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Abstract: The 5-dimensional quasispin formalism is used to evaluate the (n, T)-dependent factors of 

the matrix elements of abnormal parity operators of relevance for yrast-band spectroscopy. The 

formalism allows the leading pseudoSU(3) representation of the normal (N) parity part of a 

shell-model configuration to be coupled to low-seniority states of the abnormal (A) parity high-j 

intruder part of the configuration. To illustrate the importance of the n,, TA dependence of the 

(A) to (N) space-coupling matrix elements this model is applied to the negative-parity yrast spectra 

of “‘La and “‘Ba, using hamiltonian parameters which give a reasonable fit for ‘s6Ba. The “‘La 

spectrum is reproduced with a seniority-one truncation of the hll,r configuration; the “‘Ba 

spectrum indicates a need for higher-seniority admixtures. 

1. Introduction 

Until recently microscopic shell-model studies of deformed nuclei have been 

restricted to the very lightest deformed nuclei (e.g. in the first half of the 2sld 

shell). In heavier deformed nuclei the enormous dimensionalities of a conventional 

shell-model treatment have precluded shell-model calculations for such systems. 

Recently, however, it has been shown that group-theoretical methods may be used 

to reduce the shell-model spaces for strongly deformed heavy nuclei to physical 

subspaces of tractable size ‘). These permit a microscopic study of yrast-band 

phenomena despite the necessarily severe basis truncation ‘). In heavy nuclei the 

single-particle shell-model levels are characterized by the appearance in each major 

oscillator shell of a single high-j intruder level of opposite or abnormal parity, e.g. 

the hi112 level which is pushed into the midst of the g7,2d5,2d3,2s1,2 levels by the 

strong spin-orbit interaction. An important part of the basis specification involves 

the partitioning of the valence nucleons into two sets, those which occupy the natural 

(normal, N) parity sublevels of a major oscillator shell and those which occupy the 

unique (abnormal, A) parity high-j intruder level. Although the possibility of pair 

promotion from N- to A- or A- to N-orbitals may be included, each piece of the 

basis is built from weak-coupled state vectors, coupling specific N- and A-space 

’ Supported in part by the US National Science Foundation. 
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state vectors. In heavy deformed nuclei a severe basis truncation may be achieved 
if the N-space vectors are dominated by the leading (most deformed) representations 
of pseudoSU(3) symmetry. The pseudoSU(3) model has been described else- 
where ‘). It originated from studies of pseudo spin-orbit doublets “) and is based 
on a correspondence such as (g7,2d5,2d3,2s1,2) + (27,215,2j53,2?)1,2) which maps the 
normal-parity (N) single-particle levels of the 50 G 2 G 82 nuclei onto the states of 
a complete major pseudo-oscillator shell (in this case with major pseudo-oscillator 
quantum number * = 3). In regions of deformation where single-particle Nilsson 
orbitals are characterized by good asymptotic pseudo-oscillator quantum numbers 
[&~]n, the normal-parity configurations are dominated by the leading irreducible 
representation 5, of pseudo-SU( 3) symmetry, (hp), with highest possible 2h + CL, 
and for fixed value of this sum, the highest b. The goodness of asymptotic pseudo- 
oscillator quantum numbers has recently also been exploited in an analysis of the 
qualitative features of quasiparticle motion in rotating potentials “). 

Although the pseudo-SU(3) approximation for the normal-parity subspace is the 
key to a tractable basis truncation in heavy deformed nuclei, a further truncation 
of the abnormal-parity subspace may also be necessary, particularly in nuclei such 
as those in the Ba region where the high-j intruder level may be being filled by a 
large number of both neutrons and protons. In a rich valence space of many i 
sublevels, in a heavy deformed nucleus, seniority is not a good quantum number. 
However, in a single high j-intruder orbit, isolated in a lower major shell, the effects 
of seniority-breaking forces are inhibited, and the seniority scheme for the single 
j-shell may provide a suitable basis for truncation. The five-dimensional quasispin 
formalism then serves as a very useful tool in evaluating matrix elements in the 
high j-intruder subspace since it gives the n, T dependence of all matrix elements. 
The number of nucleons and isospin of the A-subspace may play a vital role in 
determining the characteristics of the yrast rotational bands in odd nuclei. In ref. ‘) 
it has been shown that it is the A-space n, T dependence of certain crucial coupling 
matrix elements which determines whether the odd-parity yrast spectrum of an 
odd-mass nucleus is of stretched (Al = 2 sequence) or of ordered (AI = 1 rotational 
sequence) character. Moreover, this (n, T)-dependent signature can be used to 
predict the character of the yrast spectra of odd nuclei throughout the intermediate 
and heavy mass regions. 

Since the five-dimensional quasispin formalism has been an important tool in the 
microscopic study of yrast-band phenomena in heavy deformed nuclei a review of 
this formalism as applied to this problem may be useful. The purpose of the present 
article is twofold. On the one hand, it is our aim to give the detailed (n, T)-dependent 
factors for the A-space matrix elements relevant for yrast-state spectroscopy. For 
this reason sect. 2 gives a brief review of the five-dimensional quasispin formalism 
and the quasispin method of calculation. It also gives the general features of the 
weak-coupling scheme which combine the normal- and abnormal-parity subspaces, 
in order to identify the quasispin operators whose matrix elements are needed for 
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applications of this coupling scheme. A tabulation of the most important matrix 
elements, in terms of general algebraic (II, T)-dependent expressions, is given in an 
appendix. Our second aim is to illustrate the importance of the it, T dependence of 
the A- to N-space coupling matrix elements with a specific example. For this purpose 
we have chosen the negative-parity yrast spectra of the odd-A neighbors of ‘26Ba. 
The calculations are presented in sect. 3. A model hamiltonian is chosen which gives 
a reasonable fit to the yrast states of ‘26Ba. When applied to the negative-parity 
yrast spectra of ‘*‘La and 127Ba this hamiltonian leads to qualitatively different 
spectra in the odd-proton and odd-neutron nuclei. Although our basis truncation 
for the odd nuclei may be somewhat too severe for good quantitative agreement 
with experimental spectra, the qualitative features of the observed spectra are 
predicted by the model wave functions. These wave functions give us a microscopic 
basis for the comparison of B(E2) values, and quadrupole moments in the negative- 
parity yrast states of ‘*‘La and ‘*‘Ba. 

2. The five-dimensional quasispin formalism 

A description of configurations of neutrons and protons in a single kshell is 
provided by the five-dimensional quasispin formalism 879). It makes it possible to 
give the explicit II, Tdependence of nuclear matrix elements in the seniority scheme 
in terms of generalized Wigner coefficients for a five-dimensional rotation group lo). 
The classification scheme is based on two parallel group chains starting with the 
direct product of the quasi-spin group and the symplectic group in (2j+l) 
dimensions, i.e. R(5)OSp(2j+ 1). The set of ten infinitesimal operators which 
generate R(5) commute with the infinitesimal operators which generate Sp(2j+ 1). 
The irreducible representations of both R(5) and Sp(2j+ 1) are labelled by seniority 
u and reduced isospin t. The group chain based on Sp(2j+ 1) is that of the conven- 
tional spectroscopy of identical particle configurations, Sp(2j+ 1) = R(3). The group 
chain based on R(5) can be chosen to include the subgroup SU(2) generated by 
the three components of the isospin operator T which commute with the number 
operator [generator of U(l)]: R(5) 1 [SU(2) OU( l)]. Quasispin spectroscopy thus 
achieves the following aims lo>: (i) Nucleon number II and isospin T are associated 
with the lowest subgroups in one of the chains. Since they play the same role as 
the magnetic quantum number Mj of ordinary angular momentum theory, the 
dependence on n and T can be factored out of any matrix element by application 
of a generalized Wigner-Eckart theorem and knowledge of the associated generalized 
R(5) Wigner coefficients. (ii) The highest symmetry in the classification scheme is 
as simple as possible. The group R(5) which is the starting point of one of the two 
parallel group chains is a simple group of rank 2 for which explicit properties 
including the needed Wigner coefficients can be worked out in detail. (iii) The 
starting point of that branch of the group chain containing the isospin and number 



K.J. Weeks et al. / Five-dimensional quasispin 45 

operators is always R(5) so that the same symmetry group serves for all j as well 
as for mixed configurations. 

It should be pointed out that although the application of the quasi-spin formalism 
is straightforward in principle, it is complicated in practice by the fact that the group 
chain R( 5) = SU(2) OU( 1) is not a canonical one corresponding to a mathematically 
natural group decomposition. The scheme in which the physically relevant labels 
n, T and MT are good quantum numbers does not completely specify the states of 
the irreducible representations of R(5) without the introduction of a fourth operator 
which commutes with T2, To and the number operator. Such an operator has the 
disadvantage that its eigenvalues are not related to the irreducible representation 
labels of a subgroup of the decomposition. Mowever, a practical resolution of this 
problem has been achieved 11) for irreducible representations with reduced isospin 
t d $. Although the quasispin technique is tailor-made for the study of the general 
n, T dependence of physical quantities for a series of nuclei, its applications in this 
regard are somewhat limited by the fact that it is tied closely to the seniority scheme 
and seniority is in general not a good quantum number in nuclei where both neutrons 
and protons are filling the same shells. In an isolated high-j intruder orbit the effects 
of seniority breaking forces are inhibited, and the indications are that high-j 
alignment effects in even-even nuclei can be accounted for through the first 
backbending region by a truncation scheme in which states with seniority ~24 
are neglected *). 

Some observed (n, T)-dependent effects in light- and intermediate-weight nuclei 
may be understood at least qualitatively by a very simple application of the quasispin 
formalism if admixtures of high seniorities are relatively unimportant to the under- 
standing of such effects. So-called isobaric mass formulae and Coulomb energy 
systematics may possibly fall into this category. In a systematic study of the energies 
of isobaric analogue states, for example, JHnecke ‘*) found a simple T( T+ 1) 
dependence for the energies of isobaric analogue states of odd-mass nuclei and a 
similar T( T+ 1) dependence for the energies of even nuclei supplemented by a 
strong pairing effect which favors (lowers the energy of) the even-T states of nuclei 
with A = 4k, (k is an integer) and the odd-T state of nuclei with A = (4k +2). 
Similarly, the isovector and tensor coefficients of the Coulomb energy (diagonal 
matrix elements of the Coulomb interaction) show systematic (n, T)-dependent 
effects 13). Very similar n, T dependences in the key matrix elements coupling the 
high-j intruder orbit to the normal-parity configuration in heavy deformed odd 
nuclei are responsible for determining the characteristics of the odd-parity yrast 
bands of such nuclei. 

The classification schemes of conventional spectroscopy are based on groups 
generated by infinitesimal operators which conserve nucleon number. The quasispin 
groups, on the other hand, are generated by operators which include pair creation 
and annihilation operators. The five-dimensional quasispin group for configurations 
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j” is generated by the ten infinitesimal operators 

A+(M,) = 1 c ($&rz: 1 I&-) (-l)i-mc&,&,,,,,; 
m,m,,m; 

= [a+ x a’]‘M==“, ~,[$(j+;)y ) 

AU&-) = (A+(W))+, 

T+=C ai+&ajmr;, To=4C (a~+aj,f-a~-tUj~-~), [+Nop-(j+i)] 7 (1) 
m m 

where 

Nap= C ai’,,,,,ajmm,. 
mm, 

They are built from conventional single-nucleon creation (and annihilation) 
operators aL,,,, (and aim,,). Except for a normalization factor the operators A+(M,) 
(A(M,)) are pair creation (annihilation) operators for nucleon pairs coupled to 
J = 0, T = 1 and MT, The three components of the isospin operator T and the tenth 
operator H1 = $N,,,- ( j + ‘) 2 are the generators of the subgroup [SU(2) OU( l)] of 
the group R(5). The two commuting operators of the rank 2 group are H1 = 
tN,,- ( j+$) and HZ = To so that the weights are labelled by n and MT The 
irreducible representations of R(5) are labelled by (01w2), the highest weights 
(Hleigen, HZeigen) of the representation. For states with seniority t, and reduced 
isospin t, the largest eigenvalue of H1 is inmax - ( j + 4) with nmax = 4j + 2 - ZJ. The 
state with 4j+ 2- u nucleons (u holes) has unique isospin t. The largest eigenvalue 
of HZ = ?0 in this state is thus t. This leads to the identification of the R(5) quantum 
numbers ( 01w2) 

so that the irreducible representations of R(5) are labelled by seniority u and 
reduced isospin t. A complete labelling scheme for the states of a given irreducible 
representation of R(5) in general requires four quantum numbers. The physics 
dictates the choice it, T and MT for three of these. In general these must be 
supplemented by a fourth label p. For states with reduced isospin r = 1 and t = 4, 

in particular, the label /3 can take on at most two values for a state of a particular 
n and T. In these irreducible representations a practical resolution of the labeling 
problem has been made in a way which gives tractable algebraic expressions for 
the matrix elements of the infinitesimal operators ll). The states for a simple 
configuration j” are thus specified by 

where the quantum numbers (Y, J and MJ refer to the decomposition Sp (2j+ 1) =I 
R(3) 1 R(2). The label (Y is needed in those cases where the u nucleons free of 
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J = 0 coupled pairs can be coupled to total J in more than one independent way. 
The quantum numbers &aTMT refer to the R(5) branch of the group decomposition. 

All physical operators can be classified according to their irreducible tensor 
character with respect to rotations and with respect to their five-dimensional quasi- 
spin symmetry. An R(5) irreducible tensor operator can be denoted by Z$d$+. 
It should be pointed out, that the operators of interest in shell-model applications 
belong to the simple irreducible representations (olwZ) = (ii>, (lo), (1 l), (20), (22) 
for which the label p is unnecessary. The R(5) irreducible tensor operators have 
the standard definitions [see e.g. eq. (7) of ref. ‘“)I. In a weak-coupled basis, a state 
with a number nA of abnormal-parity nucleons in a state of good Ja and TA coupled 
to a similar state with nN normal parity nucleons, with ntot = ItN + nA, is represented 

by 

1 ntotJT> = [I nNJN%) 1 naJa TA)I.n- . (4) 

A general two-body interaction leads to the following operators acting in the 
A-subspace. The 2-body term made up of pure A-space operators can be expressed 
in terms of R(5) infinitesimal operators and R(5) irreducible tensors of ranks 
(0102) = (22) and (20). The N- to A-space coupling terms include two types of 
A-space operators, the multipole operators, and pair-scattering operators. The 
multipole unit operators are defined by 

[UT x Uj]:; = 1 c 
w(m2) mtl(mt2) 

(iwh I wh,t~t, I w) 

x Ui+mlm, Uj,_m2,-m,2 (-l)i-m2+r-mr* . 1 (5) 

These are spherical tensors of rank k, isospin rank 7. For even multipoles, k = even, 
they are R(5) tensors of rank (01w2) = (11). For k =odd they have R(5) rank (10) 
for T = 1 and (00) for T = 0. The pair scattering operators 

[ui’ x ui’]& , [“jxujlEw (6) 
are coupled as in eq. (5). For k = even, r = 1 they have R(5) rank (ll), whereas 
for k = odd 7 = 0 they have R(5) rank (10). (The irreducible representation (11) is 
the lo-dimensional regular representation of the infinitesimal operators; whereas 
(10) is the 5-dimensional vector representation.) 

The matrix elements of a component of an R(5) irreducible tensor operator can 
be given through a generalized Wigner-Eckart theorem: 

((w~w~)PH~‘T~MT)T~~~~“~;.I(~:~;)P’H:T’M’T) 

=C ((w;o;)P’H;T’M&; (w;w;)/~“H;T”M; ~(o,o,)/3HlZM& 
P 

x((~~~~)llT’“;~~‘ll(~;~S))~, (7) 

where the reduced or double-barred matrix elements are independent of quantum 
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numbers of type /3, Hi, T and Mr. The dependence on these quantum numbers is 
carried by the first factor, an R(5) Wigner coefficient. The R(5) Wigner coefficients 
are the elements of the matrix which reduces the Kronecker product (0;~:) X 

(wyws) of two irreducible representations of R(5). Since the isospin group is a 
subgroup of R(5), the R(5) Wigner coefficients can be factored into an ordinary 
isospin angular momentum Wigner coefficient and a reduced R(S)/R(3) coefficient 
or isoscalar factor, to be denoted by a double bar: 

((~;w~)~‘ti;T’M~; (oJ;~~;)J~“H;:T”M; ~(w~w~)~HJ-M& 

= (T’IM;T”M; 1 TM,) 

x ((~~~~)~‘~~ T’ ; (~;~2”)P”~;rT”ll(~,~,)pH, T), > (8) 

where the double-barred coefficient, (the “R(5) Wigner coe~cient”), is completely 
independent of the quantum numbers M, 

Tables of most of the needed R( 5) Wigner coefficients have been given in refs. p-* ‘>. 
The reduced matrix elements ((w,w~)]]T’~I”‘;) ]](o~w;)), can then be evaluated from 
the calculation of the full matrix elements in a few very simple cases, e.g. between 
states with n = V. In the general case, the Wigner-Eckart theorem of eq. (7) is 
complicated by a sum over the multiplicity label p. The multiplicity label p is needed 
in all those cases where the Kronecker product (w~w$)X(w~wI) contains the 
representation (w,wz) with a d-fold multiplicity, with d> 1. (In this case p = 

1,2,..., d.) In many cases of practical interest d = 1, and the p-sum of eq. (7) 
collapses to a single term. A more challenging example is given by the matrix 
elements of an R( 5) tensor of rank (11) between states with u = 2, t = 1, (qud = 

(wrl). In this case d = 2. The R(5) Wigner coefficients with p = 1, and p = 2 are 

known r’*“); but the evaluation of the R(5)-reduced matrix elements involves the 
specific construction of two states, e.g. a state with n = ZJ = 2, and a second state 
with n = 4. Once the R(S)-reduced matrix elements have been evaluated, the 
Wigner-Eckart theorem and the tabulations of reduced R(5) Wigner 
coefficients 9-11) can be used to give the (n, T) dependent matrix element. it will 
be convenient to give the results in terms of conventional angular momentum (.I) 
and isospin (T) reduced matrix elements, e.g. 

({~‘~‘}~‘~‘T’~~ ; a’J’M;- /[a+ x Q J~~~{~?}~~~=; dk&) 

={J~~kq~J’M;)(11M~~~IT’M~)/[(23’+1)(2T’+1)]”* 

x ((~‘t’}j3’n‘T’; a’J’II[tz+ x u]~=~l~~~~~~T; ~4. (9) 

The reduced matrix elements of greatest relevance for yrast band spectroscopy are 
given in the appendix. For the reasons outlined above these are limited to states 
with z, = 0, 1, and 2. States with u = 2 are further restricted to those with reduced 
isospin t = 1, since these are the states primarily responsible for the high-j alignment 
effects through the first backbending region of the yrast bands of even nuclei. The 
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companion states with v = 2 and t = 0 are generally restricted to states with T > MT 
and thus lie too high in energy to play a significant role. E.g. in a nucleus in which 
the abnormal-parity configuration ( hliJ lo with T = MT = 3 is dominant in the J = 0 
ground state, the represention with {v, t} = (2,l) contains two states with T = 3; 
p = 1 and 2. Since the “quantum number” p was chosen largely for practical reasons 
of calculational simplicity both states must be included. On the other hand, the 
representation with {v, t} = (20) has no states with T = 3 for n = 10. The T = 4 states 
with {v, t} = (20) can be expected to lie at an energy of -2 MeV above those with 
{v, t} ={21} and T = 3 and would therefore lead to negligible admixtures to the 
low-lying states in such a nucleus. 

3. Calculations for 124127Ba and 12’La 

The microscopic hamiltonian to be diagonalized is chosen to have the form 

H = Hs+ + Hwc,y + QA. QN . (10) 

The single-particle energies of the g7/2, d5,*, d3j2, sr12 and h1ij2 levels are given the 
values 0.0, 0.4, 2.8, 3.2 and 1.5 MeV, respectively. The two-body interaction is 
chosen to be a surface delta interaction (active in both the normal- and abnormal- 
parity spaces) with strength coefficient G = 0.29 MeV [see ref. ‘)I. The 0. Q multi- 
pole interaction between normal- and abnormal-parity spaces had a strength equal 
to 0.06 MeV which is 0.8 of the self-consistent value 240A-5’3 for this region. The 
hamiltonian was then decomposed into its pseudo-SU(3) irreducible tensor com- 
ponents and matrix elements were then calculated. 

A detailed analysis of the backbending phenomena in 126Ba has already 
appeared ‘). The partition of the normal-parity part of the shell-model space which 
dominated the low-energy yrast states was found to be [444222]. The leading 
pseudoSU(3) irrep of this partition is (24,O). In this work we restrict our basis to 
that irrep only. The abnormal-parity subspace configurations which belong to this 
partition are the configurations (h11,2)E T = 4, (h11,2)9 T = 4, and the (h11,2)9 T = g 
for 126Ba, 127Ba and 127 La, respectively. For the negative-parity states of ‘27Ba and 
127La we restrict the configuration to v = 1, while v = 0 and v = 2 have been included 
in the 126Ba basis. 

The result of diagonalizing H in the three cases is shown in fig. 1. For 126Ba the 
yrast wave functions were dominated by v = 0 configurations in the hlli2 space. It 

should be recalled that in the normal-parity space each pseudo-SU(3) basis state 
represents a large mixing of shell-model seniority. 

Previous 7, analysis of the five-dimensional quasi spin matrix elements from table 
6 implied that a prolate deformed even-even parent (as is ‘26Ba) should give rise 
to a negative-parity excitation spectrum in the neighboring odd nucleus which is a 
AI = 2 (Al = 1) rotational sequence if a proton (neutron) is added, i.e. 127La (or 
i2’Ba). Fig. 1 clearly upholds this analysis. 
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Fig. 1. Theoretical and experimental 14%j5) excitation energies for “‘La, ‘26Ba and ‘27Ba. For 12’Ba 
and ‘*‘La the states are labelled by 21. 

If an SU(3) tensor decomposition is made of the microscopic quadrupole operator, 
we may calculate transition matrix elements with our wave functions. Assigning a 
charge of 0.5e (1.54 for the neutrons (protons), i.e. an effective charge of 0.5e, we 
have calculated quadrupole moments and B(E2)‘s. 

In fig. 2 we observe that the predicted Q-moments of 12’La follow its even-even 
parent closely. The favored states of rz7La (i.e. I =I y+ 2n, n = 0, 1,2 . . .) are slightly 
more deformed than the unfavored states (I = y+ 2n + 1, n = 0, 1,2,, . .). 127Ba 
shows interesting behavior. For I <$, the quadrupole moments are positive. As 
the angular momentum increases, the quadrupole moments gradually approach the 
rz6Ba results. 

Comparing B(E2; I+ I - 2) in the lower half of fig. 3 we find similar behavior, 
i.e. “27La follows 126Ba whereas 12’Ba does not. Note that the B(E2; y’-+ 
9-)/B(E2; y--+9’-) ratio is about unity in r*‘Ba, whereas in ““Ba, 
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the lz6Ba case, while 
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B(E2; 4+2)/B(E2; 2+0) is around 1.4. Thus we see that the ‘27La seniority-one 
results are not quite the same as those from weak-coupling the odd proton to the 
126Ba core. Also in fig. 3 we see that it is the states I and I- 2 (I - 1) which are 
strongly connected by the E2 operator in ‘27La (127Ba). 

One notes in fig. 1 that the energies of the abnormal-parity states of 127Ba are 
not reproduced well by the calculation. It is thus clear that the configurations based 
on pure u = 1 hrr,* truncations are not enough to describe the negative-parity states 
of 127Ba. Higher-seniority mixing is required. For 127La, on the other hand, the 
energies seem well described by just the u = 1 basis. This and the results of figs. 2 
and 3 point out an essential difference between 127Ba and 127La. Namely, the odd 
nucleon tends to destroy the even-even parent structure of ‘26Ba in the case of 
‘*‘Ba whereas this does not occur in 127La. In 127La, the odd proton may take an 
orientation which reinforces the deformation of the ‘27Ba parent. However, in ‘*‘Ba, 
the odd neutron is prevented from doing so by the Pauli Principle. Since the neutron 
is not paired off it generates its own quadrupole field which overlaps most strongly 
with a normal-parity structure which was not the dominant structure in the even- 
even parent. As pairs of particles are broken to generate higher angular momentum 
states (I increasing) the ability of the odd nucleon to polarize the other nucleons 
is considerably reduced. Therefore as I increases, the 127Ba results gradually tend 
toward those for 126Ba and 127La. 

4. Discussion 

In conclusion, we have shown that within the weak coupled pseudo-SU( 3) scheme, 
we may describe the yrast states of even and odd nuclei neighbors, at least qualita- 
tively, in a microscopic shell-model framework. The formalism of the five- 
dimensional quasispin description of a single j-shell has been outlined and many of 
the most important matrix elements of one- and two-body operators have been 
tabulated. This formalism, of course, may be of use in alternate microscopic shell- 
model analyses. 

Finally it was found that when applied to the Ba region, higher-seniority 
configurations are needed to describe the low-energy abnormal-parity states of odd 
nuclei for nuclei whose spectra have the character of dl= 1 rotational sequences. 
The calculation of such matrix elements we reserve to future work. 

Appendix 

Tables l-7 give the conventional reduced (with respect to angular momentum 
and isospin) matrix elements of various operators of physical interest. The wave 
functions are labeled as in (3), except that CY is not needed so it is omitted. Primed 
(unprimed) quantum numbers refer to the bra (ket) state in the matrix element. 
A circumflex above a quantum number denotes the square root of twice the 
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number plus one, e.g. j=JZJ+ 1. In every table the letters A through G have 
the following definitions: 

A=j-4, B=j+$, C=T+l, I)+, E=j+$, 

F(a, b)~(b+I)fE+b)(f3-b)+b(a-D)*, *IA A4t G = TJJ@ J W( J, jJj; jJ’) . 

W is a Racah coefficient. The RME’s satisfy the following conjugation property 

(J’T’/@llJT)= (-)J’-J+T’--T(J~~,+~~J’T’) . 

TABLE 1 

One-body RME = (40, t&T; 
JII[ata]‘o”**#u, t)@T, J) for 

any IO, tIP 

TABLE 2 

One-body RME = ({0, 0)nT; J’= 

01~a’alJoToiti2, l&T; J = J,,), p = 1 or 2 

TO P RME 

1 1 J+s)fi 

1 2 ;(B- T)fi 

0 1 ;(E+ T)& 

0 2 Z(B-D)fi 

R-AB(D-T)(2B-D-T)/(j+l)F(B,T). 
V=AE(ZB-D+C)(D+C)/(j+l)F(B, T). 

TABLE 3 

One-body RME = ((2,l)p’nT; ~ll[u~a]Jo=~d,T~K2, 1)&T; J} 

To P’ B RME 

0 2 2 Jh@‘,S@, 

1 2 2 

1 1 2 $?&{E(D-T)(ZB-D-T)(D+C)(~B+C-D)}”~ 

1 1 1 m[2BEC+C2-(B-D)2] 
2 
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TABLE 4 

One-body RME = ({2,1}/3’nT; J’ll[a’a]Jo’eVe”,Toll{2, l}@T; J) 

To P’ P RME 

0 2 2 

0 2 1 

0 1 1 

1 2 2 

1 2 1 

1 1 1 

9 [(E + l)F(B, T) - C’i’*BE] 

-[(I? + l)F(B, T) + Ci’*BE] 

&[T(E+l)F(B, T)-BE((E+T)(B-T)+2T(D-B)*)] 

S(D-B)T{(D-T)(2B-D-T)(D+C)(2B-D+c)}”* 

sTE[CF(B, T)+(D-B)*f*B] 
JBETC 

S=-G;/(A-l)F(i3, T)&. 

v’, t’, p’ 

TABLE 5 

Pair-annihilation RME = ({v’, f}p’n - 2T’; J’Jl[aa]‘o*To=‘Il{v, r}pnT; J) 

T v, 6 B Jo RME 

o,o, 

070, 

o,o, 

o,o,, 

o,o, 

070, 

2,1,2 

2,172 

2,1,1 

T’+l 

T’-1 

T’+l 

T’-1 

T’+l 

T’-1 

T’+l 

T’-1 

T’+l 

f&o, 

0, 0, 

2,172 

2,122 

2,191 

2,1,1 

o,o, 

07% 

090, 

0 - I 2T(D+C)(2E-D-T) “* 

2j+1 I 

0 
r 

2C(D-T)(2E-D+C) I” 

2j+1 I 

J -.f[~c-T(C+D-B)] 
I 

E(2B-D+C)(2E- D- T) I’* 

AB(2B+ l)F(B, T) 

- 
J -J 

1 

ECT(D-T)(2B+C-D)(D+C)(2E-D+C) I’* 

AB(2B+ l)F(B, T) I 

J _? TC(D+C)(D-T)(2E-D-T)(2B-D-T) I’* 

I A(2B+ l)F(E, T) I 

J _?[CE+T(T+E-D)] 
I 

(2B-D-T)(2E+C-D) I’* 

A(2B+ l)F(B, T) I 

J, j, ET-I-‘(2E-D-T)(D+T-1)(2B+C-D)(D+C) 

( AB(2B + l)F(E, T’) 

J’ .f’[B(T+2)-T’(T+2+E-D)] 

I 

E(D+C)(D-T) I” 

’ AB(2B+l)F(E, T’) I 

(D- T)(D+C) 

I 

I’* 
J’ .?[TE+T~(D+T-E)] 

ABF(E, T’) 
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TABLE 5 (contd.) 

v’, t’, p’ T v, c B J, RME 

2,131 T’-1 0,0, J’ -.f’ 
C(T+2)(2E-D+C)(D-T-2)(D-T)(2B-D-T) 

A(2B+ l)F(E, T’) 

271, P’ T’*l Z,l,P 

R,(/.Y, p, T) and R&3’, /3, T) are given below. 

T B’ P R,(P’, I% T) RAP. By 7-J 

T,+ 1 1 1 -83F(E, T’)+BEYf’*] 

T’-1 1 1 

T’+1 1 2 

T’-i 1 2 0 

T’+l 2 1 0 
1 TI-‘CXZ(D-T)(2E+T’-D) “’ -- 
2 Q I 

l/2 

T’-1 2 1 [(T+2)?*-D+E] -g~(~+l)C(c+l)-P,+yP,-CTY*] 

T,+l 2 2 -%4F(B, T)-BEf’(D-B)] 

T’-1 2 2 %4F(E, T’) + BE?‘* Y] 

S=(2E+C-D)(D-T), 
U= F(B, T)F(E, T’) , 
X=(28-D-T)(D+C), 
Q=(2j-E)(E+2)U, 
Z=(2E-D-T)(D+T’), 
Y=D-E, 
M=(2B+C-D)(D-T), 
N=(2E+C-D)(D-C-l), 
P, = T4+2T3+4T2+ T, 
P,==2T3+ T*-2T+3, 
P3=T4+4T3+10T*+14T+4, 
P,-2T3+5T2+4C. 
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TABLE 6 

One-body RME =({l, $}nT; J~~[a’a]~~~~~{l, i}nT; J); J =j 

JO TO RME 

odd 0 K 

odd I 

even # 0 0 

even # 0 1 

Km B- D+(-)“-=Ei+’ 

[ ZTC(j+ 1) I 

z 4E(B-D)- 
[ 

B(20(D-B)E+(-)D-=~ZL) 

(i+ 0(2j-1) 1 
(20ETC-L(E-(-)D-=(D-B)P)) 

4CAT(j+ 1) I 

K = J$T&, L=4j2+12j+3, 

TABLE 7 

Pair-annihilation RME=({l,$}n-2Y; J =jl[aaJ’0**dKl, i}nE J= j}=&&f”MX(JO,) 

Jo To T -&t-T h4 WJo*+o) X(J,=O) 

even 1 

even 1 

even 1 

even 1 

even 1 

even 1 

odd 0 

Odd 0 

T’+l 

T’-1 

T 

T’Cl 

T’-1 

T 

T’ 

T 

(2E-D-T)(D+C) 
even 

even 

even 

odd 
f (2E-D-C)(D+T) “’ 

T I 

odd 

odd 

f (2E-D+C)(D-T) “* 

C I 

I 

(2E-D+T)(C+D) I” 

TC I 

even 

odd ((D+C)(2E-D+T)}“’ 

1 
-1 

2A(j+l) 

1 -- 1 
A 

2m+1 -- 1 
2A(j+ 1) 

1 

A 
-1 

-1 

2A(j+ 1) 
1 

2BT- 1 

2A(j+l) 
1 

-1 

i+l 

-1 - 
j+1 

For completeness we include table 8 in which we give the two-body matrix elements 
which have appeared previously loS1l). Note that a few typographical errors which 
appeared in ref. ‘I) have been corrected. 
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TABLE 8 

Two-body ME= ({v, t}/3’nT; Jib K, V, ,[ J T a’at]JaTo.[aa]JoTol{v, t}@T; J), where VJ,s are constants 

BE-5TC+5H2 
+ 

6o(j+ 1) 

if {v, t} = {2,1}; and B’ = 1, @ = 2: 

(E+T)(B-T)+H*- 
2H2BEf2 

F(B, T) 1 

T) I 
ME=- 3jF;;T)(2EX(B+3T)- Y) 

IY=[(E+T)2-H21(B-T)2-H2] 

BE 

~{v,t}~~O,O~or~l,~};~‘=~: 

ME=D(n_1)(6j+5)jV,-2EV(0)+2A(j+l)V, 

8A( j+ 1) 

+(m+) 
EjV,-BV(O)-A(j+l)V, it V(O) - V,) 

2A(j+ 1) +Dn1 A 

[Nisi 
D, if v=o 

0-b if v=l, 

H=D-B, 

R = 2(2jV;- V(0)) , 

S= jV,+ V(O)+3(j+l)V,, 

x _ 2(2jV,- V(O))+2A(2jV,,- V(J)) 

(2j-3)(2j-5) ’ 

Y~~jV,+V(O)-2(j+l)(jV,,+V(J))+3(j+l)V,-6(j+1)zV,,1, 

VeE 
CcvenI V,,(21+ 1) xocier V,,(2~ + 1) 

j(2j+ 1) , ‘Oz (j+l)(Zj+l) ’ 

ifoddi 

if even J. 
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