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A new renormalization group is presented which exploits invariance with respect to more  than 
one scale. The method is illustrated by a simple model, and future applications to fields such as 
critical phenomena  and supersymmetry  are speculated upon. 

1. Introduction 

In principle, the ground state of a theory can be determined by locating the 
minimum of the effective potential Vef~ (or, at finite temperature, of the free energy) 
[1]. In practice, one must resort to making approximations to Veff. Aside from 
lattice calculations, these are generally of a perturbative nature. Typically, a coupling 
constant, loop, or high-temperature expansion is employed, whose convergence 
depends upon the magnitude of the expansion parameter. However, it sometimes 
happens that, even though the expansion parameter is small, the approximation to 
the effective potential fails because of the occurrence of large logarithms whose 
arguments involve the ratio of very different scales. In these cases, the situation can 
frequently be improved upon by summing up such logarithms, which is most 
efficiently performed via the renormalization group. This leads to a renormalization- 
group-improved version of the effective potential for which the perturbative 
expansion remains valid so long as the so-called "running" coupling constants remain 
small [2]. Another, not unrelated, application concerns the so-called decoupling 
theorems and the derivation of effective lagrangians to describe the low-energy 
effects of heavy particles. Here again, potentially large logarithms are conveniently 
reabsorbed in low-energy effective parameters and fields by means of renormaliz- 
ation group constraints [3]. 

However, there are situations in which the standard renormalization group 
methods are still inadequate to deal with the large logarithms which invalidate the 
direct application of perturbation theory. These situations arise when the problem 
of interest has two or more relevant but widely disparate scales. One example is in 

1 Address  from September 1, 1983: Depar tment  of Physics, University of Colorado, Boulder,  
CO 80302. 
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grand unified theories generally, but especially in spontaneously broken, supersym- 
metric grand unified models.* In such models, there is always at least one field (the 
scalar component of the goldstino superfield) which is undetermined classically. In 
previous work, it has been demonstrated how, through radiative corrections, the 
ground state expectation value (G) can be determined [4]. However, a straightfor- 
ward application of perturbation theory is not adequate to the task, and one must 
apply a renormalization-group-improved approximation to V~fr to succeed. How- 
ever, in the more general case when more than one linearly independent scalar 
field is undetermined, even the usual renormalization group does not yield a solution. 

The same thing can arise in a non-supersymmetric context in which more than 
one field (scalar order parameter) must be fixed via radiative corrections. Although 
no immediate physically relevant model springs to mind, one can invent a simple 
generalization of the Coleman-Weinberg massless U1 gauge theory to illustrate the 
point. In sect. 2, we review the Coleman-Weinberg situation and then consider a 
U1 × U1 generalization thereof which is illustrative and shares many features with 
generic, supersymmetric models. The main difficulty in such applications is that, in 
perturbative theory, one obtains terms of the form log m ~bl log n ~b2, where ~bl and 
~b2 are two fields whose scales are to be determined. One wishes to perform a 
summation in each variable separately, but the standard renormalization group 
equation is equivalent to a summation for a fixed ratio ~bl/~b2. If this ratio is very 
large or small, the remaining large logarithms of the ratio invalidates the application 
of perturbation theory. 

2. Review of the "massless", U 1 gauge theory 

Coleman and Weinberg** [2] consider the case of scalar, massless electrodynamics, 
a relativistic generalization of the Landau-Ginsburg model for superconductivity 
(at the critical temperature). The renormalized lagrangian takes the form 

, ~ =  2 1 2 ID~,q b] -zF~,~ -~A(O*@)2+ 8 ~ ,  (1) 
where 

D~cP =- a~ ~ - i e A ,  O , 

and 85f represents appropriate counterterms. Even though classically, ( ~ ) =  0, CW 
established that ( ~ ) #  0 as a result of radiative corrections. We will review this 
development in order to establish our renormalization conventions (which differ 
from CW) and to be in a position to compare this to our more complicated, two-scale 
model. The effective potential obeys the renormalization group equation 

5 +  o +  
iz~-~- f la~-  /3e~e+Y~b~-~JV~fr=O, (2) 

* A knowledge of supersymmetry is not required for the example to be discussed in detail in sect. 2. 
** Hereafter,  this reference will be abbreviated as CW. 
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where we have chosen the classical field ~b to be real. In one-loop approximation, 
the coefficients are given by* 

1 [~QA 2 -  12Ae2 + 36e 4] 
fla -- 16~r2 

3e 2 
(lea) 3' = (3) 

fie = 167r 2 , 16~r 2 • 

The one-loop approximation to the effective potential takes the form 

Vefr = Vcl+ 6 - ~ 2  [Tr M 4 In M2-A In/~2], (4) 

where we have employed a finite redefinition of the coupling constant A in order 
to eliminate a term proportional to ~b 4 in order h. As usual, M denotes the tree-level 
mass matrices. The coefficient A may be obtained by direct calculation or by means 
of the/3 and 3' functions through the renormalization group equation: 

32~r 2= /3A ~"~- "{-/3e ~-ee -1- ")/~ Vc l ,  (5 )  

where the classical potential is Vd = A(b4/4!  The result is 

A = ( 5 A 2  + 3 e 4 ) 6 4 .  (6) 

The tree-level masses can be easily calculated, so the trace is simply given as 

Tr  M 4 In M 2= (lAmb2)2 In (½,~b2) + (~X62) 2 In (~;t~b2) + 3(e2~b2) 2 In (e262).  (7) 

Although the preceding has been derived assuming A > 0, the sign of A is not a 
scale invariant concept**. However,  the effective potential is not analytic at ,~ = 0, 
reflecting the infrared divergences present at that point. Surprisingly enough, another 
finite (non-analytic) renormalization of the coupling constant ,~ can be exploited 
to remove this singularity. Defining ;t' by*** 

A' A h 
. . . .  4! 4!+647r  2(~A1 21nlA+~AElnlA+3e41ne2  ) ,  (8) 

then we find simply Tr  M 4 In M E = A In ~b 2, so that 

Ven= 4! +64I r  2[r~ Je)~# ln~be//z 2. (9) 

Now one may continue to negative h'  with impunityt.  

* We employ minimal subtraction and use the Landau gauge for convenience. 
** Indeed, with our conventions, the minimum occurs for negative A, see below. 
***This non-analytic renormalization leads to changes in the/3 functions beyond one-loop. The simplicity 

of the result does not generalize to the more complicated model considered below. 
5 Subsequently, we will drop the prime on h' .  
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To establish the non-zero minimum (~b), one may proceed in one of two ways: 
(i) One may calculate perturbatively if one cleverly chooses the normalization mass 
/z -= (¢),  so that no large logarithms are encountered for small variations about this 
scale. Assuming that A - e 4, we find 0 Ven/3¢ = 0 provided h + 9a  2 = 0 (a  --- e2/4~) .  

One may then establish that, so long as the normalization scale is chosen within the 
range for which h and a are small, the running coupling constants always evolve 
to a regime where h - -  a 2, that is, A - a 2 near the minimum but not elsewhere (more 
typically A - a).  

(ii) Alternatively, if /z is not chosen near (¢),  (so that h is not of order  a 2 ) ,  then 
a direct perturbative calculation is not possible because Z In (¢) / /z  ~ 1. However,  
one may form the "renormalizat ion group improved"  effective potential (still using 
a perturbative approximation for /3 and y) to sum up the large logarithms and 
thereby establish the same result as before using the first method. 

Consider now a U1 × U1 extension of the CW model, with classical potential of 
the form 

__1 t 2 1 t 2 t t Vcl- ~(2` 1((~1 ( J ) l ) ) "~-6(2`2(~)21~2)  )+2`3( (~1( / )1 ) ( (~)2(~)2)  ( 1 0 )  

Note that, for 2`3 = 0, ¢1 and 4)2 are uncoupled and the theory becomes a direct 
sum of two CW models. The two ground state expectation values ((P~) and (¢2) 
are determined by dimensional transmutation, but the ratio ((Pl)/((P2) is completely 
arbitrary. For sufficiently small 2`3, we expect ((Pl) and ((P2) to be only slightly 
changed, but, if their ratio is sufficiently large (or small), it is impossible to establish 
this by either of the methods used to solve the CW model: (i) If we choose to 
normalize at say/z  = (4)1) , then in general we will not have 2,2 of O(e24), that is, we 
will be outside the domain of validity of perturbation theory for 4)2. (ii) If one 
improves on V¢n by implementing consistency with the renormalization group, then 
one still faces logs of the ratio ((P~)/((P2), which can also become large and invalidate 
the approximation. 

One might proceed via decoupling to solve the problem iteratively, but it is clear 
that a more symmetric methodology is called for. The preceding uncoupled example 
(2`3 = 0 )  suggests that what is required is a t reatment  which takes advantage of 
separate rescalings of linearly independent fields. 

The analogue of CW's  normalization conditions for the couplings would be* 

0 4 Veff 0 4 Veff 0 2 Veff 
, 2 `2  , 2 `3  = - -  , ( 1 1 )  

2` 1 = --~114--14 ~1 =j.j. 1 ~-- ~ " "  O~l =~1 O~b 120~ ~ 2 ¢~bl ~ At 1 
~2=~2 ~b2 = ,u-2 tJ~2 =/z 2 

and similarly for el and e 2. Customarily, one chooses the same normalization scale 
for both fields,/Zl = p-2, but this is not necessary and, for our purposes, undesirable. 
One may then develop new renormalization group equations which express the 

* As before, we choose phases so that the classical fields ~b 1 and ¢2 are both real. 
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invariance of the theory under independent variations of/,d, 1 and/x2. The resulting 
normalization group equations take the general form 

o ' l '  - o  

[ 0 ..[_ f~ (2) __0__~ _]_ ,)/~2) ~ / ~ / ]  Veff = 0 (12) 
I z 2 - ~ 2  ~ x °  ahp • ' 

where, for brevity, we define hp --- (h~, h2, h3, el, e2). In general, the/3 functions and 
anomalous dimensions depend on the ratio /Zl//~2 as well as other dimensionless 
variables or ratios. In the standard development, it is advantageous to pursue a 
"mass-independent" approach based on dimensional regularization and minimal 
subtraction, yielding/3's and 7's which depend only on the dimensionless coupling 
constants. In our new method, this technique preserves their independence of the 
ratio /~//z2 only in one-loop-approximation but, in higher order, such an explicit 
dependence appears to be unavoidable. However,  the mass independence at one- 
loop is of considerable technical advantage and generally permits a solution of the 
problem closely analogous to the one-scale formalism. This is the prescription we 
will follow henceforth. 

We have developed the general solution of such systems of equations, but we will 
spare the reader this rather cumbersome formalism and develop a simpler solution 
to the problem which is a generalization of the perturbative CW method (1) described 
above. We present this in sect. 3 and then, in the subs.equent section, we perform 
a renormalization group analysis of the coupling constant flows to ascertain whether 
the assumptions made are general. 

3. Multiscale solution of the U1 × UI model 

Our goal in this section is to present the solution to the UI xU1, coupled CW 
model defined by eq. (10). 

To this end we introduce three different renormalization masses for the three 
couplings hi, A2, h3: 

h B = h i l z T Z ~ , ,  (not summed over i) (13) 

where h~ are the bare coupling constants and e - - - 4 - n .  One could in principle 
introduce additional normalization masses for the gauge couplings el and e2 but it 
is equally convenient for our purposes to take 

e/a = ei-/z i~/2~'Z.e~ (not summed).  (14) 

Similarly, wave-function renormalizations may be associated with additional scales, 
but we simply choose to employ minimal subtraction so that the renormalization 
mass dependence is to be inferred from the coupling constant dependence. This 
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procedure  enables one  to de te rmine  unambiguous ly  the "pa r t i a l "  fl and y functions 
which a p p e a r  in the renormal iza t ion  g roup  equations.  In the present  case, there  are 
three  such equat ions 

( ) V e f f = O  , (15) 

(not s u m m e d  on a = 1, 2, 3). In one  loop approx imat ion ,  the non -ze ro  coefficients 
are* 

A3 [4ha_  6e12], /3~1) = 1 -10 2 2 36e4_6A32] fl~] 16rr 2 16~r 2 [yA1 - 12Ale1 + , = 

1 r1%2_l .~A e 2 + a 6 e ~ _ 6 A 2 ]  /3~] = A3 [4AE_6e22], 
fl(a 2) = 1 6 . r r 2 t 3  ,x2 1~. 2 2 , 16,rr2  

1 ~ ( 1 ) =  1 1 3 / , q ( 2 ) =  1 (½e3) 
e I 16~.2 (gel) 16rr 2 t-" e 2 

/3~ 3) = ,8~)  - 12A2 8 (3) = 
4A 2 

1 6 ~  2 '  16rr 2 , 

y~l)  = 3e2 y(22) = 3e2 
167r2, 16rr 2 . (16) 

All o thers  are zero,  in part icular ,  no te  for  fu ture  re ference  that  e,:a(1) =/3~ 2) = 0. The  
effective potent ial  may  also be calculated unambiguously .  In o n e - l o o p - a p p r o x i m a -  
tion, it takes  the fo rm 

Vp = Vd + ~ [Tr M 4 In M 2 - A~ In/x ~ ] ,  (17) 
Oot ,/7" 

where  the coefficients A s  are  polynomials  in the couplings and fields. They  m a y  be 
de te rmined  f rom the renormal iza t ion  g roup  to be 

3-~2A,~=[fl~'~' O--~-+yl")~i-~i]V~l. (18) 
OA o 

Using the previous fo rmulae  (16), we find 

m 1 = (~8)L 2. .~ 4 1 2 4 2 2 2 3el - ~X 3) 4~1 +~A1Aa~bl ~b2, 

m 2 =  ( 5 A 2 +  4 1 : 4 2 2 2 3e2 --~A3)(~ 2 +~A2A3~bl (DE , 

A3 = A2(~b2+ ~b~) 2 . (19) 

* W e  have  calculated these  in the  L a n d a u  gauge  us ing a min imal  sub t rac t ion  renormal iza t ion  
prescript ion.  
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The  exact  computa t ion  of T r  M 4 In M 2 is analytically ra ther  complicated.  We  find 

T r M  a l n M  2 = M  4 1 n M  2 + M  2 _ l n M  2 _ + M  4 1 n M  2 + M  4 1 n M  2 

+ 3(e2~b2) 2 In (e2q~12) + 3(e2~b2) 2 In (e2~b2), (20) 

where  
2 _ _ 1  2 1 2 

M1 = ghl ~bl -[- ~ /~3 (~2  , 

2 _ _ 1  2 1 2 
M 2  = g A 2 ~ 2  + ~ A 3 ~ 1  . 

M ~  are  the two eigenvalues of the mass 2 matr ix  

1 2 2 " 
\ ,x3 ,~1 ,~2  ~(x2~,2 + x3,~2)} 

Just  as in the C W  model ,  the signs of ;tl and A2 are  not  scale invar iant  and, as we 
shall see, the min imum again occurs for  negat ive  values of these couplings. It  turns 
out  that  M~, M 2, M 2, and M 2_ are all negat ive  at the min imum,  so the effective 

potent ia l  is complex  for  ~bl and ~b2 near  the min imum.  One  is t e m p t e d  to define 
these coupling constants  as in the C W  mode l  to avoid this p rob lem,  but  the natura l  
r ep lacemen t  (M2-+ M2+/A1, M2-+ 2 2 .0 MllAI ,  M_ M2_IA2, M2oM~/A2)  does not  
co r r e spond  to a possible finite change in coun te r t e rms  because  M 2 and M 2 _ are 
not  fou r th -o rde r  polynomials  in the fields. H o w e v e r ,  one can rescale all scalar mass  
by the same factor  (M2+ M2/hi ,  say) since M 2 + M 2 _ is a fou r th -o rde r  polynomial .  

As  we shall soon see, this technical  nicety can be ignored to one - loop  approx imat ion ,  
but  it must  be borne  in mind if one  wished to carry  this calculation to higher order .  

The  preceding formal i sm is not  much  m o r e  compl ica ted  than the s tandard  t rea t -  
ment ,  except  that  there  are  th ree  normal iza t ions  scales /z~ and three  sets of /3- 
funct ions and anomalous  dimensions.  Howeve r ,  we shall now demons t r a t e  that  it 
is precisely this f r eedom which allows a pe r tu rba t ive  solution of the mode l  regardless 

of how large or small the  rat io  (~bl)/(~b2) might  be. 
Le t  us suppose that  h i - - e  4, h 2 - - e  4, and h3 also sufficiently small* so that  all 

t e rms  o ther  than those coming f rom the vec tor  bosons may  be ignored.  (These 
supposi t ions  are to be  regarded  as constraints  on the choice of scales /z l ,  tz2, and/x3.) 

Then  
3h l" 2- -2  e2--2"1 

Veff~ Vc, +647r  2 [(e24~2)2, e l 0 1 - .  2 - - 2 x 2 ,  202/  - -  in---------g---ere202) m 7 2  j . (21) /zl 

Supposing (~bl) and (~b2) are  both  non-zero ,  it is especially convenient  to choose 
~ l  = el(~bl) and /z2  = ez(~b2). Then  ex t rema  are  de te rmined  f rom the vanishing of 

O V  1 2 1 2 3 2 2 
= q ' - ~ h a l  ~ 1 )  ~ l ( ~ / ~  1 ~ 1 "t- ~,~- 3 ~l~ 2 

a4~1 

oV 1 2 1 2 3 2 2 
~--- t ~ 2 ( g } ~ 2 t ~ 2 " b ~ , / ~ 3 t ~ l  - } - ~ 1 0 ¢ 2 ~ 2 )  . (22) 

&b2 

* As we shall see shortly, this requirement is A3<~ e2e22. 
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(~bl 2) -3A3 A2+9a~ 
(23) 

(~b 2) a ~ + 9 a l  2 -3A 3 

Note that this implies that la31 ~< ala2, as asserted earlier. From the matrix of second 
derivatives, it is easy to establish that this is indeed a local minimum. As in the CW 
model, these relations illustrate dimensional transmutation. The original theory has 
five dimensionless parameters (A1, A2, A3, el, e2). We may exchange two of these for 
the two  scales (~b~) and (~b2) and three dimensionless couplings which we may choose 
to be A1, '~2, )t3 or al ,  a2, A3 with the relations among them given by eq. (23). The 
specification of the quantum theory also requires that we give the value of/-~3, but 
the renormalization group invariance assures us that physical predictions are 
independent of the choice we make for this scale. We have been cavalier about 
dropping all the other terms in Tr M a In M 2, but one must now check the self- 
consistency of this approximation. The only cause for concern would be the occur- 
rence of large logarithms such as log ((~/~l)/(t~2)) o r  log ((t~2)//.~3). Let us suppose 
in fact that (4'1) >> (~b2), so that the theory involves very different physical scales. Since 

--3A3(t~l)2 = A2+9a 2 , (24) 
(~2)  2 

we clearly must have IA3[~ < [(t~2)2/(~1)2]O~ 2, that is, very different scales requires a 
very small value of IA3[. Then one can easily see that M E - M ~  -Al~b~ and M E 

2 2 M2 ~ A2q~2, SO we find the terms in question to be 

h /~ 2/'''k4 In (gbz/kt 2) + &4 In (~b2//.~) 
128~2 3~u,1 (25) 

The validity of the perturbative calculation depends on showing that this is a small 
correction to the classical potential on both scales (~bl) and (~b2), 

\~--~] ln((&~)//ZaZ)<< A,, 

lh{/~3 ~2 \ --~} In ((4~)/~2)<< A2. (26) 

Recall that these couplings depend on the normalization scales t.£1 = el(~bl),/z2 = 
e2(q~2) , and/z3. So the validity of this relation depends on whether, for some choice 
of/z3, the coupling constants obey all the relations hypothesized. To this end, we 
must understand the behavior of the remaining coupling constants with variations 
of scale. In sect. 4, we shall show that the preceding conditions, eq. (26), can always 
be satisfied as well as  /~1 ~ t~l 2, /~2~ O~2 SO that, the preceding treatment gives the 
unique ground state. 
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4. Characteristic trajectories tor the coupling constants 

In obtaining the perturbative solution in sect. 3, we have hypothesized that 11 - a 2, 
1 2 -  o~22, and 13 sufficiently small. The purpose of the following discussion is to show 
that starting anywhere in the perturbative domain, by variations of scale, we can 
arrange for these assumptions to be fulfilled. Just as in the CW model, we shall 
establish that this is indeed the case and, therefore, a renormalization group improved 
analysis of the effective potential would yield precisely the results obtained in the 
previous sections. This shows that this is the unique ground state, regardless of the 
magnitudes of coupling constants initially! The equations to be analyzed are 

0 
not summed on i =  1, 2, 3; j =  1, 2, 3 ,  

0 
I~i~--~iek=fl(e~, i = 1 , 2 , 3 ;  k = l , 2 ,  (27) 

where the non-zero/3-functions are listed in eq. (16). One might at first think that 
having to analyze three different rescaling equations would be far more complicated 
than a single one, but in fact the opposite is true. The ability to vary some scales 
and not  others allows a simple, stepwise solution of the problem. To see this, suppose 
we are given initial values for all five couplings 1 °, 1 °, A °, el °, e °, at scales/x °, ~z °, 
~z °. What are the values at other scales? 

Note first that 13 = 0 is a fixed point of the equations (uncoupled CW models), 
so the sign of 13 is renormalization group invariant. Let us consider the variations 
of 13 with changes of/-~3: 

with general solution 

0 11 
/Z3 ~ 13 ----- 47r2, (28) 

1 1 lzr /z3 (29) 
13(Nl,//'2,/z3) -- A3(/Zl,/'1"2, / x°) 4 2  In ~030. 

Therefore, if 13(P,1, ]'£2, [ 20) is positive (negative) then by choosing /x3 sufficiently 
small (large), we may make 13 arbitrarily small. Since the sign of A3(tZl, Ix2,/x °) is 
the same as the sign of A °, this conclusion will be independent of the change with 
scales /zl and Ix2. This already answers the question of the dangerously large 
logarithms encountered at the end of sect. 3. Since 13-~ (ln ix3) -1 asymptotically, 
one can always guarantee the validity of the inequalities in eq. (26) by proper choice 
of/-*3. This variation in Ix3 causes a negligible change in 11 and 12. For example, since 

0 3 2_  0 
/'£3 0/.£'-"~ 11 = 4~r ------713 - 3/~3 ~ 3  13'  (30) 
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'~ 1 (JA 1, J£2, /-/'3) = ~t 1 (J-/ ' l ,  /d,2, J£0)  "1- 3 ( / ~ 3 ( / £ 1 ,  J£2,  J£3)  - -  ,~ 3 ( ]£  1, J£2,  ] £0 )  . ( 3 1 )  

Since we are choosing/z3 to make A3 small, A1 is changed very little. 
Now we must consider the variations induced by changes in /z l  or ~z2. Consider 

first varying ~z~: Since we may neglect the A3 term in/3~11>, the variation of A1 with 
~z~ is just as in the CW model! So for a change in scale of tzl corresponding to a 
small change of e 2 (Ae 2-< 1 2\ ze~), ;t~ varies over  the whole real axis. In particular, we 
may choose /z~ so that A~-  e 4. (We know the minimum is near  the scale where 
A I ~ - 9 a 2 . )  It is crucial that this variation induces a small change in A3, so we must 
examine 

0 A3=/3~x13> = A3 (~A1_6e2) (32) 
P'I 0~1 167r 2 " 

From the explicit solution for ~1 as a function of e~ (see CW, eq. (5.50)), one can 
explicitly solve for A3. However ,  this is unnecessary, since one observes that the 
variations of A3 is little changed by small changes in el 2. Also since a (1 )=  0, A 2 /~A 2 
remains unchanged by variations of/z~. Now, without changing A1, we may vary/z2 
to bring A2 to order e 4, still changing A3 negligibly. Thus we have satisfied all 
hypotheses of sect. 3 and established that the basin of attraction of the minimum 
found there is the entire perturbative domain, a powerful result. 

5. Higher-order corrections 

Even in a "modified minimal subtraction" scheme such as the one employed here, 
the/3 functions develop explicit dependence on the normalization mass ratios (/Xl//z3 
and/z2//x3 in our model) beyond one-loop order.* Since these ratios might be very 
large or very small, one can be justifiably concerned about the stability of our 
procedure in higher order;  whether,  for example, fine tunings of couplings are 
required to maintain a large ratio (~bl)/(~b2). We have not made an exhaustive 
investigation of this question, but at least in the particular model discussed here, it 
seems unlikely that higher-order corrections create problems of this sort. In a 
minimal subtraction scheme, dependence on normalization mass ratios enter only 
as the logarithm of these quantities. Moreover,  we know that, for A 3 = 0  , no  

dependence on log (Ix~/lz2) occurs since this limit corresponds to two, uncoupled, 
minimally subtracted models with mass-independent /3-functions. Therefore,  the 
only form in which these ratios enter the /3 functions in higher order  will be as 
A 3 1 o g ( / z l / # 3  ) or  A310g(/z2/P.3) .  This could be dangerous since h 3 - ~ ( l o g / z 3 )  -1 

asymptotically, so such products approach a constant and, hence, might compete  
with lower-order contributions. In fact, an explicit calculation of the two-loop /3 

* We have not explored whether a subtraction scheme can be invented to remove these dependences. 
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functions in the ungauged version of our model reveals that these logarithms enter 
only with coefficients proportional to A 32A2 or A~A1. Just as in our discussion of Veer, 
we find that A~ log/z3~( log  J£3) -1 and so is a harmless factor regardless of how 
large or small the ratio/Zl//-~3 or/z2/~3 is taken to be. The reason for this fortuitous 
circumstance is not apparent to us, but it is encouraging. 

6. Conclusions 

In this paper, we have introduced a new renormalization group method, capable 
of summing up several different logarithmic scale dependences. Our "part ial"  
renormalization group equations contain more information than the standard, single- 
scale renormalization group equations. We have illustrated their utility in a toy 
model of the Coleman-Weinberg type involving two fields both of whose scales 
must be determined via radiative corrections. Our method renders a perturbative 
solution of this model possible and makes an analysis of the renormalization group 
flows of the coupling constants much easier than in the standard treatment. 

At present, this is a method in search of more physically relevant applications. 
The most immediate one which springs to mind (and which provided our initial 
motivation) is in globally supersymmetric models having more than one field which 
are classically undetermined. Elsewhere, we have indicated how, depending on the 
pattern of symmetry breaking, such models may avoid supersymmetric decoupling 
[5]. The pattern of symmetry breaking must be determined by radiative corrections 
and may involve widely different scales. The motivation also persists in certain 
supergravity models where radiative corrections may still play a crucial role [6]. 

Another  application might be to decoupling theorems of spontaneously broken 
gauge theories. One may, by our techniques, be able to discuss the physics on several 
scales simultaneously. The large logarithms which are summed up to obtain the 
effective low-energy lagrangian [3] might be avoided as in the example discussed 

in this paper. 
There are a variety of applications of perturbative QCD which are in doubt 

because of the occurrence of large logarithms from very different regions of phase 
space. (These are generally associated with the conjectured suppression of certain 
contributions because of Sudakov form factors [7].) Perhaps a separation of the 
problem into two scales, with independent renormalization group equations for 
each, would allow new insight into the leading-log summations involved. 

In general, whenever summations of logarithms involving different arguments are 
required, we would expect our multiscale renormalization grotlp method to be useful. 

It would be especially interesting to find a condensed matter problem in which 
the radiative corrections on two very different scales or involving several independent 
degrees of freedom are important. As yet, we are not aware of such a realistic 
example. 
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