)(1)(2)(4)(6)(7)(9)(11)(14)(15)(16)(18)(21)(22)(24)(29)(30) 
(31x33) 
(2,22.31)(3.15.25.26)(1)(4)(6)(7)(9)(~1)(~2)(~~)(~6)(~8)(21) 
WW9(3WW3) 
(2,22.31)(3,14.~5.25,26)(1)(4)(6)(7)(9)(1~)(12)(13)(~6)(~8) 
(21)(24)(27)(28)(29)(30)(32)(33) 
(2.3.14.15,22,25,26)(1)(4)(6)(7)(8)(9)(10)(11)(12)(13) 

(16)(18)(19)(21)(24)(27)(28)(29)(30)(32)(33) 
(2,3.4.14,15,16,22.25,26.31)(6.33)(l)(5)(7) 

(8)(9)(10)(11)(12)(13)(18)(19)(21)(24)(27)(28)(29)(30)(32) 
(1.2,3,4.6.12,14,15,16,19,22.24.25,26.28,31~ 

32.33)(11,29)(5)(7)(8)(9)(10)(13)(18)(20)(21)(27)(30) 
(1,2,3,4,5,6,7.10.12,14,15,16,19,20,21,22,23,24,25.26,27,28, 
31.32.33)(11,29)(8)(9)(13)(18)(30) 
(1.2.3.4.5.6.7,8.9,10,12,14,15,16,19,20.21,22,23,24,25,26,27,28, 
31.32.33)(11,29)(13)(18)(30) 
all but respondent 17 who nominated only 1 mathematician 
all 

and a,,(34) at q = 9. These two components do not merge until q = 2. 
This behavior indicates the existence of two sub-areas which corre- 
spond to topologists and differential geometricians. 

In K( X, Y) if xi and xj are in the same component at dimension q, 
then the probability that xi nominates yk given that xj nominates yk is 
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Table 5 
Structural vector of K*( Y. X). simplical complex of the nominees. (Card X = 33 and card Y = 163.) 

4 Q components 

12 1 
11 1 
10 3 

9 2 
8 2 
7 5 
6 7 
5 5 

4 11 

3 5 

2 7 

1 5 

0 1 

(40) 
(40) 
(2)(34)(40) 
LWN40) 
W4)(40,54) 
(2.34.42)(40.54)(14)(15)(43) 
(2.34.42)(14,40.54)(4)(15)(35)(43)(53) 
(2.10.34,35,42,51) 
(4,14.15,40,43.52.54) 

(3)(44)(53) 
(2,10,34,35,42.51) 
(4,14,15,40.43.46,52.54) 

(1)(3)(6)(29)(36)(44)(48)(50)(53) 
(2.10,28,34,35,37,41,42,51) 
(1,3,4,6.14,15,30.36,38.39.40,43,44.45,46,47.48,50.52,54) 

CW(W53) 
(1,2.3.4.6,10,14,15,20,23,28.29.30.34,35,36,37,38,39,40,41,42.43,44,45,46, 
47.48,49,5O,51,52.53.54.92,lO6)(156,l6l) 

(7)(13)(94)(100)(134) 
1 component with 63 elements 
4 singletons 

all 

large and tends to increase as q increases. The large amount of 
randomness in K( X, Y), except for the two exceptional components, 
indicates that, in general, this probability is small. In K*( Y, X) if yi 
and JJJ are in the same component at dimension q, then the probability 
that xk nominates yi given that xk nominates yj is large and increases 
with increasing q. If they are in different components, this probability 
tends to be small and decreases with increasing q. The structure of 
K*( Y, X) indicates that if yi and yj work in the same sub-area, they 
tend to be nominated together; whereas, if they work in different 
sub-areas, they are not. This effect becomes more pronounced at higher 
dimensions. 

3.2. Graphical representation 

This author (1983) uses a common technique to map the nominees so 
that if the respondents collectively view two nominees as being ‘close’ 
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NOMINATORS 

Figure 2. Multi-dimensional scaling for the nominators. The nominators are the circled numbers. 
The numbers on the lines are the dimensions of the faces that are shared by the nominators. 

together, they are mapped close together in two dimensions. Let A be 
an incidence matrix for a relation, and define A = AA’. Treat the 
columns of A as vectors. To each element of X there corresponds a 
vector which is called its ‘profile’. Compute the correlations between 
each pair of profiles, and use these correlations as a measure of 
similarity in a multidimensional scaling program. The program at- 
tempts to map X into a low dimensional, usually 2, space so that the 
similarities are consistently maintained. If two x’s have a large positive 
correlation, they are mapped close together. If they are negatively 
correlated, they are mapped far apart. In this sense the scaling gives a 
convenient representation of the correlation matrix of the profiles. A 
similar procedure can be performed for Y. The connection to Q-analy- 
sis is that AA’ and A’A are the input to the scaling procedure and the 
Q-analysis. The two procedures are consistent with each other and 
mutually supportive. 

Figure 2 is the multi-dimensional scaling of the respondents, and 
Figure 3 is for the 32 nominees with 4 or more nominations. A scaling 



NOMINEES 

R*:4.65 

Figure 3. Multi-dimensional scahng for the nominees. The nominees are the circled numbers. The 
numbers on the lines are the dimensions of the faces that are shared by the nominees. 

of all 163 nominations becomes too chaotic. Figure 2 should be viewed 
with the Q-analysis of K( X, Y) in Table 4, and Figure 3 with the 
analysis of K*( Y, X) in Table 5. The numbers in the circles represent 
the respondents or the nominees. If a line connects two mathemati- 
cians, then their simplices share a face with the dimension given by the 
number on the line. For example, in Figure 2 nominators 26 and 15 
share a 7-dimensional face. In practical terms, they both gave nomina- 
tions to the same eight people. Likewise, in Figure 3 the simplices for 
nominees 40 and 15 share a 4-dimensional face, i.e. five respondents 
nominated both 40 and 15. Note also that if the same number appears 
in both figures, it identifies the same person. The figures only show 
connections of dimension 4 or more since including the lower order 
dimensions produces an illegible graphic. 

Consider Table 4 and Figure 2 for K( X, Y) which represents the 
nominators. The components (3, 14, 15, 25, 26) and (2, 22, 31) at q = 7 
give K( X, Y) most of its structure. In Figure 2, (3, 15, 25, 26) and the 
second component are completely connected networks at q = 7. The 
component (11, 29) is isolated. An outstanding feature is the central 
role of respondent 15. He is a cut point when only simplices of 
dimension 4 or more are considered. If 15 is removed, the left and right 
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halves become two separate components. Note also that many of the 
nominators on the left side are q-connected where 15 is the intermediate 
node. We infer that 15 probably is important in facilitating the trans- 
mission of ideas in the invisible college of topologists and differential 
geometricians. Inspection of the configuration formed by 15, 6, 33, and 
24 seems to indicate the existence of a Q-hole at dimension 4. 

The right side (right of 15) of Figure 2 consists of differential 
geometricians. Eight of the eleven indicated that they work with mea- 
sure theory. Mathematicians 1, 3, 7, 11, 13, 16, 25, 26, 29, and 30 in the 
upper left quadrant are topologists, and 4, 6, 9, 14, 15, 19, 21, 24, 27, 
32, and 33 in the lower left quadrant are differential geometricians. 
None of these indicated an interest in measure theory. 

Next consider Table 5 and Figure 3 for K*( Y, X) which represent 
the nominees. The two large components at q = 3 in the table are 
separated in the scaling. The component (2, 10, 28, 34, 35. 37, 41, 42, 
52) consists of differential geometricians, and the other component 
consists of topologists and mathematicians who were identified as 
working in both areas. At dimension 4 the two graphs of these compo- 
nents are disconnected and have an extensive internal structure. At 
q = 3, the left and right sides remain separate, but each half becomes 
well integrated except for 29, 49, and 53 which remain isolated until 
q = 2. Nominees 2 and 34 are central to the network of differential 
geometricians, and 40 is the center of the topologists. These three 
researchers also have high dimensional simplices. 

3.3. The measure of structure for the nomination relation 

Using the maximum likelihood estimate 0.06972 of pT the measure of 
random structure R for K( X, Y) the respondents, is 0.87. The p-value 
for testing the null hypothesis that the structure of K( X, Y) corre- 
sponds to a random structure is 0.3844, i.e. p-value = P( IZI B 0.87) 
where Z has a standard normal distribution. Therefore, the structure 
arising from the process of giving nominations cannot be distinguished 
from the structure resulting from a random relation when using the 
statistic R. It is important to note that the conclusion does not say that 
respondents randomly nominate but that the resulting structure is 
similar to that of a random relation. The conclusion supports the 
observations in subsections 3.1 and 3.2. 

The measure of random structure R* for K*( Y, X), the nominees, is 
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4.65. The p-values for testing the null hypothesis that the structure of 
K*( Y, X) corresponds to a random structure is approximately 0. This 
result indicates that the manner in which nominations are received by 
nominees is not random. This conclusion is supported by the remarks 
in subsections 3.1 and 3.2. 

The asymmetry in the structures for giving and receiving nomina- 
tions needs a more detailed investigation. We infer that a respondent 
nominates at least two types of researchers. The first type is a highly 
visible, well established mathematician whose work is applicable to a 
large number of problem areas in a sub-field. These mathematicians 
appear in Figure 3. The second group consists of mathematicians with 
less visibility than the first. His work is relevant to the problem areas of 
the nominator, but perhaps not to the entire sub-field. The mathemati- 
cians in the first group are consistently nominated by the respondents 
in their sub-field, while the ones in the second group receive only one or 
two nominations. The number in the first group is small compared to 
the second. In fact, the distribution of nominations follow Zipf’s law 
(Blaivas et al. 1983). 

The result of having these two groups vying for nominations is that 
there is little overlap between two sets of nominations for different 
nominators. In other words, A(ii) -A(u) is close to that of a random 
relation. Hence, K( X, Y) appears to be random, and R is close to zero. 
For the dual define B = A’A. If the relation is random, the average 
number of nominations that a nominee receives is 2.3. If a nominee yi is 
in the highly visible group, yi is frequently nominated, and B( ii) is 
much larger than 2.3. Generally, B( ii) - B( ij) is larger than that for a 
random relation ~ especially if VJ is in a different area since then B( ij) 
is close to zero. Therefore, the R* statistic becomes inflated for the 
members of the first group. If yi is in the second group, they yi receives 
few nominations, and B( ii) - B( ij) is approximately the same as a 
random relation. On the whole, the R* statistic becomes significantly 
larger than what would be probable if the structure were random. 

4. Conclusion 

The characterization of the structure of a random relation is a first step 
in constructing models for stochastic relations. A random relation can 
be used to model the noise component. Further work is needed to 
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develop probability models and methods of inference for stochastic 
relations. The characterization is also an aid in avoiding the error of 
making inferences that are not supported by the data when the data is a 
realization from a random relation. The measure of random structure is 
useful in recognizing random structure. 

An application of these concepts to the nomination of esteemed 
peers by mathematicians indicates that the structure of giving nomina- 
tions has an unexpectedly high degree of randomness; whereas, the 
process of receiving nominations is highly structured. This result sug- 
gests the hypothesis that two groups are being nominated: a small 
group of highly visible mathematicians and a large group of less 
well-known researchers. 
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