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A previously published analysis of the past behavior of a terminated stochastic process (Maltz and Pollock, 1980) is flawed. 
We present a correct analysis, specifically for the past intensity of a Poisson process stopped when the number of events within 
the past w time units exceeds 2. 

Stochastic processes, conditional stopping 

I n t r o d u c t i o n  Fundamental problem 

One rule for the termination of a stochastic 
point process is to stop the process when the 
number of events within a window of length w 
exceeds a threshold number k. Such a behavior 
was hypothesized in [1] in an attempt to develop a 
model that might represent the decision-making of 
judges when facing a juvenile delinquent with a 
record of 'police contact' events extending into the 
past. 

An interesting question arises when one wishes 
to look at the past behavior of a collection of 
processes terminated in this way. This was ex- 
amined in [1] in an applied (criminal justice) set- 
ting, but unfortunately the mathematical analysis 
given there is flawed in not having taken into 
account the true conditional nature of the process 
before it is terminated. In this paper we present an 
analysis that rectifies this flaw. While the specific 
results of the paper are directed at a Poisson 
process and with stopping threshold k - -2 ,  they 
shed light on the types of behavior which may be 
expected in more general cases. 

Consider a point process commencing at time 0 
- that is, with no points in ( - o o ,  0] - and an 
associated stopping rule that terminates the pro- 
cess at the first time t that there are k events 
within the ~'tnterval [t - w, t ]. Let the stopping time 
be the random variable T, with density function 
f ( t ) .  For example, if the process is Poisson with 
rate ?~, then when k - 1 ,  f ( t )  is trivially ?,e -At. 
However, if k >I 2, even in this simple case ( f ( t )  
becomes an extremely complicated function (the 
case of k - 2 is discussed in detail below). 

We wish to find the rate of a stopped process y 
time units into the 'past ' ,  e.g., previous to being 
stopped, but of course after the process started. 
The rate of interest is the conditional probability 
density of an event at the time y in the past, given 
that the process was in existence at time y in the 
past. That is, in looking back at time y we consider 
only evidence from realizations which were 'alive' 
at that time; other realizations are disregarded. 

This rate can be computed by first determining 
a rate conditioned on a particular value of the 
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stopping time, defined to be 

p(y l t )  - prob. dens. {nonstopping event at t - Yl 

process steps at t }. 
(1) 

(Throughom this paper, we assume that the rele- 
vant densities exist, that functions are smooth, that 
limits taken exist, etc., without giving mathemati- 
cal details or describing discontinuous analogs of 
the cases described.) 

Once this has been computed, this allows us to 
find the unconditional rate: 

r(y)= p(ylt)h(y,t) dt (2) 

where 

h ( y, t ) -- p.d.f, for the stopping time T given T > y 

o.< , .< ,  

[ (3) 

I 

with F ( y ) -  / ~ f ( t )  dt. 

Solution for a Poisson process and k - 2 

In the case where k - 2 and the point process is 
a renewal process, equation (1) may be usually 
re-written by using Bayes' rule. In particular, by 
defining g ( y ) =  prob. dens. {process stops at t I 
nonstopping even at t - y } and e(t - y)  = prob. 
dens. {nonstopping event at t - y  } then equation 
(1) becomes 

p( ylt ) = g( y )e( t - Y ) 
f(t) 

Combining this with equations (2) and (3) gives, 
after some manipulation, 

g(Y)  fo~e(x)  dx  
,(y)= . (4) 

(This formula does not hold for k > 2, in which 
case g is a function of y and t - y . )  

To find g(y), we note that this is the p.d.f, for 
the time Y from a (nonstopping) event to termina- 
tion of the process. Simple renewal arguments lead 
to the generator equations: 

g( t ) - i f ~ e - X X g (  t - x ) d x  , 
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O <~ t <~ w, 
w < t .  (5) 

The upper expression on the right-hand side repre- 
sents a termination at t due to the next event's 
arrival time being less than w; the lower expression 
convolutes the exponential next-event time (larger 
than w) with g(. ). Successive solutions of equation 
(5) for intervals (w, 2w], (2w, 3w],... lead eventu- 
ally to 

[.=o X-(y-.w)".! 
u - I  X"(y -- ( .  + 1)w)" ] 

- E n! j (6) 
n=O 

where N =-[y/w]= greatest integer part of y/w, 
and - l E , , - o  - O. 

By similar arguments it can be shown that 

N+l N'[ y - - (n- -  1)w]" (7) 
F( ~ ~_,y,-e-a"._ n! 

n=O 

By the additivity of expectations, f ~ e ( x )  dx  is the 
expected number of nonstopping events. The num- 
ber of such events is distributed geometrically with 
parameter e -~''. Therefore 

fo °°e(x)dx -- 1 
1 - e  -~'' " (8) 

Figure I shows r(y)/?~, as calculated from 
equation (4), using the results of equation (6), (7) 
and (8). In the figure w -  I, so that time is in 
'window units', an r ( y ) / ~  is shown for = 0.5, I, 2 
and 5. The figure illustrates a number of inter- 
esting features to this retrospective look at the 
terminated process, each of which can be proven 
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Fig. I. Ratio of r ( y )  to lambda. 
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algebraically as well as observed in the cases shown 
in the figure: 

(a) For all ~, the rate of occurrences into the 
past falls off until t -  1 where it drips to zero. 

(b) Values of r > 1 /w  can occur even for y > w. 
(c) For times greater than 1 into the past, 

although the rate climbs in some time periods, it is 
never greater than ~,, and even for ~, < 1 can be 
considerably less than ;k. 

(d) As y--* co, r ( y ) / ~  approaches a nonzero 
value dependent on ~, and w. 
To analyze the limited behavior of r ( y )  for large 
y, consider the defective renewal equations 

g ( y )  = b(  y )  + foVg( y - . )  dL( . ) ,  

fo'VF( y F(y)-A(y)+ -u)dl-(u). 

where 

1 - e-~-"(1 + ?~y), y < w, 

a ( y ) -  l - e - ~ ' ( l  +?~w)+w(e -~ ' - e -~X) ,  
y > w ,  

( ~ e  -~y, 0<y<w, 
t , (y)  = o, y > w, 

0, y < w, 

L ( y ) -  e - a ' -  e -~-', y > w. 

Using methods for the asymptotic analysis of re- 
newal equations with defective distributions (note 
that L(co) - e -  ~"' - 1 - P0 < 1) given, for ins- 
tance, in [2] and [3], one can eventually obtain 

lim r ( y ) =  lim g ( Y ) / P o  _ ~ ( I - ~ )  
y--. oo y- .  ~o 1 - F ( y ) 1 - e - x" 

where 17 is the (unique) solution to ~ -  e -'~'. Fig- 
ure 2 shows l i m y _ . ~ r ( y ) / ? ~  as a function of ~,w. 

Analysis of even Poisson processes with k > 2 
has thus far proven to be intractable. The analytic 
difficulties are associated with the fact that the 
process does not regenerate at each event, and that 
an auxiliary state space of dimension k -  1 is 
necessary to describe the state of the process at an 
event. A discrete-time approximation for general 
renewal cases with arbitrary k however, is possible 
- one that yields messy but computable results. 
The method for such an analysis is presented in 
[4]. 
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