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A computer program package for parametric and nonparametric linear system identification of both static and dynamic 

biological data, written for an LSI-11 minicomputer with 28 K of memory, is described. The program has 11 possible 

commands including an instructional help command. A user can perform nonparametric spectral analysis and 

estimation of autocorrelation and partial autocorrelation functions of univariate data and estimate nonparametrically 

the transfer function and possibly an associated noise series of bivariate data. In addition, the commands provide the 

user the means to derive a parametric autoregressive moving average model for univariate data, to derive a parametric 

transfer function and noise model for bivariate data, and to perform several model evaluation tests such as pole-zero 

cancellation, examination of residual whiteness and uncorrelatedness with the input. The program, consisting of a main 

program and driver subroutine as well as six overlay segments, may be run interactively or automatically. 

Linear system identification Minicomputer 

Integrated autoregressive moving average models 
Parameter estimation Transfer functions Noise models 
Spectral analysis Autocorrelations Partial autocorrelations 

1. INTRODUCTION processes in the frequency domain [7-91. 

Linear system identification techniques used by 
control engineers have been of widespread interest 

to biologists and medical scientists [l-3]. These 
techniques have been applied in various ways to 
increase understanding of these systems and in the 

development of diagnostic tests. For example, 
nonparametric transfer functions derived by Four- 
ier methods have been invoked in developing an 

understanding of stretch reflex dynamics [4], of 
eye tracking dynamics [5], and of postural control 
mechanisms [6]. Nonparametric spectral analysis 
has been useful for viewing biological noise 

* To whom correspondence should be addressed 

Concise parametric models have been employed 
to evaluate parameters not directly accessible such 
as those relating to the uptake, distribution, and 
elimination of drugs [3,10], or physiological 
metabolites [ll-141, and to investigate physiologi- 

cal or biochemical structures [3,15]. Once their 

structures and/or coefficients have been de- 
termined, these parametric models can be used to 

simulate responses to various kinds of inputs, such 
as drugs [ 161, or nervous stimulation [17]. They 
can be evaluated from mathematical points of 
view such as control system theory in order to gain 
insights concerning the underlying biological sys- 
tems. These insights can aid in the design of 
physiological experiments. They can also be useful 
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to a control engineer who develops devices to 
control or to be controlled by these physiological 
processes [18]. Mathematical analysis of paramet- 
ric models has clinical diagnostic applications [19]. 
For example, discriminant analysis techniques have 
been applied to features of parametric models of 
EEG records such as poles and zeros in the devel- 
opment of mathematical diagnostic procedures 
[20]. These poles and zeros economically char- 
acterize the dominant spectral content of the EEG 
records. 

Noise exists in biological systems from the 
membrane level to the social level. Although bio- 
logical noise is interesting to model in its own right 
[21-23], it can complicate the assessment of a 
system's dynamics. While disturbing and measur- 
ing the response of a system with correlated inter- 
nal noise is a necessary step for assessing the 
dynamics of such a system, the coefficient esti- 
mates of a resulting parametric transfer function 
will be biased unless the noise is taken into account 
during the parameter estimation [24,25]. In order 
to do so, the characteristics of the noise must be 
already known or a parametric noise model must 
be evaluated simultaneously with the transfer 
function. Also, since noise is an inherent part of 
some physiological systems, a comprehension of 
this noise is a prerequisite to the detailed under- 
standing of the system's dynamics [5,26]. Thus, it 
is important to be able to deal with a correlated 
noise component when deriving linear models of 
physiologicel systems. 

The program package to be described here, 
IDENT, has as one of its most important char- 
acteristics the ability to estimate the parameters of 
a noise model simultaneously with those of a 
transfer function. This program package was de- 
veloped in FORTRAN IV for an LSI-11 computer 
with 28 K of memory for the purpose of obtaining 
concise parametric models of subjects' waist and 
shoulder position responses to translational pos- 
tural disturbances applied to their base of support. 
Since the postural responses to the disturbances 
were accompanied by low frequency postural sway 
noise, it was necessary to incorporate a noise com- 
ponent into the parametric model. The algorithm 
employed is a modification of the extended Kal- 
man filter described in Panuska [27]. Since this 

algorithm is recursive in nature, it can be modified 
to track time varying parameters of relatively long 
data series. For the posture data, it was used to 
find the time invariant parameters of relatively 
short input-output  series ( < 350 data points). The 
orders of both the transfer function and noise 
model can be arbitrary. The parameters of a trans- 
fer function with no noise component or of an 
ARIMA (integrated autoregressive moving aver- 
age) model of a univariate time series may be 
estimated. An ARIMA model contains poles, zeros, 
a n d / o r  differencing terms [28]. Asymptotically, 
the parameter estimates of the extended Kalman 
filter used here converge to a stationary point of 
the same loss function used in the method of 
maximum likelihood [27,29] and are thus asymp- 
totically unbiased and efficient [25]. 

Overlaid with the parameter estimator are sub- 
routine packages for the purpose of performing 
nonparametric (Fourier) analysis of either bi- 
variate input-output  data or of univariate time 
series. Nonparametric transfer functions and im- 
pulse responses can be derived for input-output  
data. These nonparametric results for the posture 
data were used to obtain initial estimates of model 
order. The mean, variance, normalized autocovari- 
ance, and partial autocorrelation functions as well 
as a smoothed estimate of the spectrum can be 
evaluated for a univariate time series. 

Other overlay segments contain subroutines 
used for calculating diagnostic criteria for the 
evaluation of the parametric models. These criteria 
include the normalized autocovariance function, 
partial autocorrelation function, and variance of 
the residual or error series. In addition, a normal- 
ized cross-covariance function of the residuals and 
the prewhitened input is calculated for models 
which include a transfer function component. The 
poles and zeros of the parametric models are ex- 
tracted and can be checked for near cancellation 
or insignificance. The parametric transfer function 
is evaluated at e -j'° and can be compared to a 
nonparametric one derived with Fourier methods. 
These criteria can be used in a model selection 
process or simply to evaluate a model in cases 
where the model structure is known a priori. 

The modeling package described above may be 
run interactively or in an automatic mode in which 



commands to the program are obtained from a 
previously constructed command file. These com- 
mand files may be generated with any system 
editor or with an accompanying F O R T R A N  IV 
program, COMGEN.  Although I D E N T  was devel- 
oped for the LSI-11 computer with an RT-11 
version 4 operating system, the only characteristics 
which are system and data specific are those for 
opening, closing, and reading from data files. Thus, 
the package should be transferable with a user- 
supplied main program. 

2. M E T H O D S  A N D  T H E O R Y  

2.1. Parameter estimator 

The parameter  estimation scheme is a linearized 
or extended Kalman filter [27]. A Kalman filter is 
a recursive one in which estimates of the 's tate '  are 
updated by amounts which depend upon a Kal- 
man gain matrix and the size of the error with 
which the actual measurement data are approxi- 
mated by a function of the state estimates. The 
Kalman gain is a function of the measurement 
noise which is assumed to exist in the actual 
output data and is calculated so that the state 
estimates, which are random processes, result in a 
minimum error variance. In this parameter  estima- 
tion problem, the state vector is the set of parame- 
ters. The linearization occurs in the observation 
matrix, or the function of the state estimates by 
which the measured data are approximated since 
in general, the measured data are nonlinear func- 
tions of the parameter  estimates. 

The parameter  estimation scheme is used to 
evaluate the parameters of the following model: 

A ( z ) y ( , )  = z - a B ( z ) x ( t )  + [ C ( z ) / F ( z ) ]  e ( t )  

where z-1 is the backward shift operator and 

A ( z )  = 1 + a l z - 1 . . . a , z - "  

B ( z )  = b o + bl z-1 + .. .b,,z -m 

C(z )  = 1 + Cl z-1 + ...cqz -q 

(1) 
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F ( z )  = 1 + / l z - ' . . . L z  

y(/)  is the output sequence 

x( t )  is the input sequence 

n, m, q, and p are the model orders 

d is a deadtime factor or delay term 

The sequence e(t) is a white noise sequence 
having zero mean and a covariance: 

E [ e ( k ) e ( 1 )  r] =A3k, (2) 

To facilitate the description of the estimation 
algorithm, the model of equation (1) is written as: 

y ( t )  = ~br(t)O(t) + e ( t )  (3) 

with 

q T(t) 

= [ - y ( t -  1). . .  - y ( t -  n ) , x ( t ) . . . x ( t -  m),  

e ( t -  1 ) . . . e ( t -  q ) , - , ( t -  1). . .  - , ( t - p ) ]  

Or(t) = [a, . . . .  a , ,b  o . . . .  bm,c I . . . .  Cq , f l  . . . .  fp]  

E(t) is a sequence defined by: 

, ( t )  = C ( z ) / F ( z ) e ( t )  

Equation (3) can be considered to be an ob- 
servation equation of a state representation of 
system (1). The corresponding state equation is: 

O ( t + l ) = O ( t )  (4) 

Now, in reality, the sequences e(t)  and c(t)  are 
not available and must be estimated: 

f ( t )  = A ( z ) y ( t ) - B ( z ) x ( t )  (5) 

~ ( t )  = y ( t )  - ~r( t )O( t )  

The extended Kalman filter algorithm to solve 
for the states, O(t), of the above system now 
follows. To make use of the minimum variance 
formulation of the Kalman filter, an estimator of 
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the covariance A is coupled with the filter equa- 
tions. 

t~(t + 1) = t~(t) + K( t ) [y ( t )  - qT(t) t)(t)] 

t)(O) = t) 0 (6) 

K(t)=P(t)Gr(t)[G(t)P(t)Gr(t)+A(t+ l)] ' 

(7) 

p(t + 1) = F'(t) -K(t)[G(t)P(t)aT(t) 

+A(t  + 1 ) ] K r ( t )  

= eo (8) 

A(t  + 1) = A(t)  + 1/( t  + 1)[E(t)or(t) - A ( t ) ]  

A(O)=Ao (9) 

where 

G( t ) = 8/60V,( t )Ool=o(,)= - 6 / 3 0  E(t)01=0(,)(10) 

With the exception of the estimator for A, this 
extended Kalman filter algorithm is a special case 
of that found in many places [25,27,30,31]. The 
inclusion of the estimator for A (eq. (9)) is due to 
Panuska [27]. 

Equation (6) is commonly called the state 
estimate update equation [30]. K(t), the Kalman 
gain, is updated in eq. (7). P(t) is the error covari- 
ance matrix of the state estimates and eq. (8) 
provides the error covariance update. 

The following modifications are applied to the 
algorithm outlined in eq. (6-10): 

(1) Deadtimes are included in the parameter 
estimation problem simply by shifting the out- 
put vector, y(t), a specified number of places 
to the right. 

(2) Since the initial values for /)(t), P(t), and A 
(assigned to be equal to 0) are only convenient 
estimates, it is helpful to weigh later estimates 
more than early ones [25,32,33]. If, in the 
following weighting window, X o and X(0) are 

PARAMETER ESTIMATOR 

INITIAL CONDITIONS FOR 
PARAMETERS 
COVARIANCE 

RESIDUAL VARIANCE 
+ 

INITIALIZE EXPONTENTIAL 
WEIGHTING WINDOW 

INPUT DESIRED MODEL 
ORDERS AND 

DEADTI ME FACTOR 

LINEARIZED OBSERVATION 
MATRIX 

UPDATE RESIDUAL 
VARIANCE ESTIMATE 

1. CALCULATE ERROR 
2. CALCULATE KALMAN GAIN ° 

3. UPDATE PARAMETER ESTIMATES 

4. UPDATE WEIGHTING WINDOW 

5. UPDATE COVARIANCE ESTIMATES 

,o@ 
No %"/ARAM iE"i;"MATE " / ES 

Fig. 1. Flowchart of the parameter estimation algorithm. 

chosen to be close to 1, X(t) will tend to 1 
exponentially. 

X(t + 1) = XoX(t ) +(1  - ?to) (11) 



(3) For estimation of time invariant parameters of 
short time series, improvement of the estimates 
results from running the data through the filter 
several times, each time using as initial values 
the values obtained at the end of the previous 
run. The iteration stops when all the parameter 
estimates change by less than a specified crite- 
rion, .01. The parameter estimation algorithm 
with its modifications is flow charted in Fig. 1. 

Until recently, the asymptotic properties of re- 
cursive estimators have only been studied by means 
of simulations since recursive estimators are non- 
linear time varying stochastic difference equations 
in which the error estimates depend on all previ- 
ous estimates and hence are difficult to analyze 
analytically [25,34]. However, by use of an associ- 
ated ordinary time invariant differential equation, 
it is possible to show that the parameter estimates 
of the extended Kalman filter used here converge 
asymptotically to a stationary point of the same 
loss function used in the method of maximum 
likelihood [27,29]. Thus, asymptotically, these ex- 
tended Kalman filter parameter estimates possess 
the same properties as maximum likelihood 
parameter estimates, they are asymptotically unbi- 
ased and efficient [20]. 

2.2. Nonparametric calculations 

2.2.1. Univariate time series 
A consistent estimator of the mean of a corre- 

lated series, e(k  ), k = 1 . . . .  N is given as follows 
[35]: 

N 

fn = 1 / N  Y~ e ( k )  (12) 
k = l  

An asymptotically unbiased and efficient esti- 
mator for the variance of such a series is [28,36]: 

N 

(I= 1 / N  Y~ ( e ( k ) - r h )  2 (13) 
k ~ l  

An asymptotically unbiased and efficient esti- 
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mator of the normalized autocovariance function 
is [35] *: 

N-t ) 
P ( t ) = l / N ( k ~ = , [ e ( k ) - f n ] [ e ( k + t ) - r h ]  / V  

(14) 

Partial autocorrelations of a process may be 
estimated by fitting successively autoregressive 
processes of orders 1, 2, 3 . . . .  by least squares, and 
picking out the estimates of the last coefficient of 
each stage. See Box and Jenkins [28] for a detailed 
explanation of the partial autocorrelation func- 
tion. IDENT makes use of an approximate recur- 
sive method for calculation of these partial nor- 
malized autocovariance function estimates from 
the autocorrelation estimates [37]: 

pa,+ 1,j = pa,j - pa,+ 1.,+ l Pa,.,-j+ l (15) 

pa,+,,,+, = r t + , -  pa , r t+l -J1  - Y'~ Pa,jrl 
j = l  )=1  

j =  1 ,2 , . . . t  

The estimates, pa,+ 1.~+~ are the partial autocorre- 
lation estimates. 

The normalized autocovariance and partial au- 
tocorrelation function estimates can be used to 
identify the structure of a univariate time series 
[28]. For example, it can be shown that the nor- 
malized autocov~riance function of a moving aver- 
age process of order q (MA (q ) )  is zero after the 
q-th lag. Also, the partial autocorrelation function 
of an autoregressive process of order p ( A R ) p ) )  is 
zero after the p-th lag. It has been demonstrated 
by Bartlett [38] that the standard deviations of the 
normalized autocovariance function of a MA(q)  
after lag q can be approximated by: 

e(r(k)) 

= 1 / N ' / 2 ( 1  + 2 [ r 2 ( 1 ) + r 2 ( 2 ) +  . . . r2 (q ) ] )  1/2 

for k > q (16) 

* In [28], [35] and others, eq. (14) is referred to as an estimate 
of the autocorrelation function. The term, normalized auto- 
covariance, is consistent with engineering usage. 
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Quenouille [39] showed that the standard devia- 
tion of the partial autocorrelation function of an 
AR(p)  process after lag p is approximately: 

6[t~a(k)] = I / N  1/2 k > p  (17) 

According to Fuller [35], the distribution of an 
normalized autocovariance or partial autocorrela- 
tion coefficient whose theoretical value is zero is 
approximately Normal. Thus, one can informally 
determine whether these estimates beyond a cer- 
tain lag are essentially zero. It can also be shown 
that the estimated normalized autocovariance 
function of a nonstationary process fails to damp 
out quickly, indicating that perhaps differencing of 
the series is warranted [28]. 

It is useful to point out some facts concerning 
the distributions of the normalized autocovariance 
function estimates of a white noise series. Fuller 
[35] demonstrates that the covariance matrix of the 
autocorrelation function of a white process is a 
diagonal one and thus that the following function 
is distributed as a chi square variable with L 
degrees of freedom: 

L 
QL = N ~., /2(t)  (18) 

t ~ l  

This result has been exploited to devise a 
'portmanteau'  test for residual whiteness to be 
used in evaluating models [40]. In IDENT is 
calculated another statistic to be used to test for 
serial correlation of a time series, the Durbin-  
Watson statistic [41,421: 

N 

D W =  I / N  ~ -~. ( e ( t ) - e ( t - 1 ) ) 2 / f  " (19) 
j = 2  

The expected value of this statistic is equal to 
2.0 for an uncorrelated series. 

Oscillatory or seasonal series are more usefully 
viewed in the frequency domain. Figure 2 il- 
lustrates the methodology used in obtaining a 
smoothed estimate of the spectrum of a series. 
First, since the application of a rectangular window 
to a time series results in much side lobe leakage in 
the frequency domain, a tapered time domain 
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Fig. 2. Flowchart of the nonparametric spectral estimation 
algorithm. 

window, the Hamming window, is applied to the 
data before entering the frequency domain via 
Fourier transforming [36,43]. For an N point se- 



quence, this Hamming window is expressed: 

W . ( m )  = 0.54 + O.46cos(rrm/N), m = 1,2 . . . . .  N 

(20) 

Also, in order to avoid having the Fourier 
transform overwhelmed by a large amount of very 
low frequency energy, regression lines are fitted to 
the time domain sequences and then removed be- 
fore the Fourier transform is obtained. The Four- 
ier transform is calculated by the efficient FFT 
method [44]. Since spectral estimates are generally 
inefficient, possessing a high variance even for 
large data sequences, smoothing procedures are 
applied [36,45]. First, the windowed sequences are 
optionally resampled in the frequency domain to 
result in a Nyquist frequency (1 /2  of the sampling 
rate) that is 1/2,  1/4,  or 1 /8  of the original 
Nyquist frequency, in order to eliminate unneces- 
sary computational time. An intermediate estimate 
of the spectrum is formed by multiplying by the 
complex conjugate of the Fourier transform. An 
estimate of the autocorrelation function is ob- 
tained by inverse transforming. A Hamming lag 
window of either 1 /2  or 1 / 4  the length of the 
autocorrelation function is applied and then a 
smoothed spectral estimate results with transfor- 
mation back to the frequency domain. 

2.2.2. Transfer function and impulse response esti- 
mation with correlated noise series identification 

Figure 3 summarizes the methods by which the 
nonparametric transfer function and impulse re- 
sponse are estimated and an approximation of any 
accompanying noise series is obtained. The non- 
parametric transfer function results simply from 
division of the cross spectrum of the input and 
output time series by the input spectrum [33,35]: 

H(e j'~) = Sy(e,~)Sx(e-J~)/JSx(eJ~)12 

~ =  1,2 . . . . .  512 (21) 

where: 
H(e j'°) 
Sy(e j'~ ) 

= the transfer function 
= the  Fourier transform of the output 

series 
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Fig. 3. Flowchart of the nonparametric transfer function and 
impulse response estimation algorithms. 

Sx(e -j'~) =the  complex conjugate of the input 
series' transform. 

An impulse response of length L can be accu- 
rately obtained from the inverse transform of this 
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transfer function estimate as long as the data 
sequences used in the transfer function calculation 
are at least L points shorter than the size of the 
Fourier transform used [36]. If desired, an estimate 
of the noise accompanying the response to the 
input can be obtained using the estimated coeffi- 
cients of the impulse response: 

L 

f , ( t ) y ( t )  - ~_, b ( j ) x ( t - j ) ,  t =  1 . . . . .  N (22) 
j = 0  

where: 

~(t) = the noise series estimate 

y ( t )  = the output sequence 

b( j ) ,  j = 0 . . . .  L, is the impulse response estimate, 
cut off after lag L (when the impulse response has 
damped out) 

x ( t )  is the input sequence. 

This series, p(t), corresponds to C ( Z ) /  
[ A ( Z ) F ( Z ) ]  e( t )  of eq. (1) and is subjected to the 
univariate nonparametric analysis described above. 
The statistical properties of spectral and transfer 
function estimates are treated in Jenkins and Watts 
[45]. These estimates are inefficient in general, and 
used primarily to obtain model order information. 

One can obtain rough guidelines of the transfer 
function model orders from either the nonpara- 
metric impulse response or transfer function. Box 
and Jenkins [28] describe in detail model order 
selection with the use of the impulse response. 
However, occasionally the impulse response esti- 
mate is less useful than the transfer function for 
this purpose. For example, it is possible that the 
impulse response coefficient estimates are small in 
comparison to their standard deviation. Also, if 
the frequency range of the input is narrow com- 
pared to the Nyquist frequency, the inde- 
terminancy of the transfer function estimate in the 
higher frequency ranges causes the impulse re- 
sponse estimate to be quite poor. Of course, in 
these cases any estimate of the noise series will 
also be poor. From the transfer function estimate, 
one can obtain an inkling of at least the number of 
poles in the transfer function. For example, one 
peak in the transfer function at a frequency other 

than 0 suggests the presence of a complex pole 
pair. Two such peaks suggest the presence of four 
poles. If a peak occurs at 0 Hz, then 1 or 2 real 
poles may be present. 

2.3. Model evaluation criteria 

The most difficult task in the development of a 
parametric model is the selection of the final model. 
Parametric model identification usually follows the 
iterative procedure outlined in Fig. 4, unless the 
model structure is already known. In other cases, 
usually several model selection tests are employed 
simultaneously in order to minimize the possibility 
of an incorrect model choice. The tests used and 
the relative weights applied to these tests depends 
upon the use of the model. Discussions of the 
subject appear in several places [24,26,28,36,46- 
51]. Outlined here are the calculations performed 
in IDENT and their use in model selection. Other 
tests could be added easily. 

The residuals or unpredictable parts of the out- 
put data are used in several model evaluation tests. 
These residuals are calculated as follows [6]: 

~ ( t ) = y ( t ) - q f f ( t ) O ( t )  t > n + d + p +  l (23)  

where: 

y ( t  ), t = 1,2 . . . . .  N is the output time series 

qff( t ) = [ - y (  t -  1) . . . . .  

- y ( t - n ) , x ( t )  . . . . .  x ( t - m ) ,  

× ~ ( t -  1) . . . . .  ~ ( t -  q ) , -  g ( t -  1) . . . . .  

-i(t-p)l 

x ( t ) ,  t = 1,2 . . . . .  N is the input time series 

i ( t )  =,,{(z ' ) y ( t ) - B ( z - ' ) x ( t )  

t > n + d + l  

or(t)= [ . . . . .  . . . . .  . . . . .  Oq, l . . . . .  L] 

If the parametric model is adequate, this esti- 
mated residual series should satisfy the assumption 
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Fig. 4. Block diagram of parametric identification methodol- 
ogy. 

of being uncorrelated. The univariate nonparamet- 
ric analysis applied to the residuals provides infor- 
mation for checking these assumptions. The esti- 
mates of the normalized autocovariance and par- 
tial autocorrelation functions should be essentially 
zero. The QL statistics of eq. (18) have chi square 
distributions in the cases of an ARIMA model, 
transfer function model alone, or a transfer func- 
tion plus noise model in which no autoregressive 
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coefficients in the transfer function have been 
estimated [40,52]. Since the transfer function and 
noise model parameter estimates are not indepen- 
dent in the more general case, the covariance 
matrix of the residual normalized autocovariance 
function is not a diagonal one so that calculation 
of a chi square variable from the residual autocor- 
relations is much more complicated than in eq. 
(18). However, the QL statistics can be used as 
informal indicators of residual whiteness in this 
case. 

In parametric models with a transfer function 
component, the residual series should be indepen- 
dent of the input. To check residual independence 
from the input, normalized cross-covariances be- 
tween these two series are calculated. However, if 
the input series is correlated, then the normalized 
cross-covariances between the input and the resid- 
uals of a perfectly adequate transfer function will 
show pronounced patterns [28]. Thus, normalized 
cross-covariances are performed between the resid- 
uals and a prewhitened input. These cross-covari- 
ances should be close to zero if the residuals 
contain no information about the input response. 
In IDENT, prewhitening of the input is accom- 
plished by fitting an all pole model to the input: 

x( t )=pa,x ( t -1 )+. . .pa . ( t -n )+a( t )  (24) 

The pa's are the autoregressive parameters of 
the model and a(t) is the residual series or the 
prewhitened input. The pa's are estimated quickly 
and recursively with eq. (15). An efficient estimate 
of the normalized cross-covariance function is pro- 
vided by Box and Jenkins [28] *: 

ke~(t) = 1IN [ e ( k )  - F~/e] 
1 

× + t) -   ])/SDeSDo 

where: 

rh~ = prewhitened mean estimate 

(25) 

* Again, the term, normalized cross-covariance, is consistent 
with engineering usage, whereas [28] and [35] refer to the 
cross-correlation function. 
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~v/e = the residual mean estimate 

SD~ = the standard deviation of the residuals 

SD~ = the standard deviation of the prewhitened 
input. 

In the situation where no cross-correlation ex- 
ists, these normalized cross-covariance estimates 
have an approximate standard deviation of ( N -  
t)-1/2 [28]. In IDENT, statistics similar to those in 
eq. (18) are calculated for the cross-covariance 
estimates: 

L 

S L = N Y~ ~f,(t)  (26) 
t = 0  

Again, in the case where the parametric model 
contains a transfer function alone or a transfer 
function with no autoregressive parameters com- 
bined with a noise model, the S L statistic has a chi 
square distribution. In other situations, it can be 
used as an informal indicator of residual indepen- 
dence from the input. 

Additional calculations may serve as aids in the 
model selection process. The singular points of 
both the transfer function and noise model are 
found with the subroutine DPRQD from the IBM 
Scientific Software Package [53]. Near cancellation 
or small magnitude of these singular points is an 
indication that overparametrization has occurred. 

Also, the frequency response, gain and phase, 
of the parametric transfer function is calculated as 
follows [36]: 

pf(e-J  '°) = bo + ble -j'~ + ...  +b,,,e -j'~m 
1 + a l  e - j ~  + . . .  + ane  -J~n 

(27) 

Here, gain and phase for 16 values of o~ are 
plotted, going from 0 Hz to 1/8,  1/4,  1/2,  or to 
the full Nyquist frequency. This transfer function 
may be visually compared to a previously calcu- 
lated nonparametric one. 

2.4. Data preparation 

Since the input and output time series are as- 
sumed to be stationary, especially for the parame- 
ter estimation procedure, it may be necessary to 

remove any nonstationarities. An efficient method 
for eliminating nonstationarities is differencing 
[28]. Differencing the series once removes nonsta- 
tionary behavior due to nonuniform constant 
levels. Differencing twice also removes nonsta- 
tionary behavior resulting from local linear trends 
in the data. However, the differencing operation is 
essentially a high pass filter which increases the 
amount of high frequency noise and thus decreases 
the signal to noise ratio of the data, which in turn 
slows the parameter estimator's convergence rate 
in the case of a transfer function plus noise model. 
Thus, detrending of the data may be performed 
instead. In detrending, a regression line is fitted to 
the data using standard least squares techniques 
[54]. The line is then subtracted from the data. 

2.5. Additional calculations 

Some additional calculations are performed in 
IDENT for transfer function plus noise models as 
to the relative amount of energy in the data due to 
the noise model and to the transfer function com- 
ponent. The signal variance is obtained as follows: 

Sig = Ipf(e-J~)lZlX(e-J~)l 2 (28) 

where: 
pf(e -j~) is calculated as in eq. (27) with ~ pro- 

ceeding in increments of the Nyquist 
frequency/256 

I g(e-J~)l  2 is the input spectrum calculated non- 
parametrically 

The noise spectrum is calculated similarly: 

Noise = IC(e-J'~)/(f(e-J'°)A(e-J'~))12 Var e (29) 

where: 

Var e is the residual variance 

Here, ~0 extends from 0 Hz to the Nyquist 
frequency in 256 steps. The noise variance is ob- 
tained by multiplying the noise spectrum by the 
residual variance. The signal to noise ratio is very 
simply: 

SNR = S I G / N O I S E  (30) 



3. PROGRAM DESCRIPTION 

The program processes 11 possible commands, 
described in order below. 

3.1. Identification of the output array 

Specification of this command results in a uni- 
variate analysis of output data. The univariate 
analysis consists of computation of means (eq. 
(12)), variance (eq. (13)), normalized autocovari- 
ance lags (eq. (14)), and partial autocorrelation 
lags (eq. (15)). Also calculated are the Durbin 
Watson statistic of eq. (19), and the Qc statistics 
(L  = 10, 20, 35) of eq. (18). A univariate spectrum 
is next calculated. 

3.2. Parameter estimation 

A 2 command results in the estimation of 
parameters of a specified model structure. The 
model orders (transfer function poles, transfer 
function zeros, noise poles, noise zeros) and 
deadtime factor must be supplied from a com- 
mand file or in response to the queries: 

ENTER ORDERS: TFP, TFZ, NP, NZ 

ENTER DEADTIME FACTOR: 

Any of these orders may be 0 to result in the 
estimation of any subset of 'a transfer function 
plus noise model. If TFP is 0 and TFZ is - 1, then 
the parameters of a univariate ARIMA model are 
estimated. 

3.3. Model evaluation 

The model evaluation command is the most 
complicated one, resulting in several calculations. 
First, the residual calculation of eq. (23) is per- 
formed. A univariate analysis, similar to that de- 
scribed for command 1 except for no spectrum, is 
then performed on the residuals. Then, in the case 
of a transfer function evaluation, the cross correla- 
tions of eq. (25) and the S L statistics of eq. (26) are 
also evaluated. Also for a transfer function, the 
nonparametric input spectrum, the parametric 
spectrum, signal variance, noise variance, and sig- 
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nal to noise ratio of eq. (27)-(30) are calculated. 
Then, the roots of the transfer function a n d / o r  
noise model numerator and denominator poly- 
nomials are found. 

3.4. Identification of the input array 

This command results in the processing of the 
input data in the manner described in command 1. 

3.5. Identification of the noise array 

A prerequisite for this command is the com- 
mand, 7, so that a nonparametric impulse response 
is available for the noise series estimation. First, 
the noise series is estimated according to eq. (22), 
using a truncated version of the impulse response. 
A univariate analysis similar to that described for 
command 1 is performed on the estimated noise 
series. 

3.6. Estimation of prewhitening parameters 

In the evaluation of transfer function models, 
where it is desired to check residual independence 
from the input, it is necessary to first prewhiten 
the input. The calculation of the input prewhiten- 
ing coefficients is done as described in eq. (15). A 
univariate analysis is done on the resulting residu- 
als in order that the prewhitening model's ade- 
quacy may be evaluated. The input residuals are 
held for later testing of transfer function models. 

3.7. Estimation of transfer function and impulse 
response 

In this command, estimation of the nonpara- 
metric transfer function is performed according to 
Fig. 3 and eq. (21). 

3.8. Specification of difference parameter or case 
range 

Before any of the other commands can be 
processed for each set of data, this command must 
be specified at least once. The case range is speci- 
fied with a beginning point, NN1, and an end- 
point, NN2, which are either from a command file 
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or typed in response to the query which also 

specifies the current  case range: 

T H E  C U R R E N T  CASE R A N G E  (1512) 

The differencing factors for the input  and out- 

put  data sequences are obtained from the com- 
m a n d  file or from responses to the queries: 

T H E  C U R R E N T  I N P U T  D I F F E R E N C E  
P A R A M E T E R  (0) 

T H E  C U R R E N T  O U T P U T  D I F F E R E N C E  
P A R A M E T E R  (0) 

If the operator  simply enters a zero in response 
to any of the above questions, the current  case 
range and differencing parameters in parentheses 
are retained. In addit ion,  regression lines may be 

fitted to and  subtracted from the input  and  output  
data  between the endpoints .  

3. 9. Change operation parameters 

There are 8 operat ion parameters set to their 
default  values in the main  program which are 

listed in Table  1. Any  of these operat ion parame- 

ters may be changed by typing in the desired value 
in response to the query. By typing a 0 in response 

to these queries, the operator leaves the operat ion 
parameters  unchanged.  

3.10. Stop 

A 10 c omma nd  causes the analysis to stop on 
the current  data set. If there is more data, either in 
the current  file, or in other files which were set up 
at the start of the program, then the new data  is 
read in. 

3.11. Help 

By typing an 11, a user can get documenta t ion  
on  the use of any of the first 10 commands.  

4. SAMPLE R U N  

The data used for this run consist of a 512 point  
inpu t  array representing the posi t ion of a posture 
pla t form and a 512 point  output  array represent- 

TABLE 1 

Operation parameters 

Name Allowed values Default Function 
value 

NA Any positive integer 10 
up to 50 

NP Any positive integer 10 
up to 50 

IMP Any positive integer 30 
up to 50 

LAG 1 or 2 1 

KSAMP 1,2,4,8 8 

N PW Any positive integer 17 
up to 50 

ITREND 1 or - 1 1 

IDEV 3 or 5 5 

Number of autocorrelation lags printed 
out in univariate analysis. 
Number of partial autocorrelation lags 
printed out in univariate analysis. 
Length of impulse response estimate to 
be used in estimation of noise series. 
The lag window size for spectral smoothing 
is 2-LAG, either 1/2 of 1/4 of the correlation 
function length. 
Resampling factor for spectral calculations. 
The data is resampled in the frequency 
domain to KSAMP- 1 of the Nyquist frequency. 
Number of poles used in prewhitening the 
input. 
Detrending factor. If 1TREND is 1, the 
data are detrended. 
Command input device. If IDEV = 5, commands 
are read from the terminal, if IDEV = 3, they 
are read from a command file. 



ing the position of a subject's waist. In fig. 5(a-e) 
is shown a typical run. 

In fig. 5(a), the program is started. A request 
for the sampling rate is answered by typing the 
floating point sampling rate in Hz. The input and 
output data are stored in 512 point arrays in 1615 
format in the file PP03C.DAT. In response to the 
prompt for a command, a 9 is typed so that 
current values of the operation parameters can be 
viewed. A message is typed which lists the opera- 
tion parameters and their appropriate values. Then 
in response to all prompts for values, the operator 
types a zero so that the numbers appearing in 
parentheses after each prompt remain the current 
values of these operation parameters. Next, an 8 is 
typed in response to the prompt for a command, 
so that a case range may be established. The 
operator's responses indicate that points 1-464 of 
the input and output arrays are to be used and 
that the input array is to be differenced. Since the 
detrending operation parameter is set to 1, the 
input and output arrays are detrended first. The 
regression line's slope and intercept and the vari- 
ance of the detrended (but not differenced) data 
are printed for each array. 

In Fig. 5(a), a 6 command is indicated, so that 
the differenced input array is prewhitened. The 
operation parameter for the number of prewhiten- 
ing poles is set to 17, so that a 17 pole model is 
fitted to the input data. In the first part of the 
output, the mean, variance, 10 normalized autoco- 
variance lags, 17 partial autocorrelation lags, a 
Durbin-Watson statistic, and Q statistics along 
with appropriate chi square statistics at the .05 
and .10 levels are printed out. It can be seen that 
17 poles are enough to whiten the differenced 
input since the last few partial autocorrelation lags 
are on the order of their approximate standard 
deviations, 464 -1/2. The next part of the output 
illustrates the diagnostics applied to the residuals 
of the 17 pole model (the prewhitened input). 
Again there appear the univariate statistics. Since 
the Durbin-Watson statistic is close to 2.0 and the 
Q35 statistics do not exceed their .10 probability 
levels, one can assume that the differenced input 
series has been adequately whitened for future use 
in testing transfer function plus noise models. The 
17 poles of the model are also listed. 
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The next command illustrated in Fig. 5(b) is an 
8. The case range is changed to 209-464 and no 
differencing of the input is done. A 7 command 
results in an estimate of the resampled parametric 
transfer function and impulse response. Sixteen 
values up to 1.56250 Hz of the transfer function's 
magnitude follow by sixteen values of its phase in 
radians are shown. This transfer function with a 
magnitude peak near 0 frequency suggests that 
perhaps one pole is sufficient to model the transfer 
function. 

In Fig. 5(c), a command of 8 enables the case 
range to be changed again. This time, the first 
endpoint is set to 22 since the prewhitened input is 
not defined for values earlier than that. Next, a 
command of 2 results in the estimation of a para- 
metric transfer function plus noise model. In this 
case, 1 pole and 0 zeros for the transfer function 
and 2 zeros and 1 pole for the noise model are 
specified. A deadtime factor of 4 is also indicated. 
Printed are the parameter estimates at the end of 
each iteration through the data. These parameter 
estimates are shown in the following order: trans- 
fer function numerator then denominator, noise 
model numerator then denominator. When all these 
estimates change by less than .01, the estimation 
stops. 

Lastly, Fig. 5(d) illustrates the diagnostics ap- 
plied to the residuals of the above model. It can be 
seen that the residual mean is close to 0, and that 
the estimates of the normalized autocovariance 
lags and partial autocorrelation lags are small. 
Also, the Q statistics are not chi square variables 
in this case, but they are too small to arouse 
serious concern about model adequacy. Similarly, 
estimates of lags of the normalized crosscovariance 
function between the residuals and prewhitened 
input are small as indicated both by the first 11 
values individually and by the 3 S statistics. 

Next are printed the noise variance, signal vari- 
ance, and signal to noise ratios as well as plots of 
the parametric transfer function gain and phase 
lags up to 1.5625 Hz. When the effect of the 
deadtime is considered, this transfer function seems 
to be a reasonably smooth approximation to the 
nonparametric one illustrated in Fig. 5(c). Also, it 
can be seen from the list of the parametric model's 
poles and zeros that all of the singular points seem 
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R IDENT 
ENTER THE SAMPLING RATE (HZ): 25. 

ENTER THE NUMBER OF POINTS IN A 
SINGLE DATA ARRAY 512 
ENTER THE NAMES OF FILES (UP TO 6) OF DATA TO BE 
ANALYZE[I, SEPARATED BY COMMAS. 
*FFO3C.DAT  

ENTER THE FORMAT OF THE BATA VARIABLES. 
EXAMPLE: (1615) (1615) 

*~ * I *~ *  CAMERA 1 * i I * ~ I *  

LIST OF OPERATION PARAMETERS 

NO. AUTOCORRELATION LAGS (UP TO 50) 
NO. PARTIAL AUTDCORRELATION LAGS (UP TO 50) 
[.AS WINDOW FACTOR = 1 / 2  TO THE FACTORTH 
RESAMPLING FACTOR = 1 ,2 .4 .8  

1 15 BEST FOR OBTAINING A NOISE ESTIMATE. 
IMPULSE RESPONSE LENGTH FOR ESTIMATING NOISE (UP TO 50) 
NO.  PREWHITENING POLES (UP  TO 50) 
DETRENDING FACTOR = 1 FOR DETRENDING,  - 1  FOR NOT 
COMMAND INPUT DEVICE = 5 FOR TERMINAL, 3 FOR FILE 

NUMBER OF AUTOCGRRELATIONS( 10)0 
NUMBER OF PARTIAL AOTGCORRELATIONS( i0 )0  
THE LAG WINBOW( 1)0 
THE IMPULSE RESPONSE LENGTH(3O)O 
THE CURRENT RESAMPLING FACTOR( 8)0 
THE NUMBER OF PREWHITENING PDLES(17)O 
THE DETRENDING FACTOR( i ) 0  
THE COMMAND INPUT DEVICE( 5)0 

CGMMAND:8 
THE CURRENT CASE RANGE( 0 0)1.464 
THE CURRENT INPUT DIFFERENCE PARAMETER( 0 ) I  
THE CURRENT OUTPUT DIFFERENCE PARAMETER( 0)0 

SLOPE INTERCEPT SIGNAL VARIANCE 

INPUT  0.01889 -4.39109 1.03621 

OUTPUT 0.01513 -3.52503 3.70571 

COMMAND~6 

$1*~*I*ESTIMATION OF PREWHITENING PARAMETERS$*~*~*I 

MEAN= 0.00421 VARIANCE= 0.05259 

-AUTOCORRELATIONS- 

LAG VALUE -1  0 ÷1  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I -0.1674 ~ I 
2 0.2171 
3 0.1003 
4 0.0908 I * 
5 - 0 . 0740  *I 
6 0.0213 

- 0 . 0905  * I* 
8 -0.0229 * 
9 - 0 . 0910  * I 

10 0.0333 I *  

-PARTIAL AUTOCORRELAT IONS- 

LAG VALUE :: ..................... +0 ............................ +I 

I - 0 . 1674  * ) 
2 0.1945 I 
3 0.1734 i * 
4 0.0985 1 
5 -0.1131 * I 
6 -0.0772 * 
7 -0.0972 ~ I 
8 -0.0261 * i  
9 -0.0423 $ I  

10 0.0560 I *  
11 0 . 0 1 0 0  * 
12 0,0603 l *  
13 0.0282 t *  
14 0 .0387  I *  
15 - 0 . 0202  * • 
16  -0,0788 * I 
17 -0.0389 *I 

RURBIN-WATSON STATISTIC = 2,33446 

O l O  02o s 3 5  5(a) 

lIES. FREED, 10 20 35 
.oS LEVEL8 18.3 31.4 49.0 
.10 LEVELS 16.0 28.4 46.1 
ACTUAL 54.4 69.8 86.1 

THE CURRENT CASE RANGE = 19 464 

. . . . . . . . . .  RESIDUAL STATISTICS . . . . . . .  

MEAN= 0.00240 VARIANCE~ 0.04644 

i -0.0067 
O -0.0066 
3 --0.0015 
4 0.0021 
5 0.0065 
6 0 . 0 1 0 1  
7 0.0029 
8 0.0149 
9 0.0028 

10 -0.0033 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . .  

PARTIAL AUTOCORRELATIONS'" 

~AG VALUE -1  0 ¢1 
. . . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

] - 0 . 0067  
2 -0.0067 
3 -0.0016 * 
4 0 . 0 0 2 0  * 
S 0 .0065  * 
6 0.0102 * 
7 0 .0032  * 
8 0.0151 * 
9 0 . 0030  * 

10 -0.0031 * 

DURBIN WAISON STATISTIC = 2*0122B 

OlO O20 035 

DES. FREED. 0 3 18 
• 05  LEVELS  0 .0  7 ,8  2G .9  
• 10  LEVELS  0 .0  6 .2  26 ,0  
ACTUAL 0 . 2  5 , 9  20,8 

MAC 
TRANSFER FUNCTION ZEROS 
TRANSFER FUNTION POLES 
NOISE ZEROS 
NOISE POLES 

FREO(HZ) 

I 0.91034 1.91003 
2 0.91034 -1.91003 
3 0.85745 0.69179 
4 0.85745 -0.69179 
5 0 .86664  3 ,894B8  
6 0 .86664  -3 .89488  
7 0.86205 5.60470 
S 0 .86205  -5 .60470  
9 0.85568 7.20042 

I0 0.85568 - 7 . 20042  
11 0.83062 8.57293 
12 0.83062 -8.57293 
13 0 .81969  10.22164 
14 0 .81969  --10.22164 
15 0.86424 12.50001 
16 0.62457 11.23522 
17 0 . 6 2 4 5 7  - 1 1 . 2 3 5 2 2  

COMNAN[,~8 
THE CURRENT CASE RANGE( 3 A6A)O09~464 
THE CURRENT INPUT DIFFERENCE PARAMETER( 0)0 
THE CURRENT OUTPUT DIFFERENCE PARAMETER( 0)0 

SLOPE INTERCEPT SIGNAL VARIANCE 

INPUT  0 ,02674  -8 .99699  0 .90680  

OUTPUT 0.02208 -7.43126 4.37324 

COMMAND:7 

EST. OF TRANSFER FUNCTION AND IMPULSE RESPONSE 

5(b) 



J DENSITY  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . .  

O 2 .6234  * *S * * * * * * I * * * * * * *  
1 2,6143 S* * *S*S* * * * *S * * * *  
2 2 .1645  *S * * * *SS*S* * * *  
3 1 .2648  * * * *SSSS 
4 0.4543 SS 
5 0.6257 SS*S  
6 0 ,3158  S 
7 0,0989 S 
8 0.5084 SS*  
9 1.4015 * * *S *SS* *  

i0 0,3055 S 
II 0 .5876  SS*  
12 0 .3697  S*  
] 3  0.3256 * *  
14 0,6785 *SSS 
15 6.0754 *SS* * *S*S*S* * * * * *SS*SS*SS* *SSSSS*SSSS*S*S  

1 .56250  HZ 

F'HASE 

,J DENSITY 
. . . . . . . . . . . . . . . . . . . . . . . . .  * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 -0 ,2616  SS* *S* * *SSSS* * * *S  
1 - 0 . 4350  * * * * * * * * * * * * * *S  
2 -0.6SOl * *SSSS*SS* *S*S  
3 -i,2675 *S ISSS* * *  
4 2.1694 SS*SSSSSSS*SS*S I *SS*SS*S* * * * * * * * * *  
5 2.9484 sSSS* *SS*SS* * *S*SSSSSSS* *S* *S*SS*SSSS*S*  
6 3 . 0 7 2 6  S*S*SS*SS*SSS*S*S*S*S* * * *S * *SSSS*SS* IS *S*  
7 1.8680 * * *SS  
8 1 .3663  * *S * *SS* *  
9 .:~.~%~ * * * * * * ,  

10  . .  S * *  
11 2 ,5344  * 
12 2 .3482  * 
13 1,3601 SSSS* * *SS  
14 1.6352 S, I * * * *  
t5 0 .8362  * * * * *SS* *SSS  

I . [ ~ : 50  HZ 

INFqJLSE RESFONSE 

J DENSITY  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . .  

D 0.2944 SS* * * *SS*S* * * * * * I * * *S * *S*  
I I,.5817 SS* I * * * * * * * * * *S I * * *SSS*SSSS* *S* * * * * * *R* *S  

)i 0 ,5115  ************************************* 
0 .3463  * * * * * * * * * * * * * * * * * * * * * * * * * * *  

4 0 .5552  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
S 0,1507 * * *S * * *SS I *S I * * *  
6 - 0 , i 000  * 
7 -0.0583 ~S*  
11 -0,0137 *SSSS*  
9 0.1177 * 

i0 -C,,C455 * * * *  
II C=,C925 * * * *SSSSS*SS  
L2 0,C512 * * * * *S * *SS  
13 0 .0231  * *SS* * * *  
;,1 . ] *OO8&  ****SSS 
15 0 .0165  * * * * *SS*  
16 - 0 . 0629  SS*  
17 0 .0036  * * * * * * *  
t 8  - 0 . 0006  *S IS * * *  
[9 0 ,0043  SS* * * * *  
1'0 0 . 0213  S*S* *S* *  
21 0 ,0110  * * * * * * *S  
22 0 ,0035  * * * *S *S  
23 0.0167 * *SS* *  
:!4 0 . 0118  ******** 
25  0 ,0121  *SS* * *  
26  0 .0029  S*S* * *S  
27 0=0065  * *S ,S * *  
:!0 O.OOOl *S lS *SS  
29  0 .C ,046  * *SS* * *  
30  -0.0118 SS* *S*  
~ t  0 , 0 1 7 0  St * I * * * *  
(2 0.0237 * *SS IS  
33 0 .0262  * * * * * * * *  
34  - 0 . 0352  * *S * *  
35 0 .0376  * * *S iS * IS  
36  0 . 0330  S**** 
37 0 .0392  * * * *SS* *S  
38 0 ,0511  * * * *  
39  0 .0566  * * * * * * * * * *  

CDMMANII:8 

THE CURRENT CASE RANGE( 209 464 )22 ,464  
THE CURRENT INPUT DIFFERENCE PARAMETER( 0 )0  
THE CURRENT OUTPUT DIFFERENCE PARAMETER( 0 )0  

SLOPE INTERCEPT SIGNAL VARIANCE 

INPUT 0 ,01826  - -4 .43774  1 , 03305  

OUTPUT 0 .01345  - - 3 . 26870  3 .48634  

COMMAND}2 

*S I * *SS IS IMODEL  F'ARAMETER EST IMAT IONS* *S* * * * * *  5(C) 

ENTER ORDERS: TFF',TFZ,NF',NZ 1 ,0 ,1 ,2  
ENTER DELAY FACTOR4 

THE BEADTIME FACTOR = 4 

NUMBER OF PARAMETERS:TFN: 1 TFB: 0 NNI 2 ND: i 

ITERATION F 'ARANETER£  

0 0.10986 0,92570 -I,35662 0.48424 0.93130 

i 0.11963 0.93598 -1.44533 0,55648 0.94314 
2 0.13098 0,92279 -1.45676 0,57074 0,95137 
3 0 ,13930  0 ,91393  - -1 ,46128 0 ,52693  0 ,95571  

ESTIMATED STANDARD BEVIATIONS: 
STD DEV, 0 , 0251 I  0 ,02791  0 ,04670  0 ,04336  0 ,02201  

THE RECURSIVELY ESTIMATED RESIDUAL VARIANCE= 0 ,12195  

COMMAND:3 

S I * * ISSSSSBIAGNOSTICS ISS I IS IS IS  

THE CURRENT CASE RANGE = 23 460 

. . . . . .  RESIDUAL STATISTICS . . . . . .  

MEAN= 0 ,00631  VARIANCE= 0 ,11137  

-AUTOCDRRELATIONS-- 

LAG VALUE ~]1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . . . . . . . . . . . . . . . . . .  +1 

I - 0 . 0320  *L  
2 - 0 . 0154  * 
3 0 .0305  i* 
4 0 ,0210  
5 0 ,0701  * 
6 0.0245 * 
7 0 ,0319  IS  
8 - 0 . 0220  * 
9 0 .0112  * 

I 0  0 .0795  I * 

-F'ARTIAL AUTOCORRELATIONS- 

. . . . .  AL.E ! . . . . . . . . . . . . . .  t . . . . . . . . . .  S l  

I - 0 , 0320  *~ 
2 - -0 ,0165 S 
3 0 ,0295  ~* 
4 0 .0228  * 
5 0.0679 *I 

6 0.0294 S l  
7 0 ,0271  I *  
S 0 ,0172  S 
9 0 .0152  * 

]0 0 ,0751  I S 

BURBIN--WATSON STATISTIC = 2 ,06380  

O10 020 035 

DES, FREED, 7 17 32 

• 05 LEVELS 14 . I  27 ,6  46 ,2  
.i0 LEVELS 12.0 24.8 42,6 
ACTUAL  7 .0  12 .3  22 .4  

THE CROSS-- CORRELATION COEFFICIENT = 0 ,088325  

--CROSS CORRELATIONS- 

LAG VALUE .]1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . . . . . . . . . . . . . . . . . . .  + i  

i IS 
2 IS 

0 ,0510  
0 ,0427  

3 0 ,0171  
4 -O,OBGB 
5 0 -0644  
6 - 0 , 0163  
7 0 ,0049  
8 0.0245 
9 0 ,0377  

10 - 0 . 0505  
g lO 

BEG, FREEIh 9 
• 05 LEVELS 16 ,9  

* i 
~S 
* 

S 
S 
IS  

* I  

O20 035 

1 9  3 4  5(d) 
30 ,1  48 ,6  
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. i 0  LEVELS 14 ,7  27 .2  44 .9  
AETUAL 12 .7  28 .4  40 .1  

N: 1 .8138311 S= 2 ,1531432  SRR= 1 ,1870693  

PARAMETRIC TRANSFER FUNCTION SPECTRUM 

GAIN 

J • DENSITY 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  ÷ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 1 .6037  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
i 1 .4982  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
2 1 .3375  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
3 1 . 1712  * * * * * * * * * * * * * * * * * * * * * * * * * * *  
4 1 . 0229  * * * * * * * * * * * * * * * * * * * * * *  

0.8985 * *~ * * * * * * * * * * * * * *  
0 .7961  * * * * * * I l l * * * * *  

7 0 ,7119  * . 1 . * * . 1 . * *  
8 0,6423 * * * . 1 . * * *  
9 0 .5841 * * * *~ * *  

10  0 .5351  * * * * *  
11 0 .4933  * * * *  
12 0 .4574  *~ *  
13 0.4262 ~ 
14 0 .3939  * 
15 0.3749 

1.56250 GZ 

PHASE 

J DENSITY 
.......................... + ........................... 

4 0.8327 * * * * * * * * * *~  
5 -0,9163 ~* * * * *~ *  
6 0.9786 * : ~  
7 1 .0254  *~  
8 1 . 0608  ~ *  
9 -i.0876 ~* 

i0 ],I079 * *  
] ]  -1.1231 * 
12 -1.1344 * 
t 3  - - i , 1424  * 
14 1.1479 k 
]5 1.15ii * 

1 ,56250  HZ 

MAG FREO(HZ) 

TRANSFER FUNCTION ZEROS 
TRANSFER FUNTION POLES 
I 0 .91393  O.O000O 

NOISE ZEROS 
1 0 ,75956  i , i 0147  
2 0 ,75956  -1 .10147  

NDIRE FDLES 

I ~ .95571 0 .00000  

COMMAND: 

Fig. 5. Sample run. 

5(e) 

to be significant. Thus, from examination of all the 
model evaluation criteria available here, one could 
conclude that an acceptable model has been found. 
However, it is probable that this model is not a 
unique one. 

5. HARDWARE AND SOFTWARE SPECIFI- 
CATIONS 

The program is designed to run on a LSI-11 
minicomputer with the minimum hardware/soft- 
ware components: 

(1) 28 K (16 bits words) of memory. 

(2) DECWRITER III hard copy terminal. 

(3) Dual floppy disk. 

(4) RT-11 Version IV Operating System. 

All parts of the program are written in FOR- 
TRAN IV. 

All computations except for those of the root 
finding algorithm are done in single precision 
arithmetic. 

The decimal core requirements of the driver 
and each overlay are as follows: 

(1) Root segment including main program and 
driver subroutine occupies 14 881 words. 

(2) PAREST overlay occupies 5550 words. 

(3) The UNIVRT overlay occupies 5546 words. 

(4) The SING overlay occupies 6154 words. 

(5) The NONPAR overlay occupies 8534 words. 

(6) The RSD overlay occupies 7436 words. 

(7) The TEACH overlay occupies 8655 words. 

6. MODE OF AVAILABILITY 

Source program listings, a users manual, a pro- 
gramming guide, and reprints may be obtained 
from the second author upon request at the follow- 
ing address: Dr David J. Anderson, Kresge Hear- 
ing Research Institute, University of Michigan 
Medical School, 1301 E. Ann St., Ann Arbor, MI 
48109, USA. 
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