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The two-loop correction to the o-parameter in lhe limit of the large l-tiggs mass is calculated. 
Numerically it is found that the two-loop contribution is equal in magnitude, but of opposite sign 
to the one-kw, p correction if the tliggs mass is about 137 times the vector boson mass. The 
calculation suggest a breakdown of perturbation theory if the tliggs mass is larger than 3 TeV. 
There is no direct correspondence between our results and the poles at n = 3 of the simple 
non-linear o-model at the two-loop level. 

1. I n t r o d u c t i o n  

In considering present day gauge theory one cannot  escape the idea that the 

subject can be divided broadly into two areas: the successful and the not so 

successful domain.  Keywords such as cosmological constant ,  axions, monopoles,  

s trong CP-violat ion identify the latter area: it relates to properties of the vacuum 

and the Higgs system. While there is no hard fact confront ing  theory and experiment  

here, it is also true that one has to twist and bend the theory in order to avoid such a 

conflict. Absurdit ies  like the " invis ible  axion" have made their appearance in the 

physics literature, and perhaps some day invisible proton decay will save grand 

unification! 

Now no one knows what is really going on above 100 GeV. At the very least we 

might say that the above ment ioned lack of success makes the Higgs sector suspect. 

On the other hand, the Higgs is there as a technical means to guarantee renormaliz- 

ability, and the principle of renormalizabil i ty has most certainly proven to b c a  very 

successful guideline. It is a very difficult di lemma, and it is improbable  that we will 

get any further without experimental  input.  It has been argued that some manifesta-  

tion of the Higgs system, or whatever goes for it, must show up at a round 1 TeV or 

below [1]. Thus  a successful quest requires accelerators in the multi-TeV domain.  

For some time to come most of the experimental  informat ion will come from the 

experiments  at relatively low energies, that is below 100 GeV. This may or may not 

give clues to our present day problems. 
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As it happens there is at least one measurement that may give us some clue, and 
that is a high-precision measurement of the ratio of charged and neutral vector 
boson masses, nowadays called the p-parameter. Several years ago [2] it was pointed 
out that this parameter is sensitive to the mass spectrum above 100 GeV, and also it 
is the only measurable quantity at low energy that is really finite (up to one loop) 
due to the Higgs system. Unfortunately even that one-loop dependence is only 
logarithmic, and only a very brutal deviation from the currently envisaged Higgs 
systems would influence this quantity in a measurable way. 

However, the situation changes when including two-loop contributions. They are 
expected to grow like m 2 (where m is the Higgs mass), and may therefore be of more 
relevance. For one thing, if they become larger than the one-loop contribution, then 
perturbation theory is no more valid, and any experimental observation along these 
lines would be extremely important. Here we are talking about minute effects: of the 
order of 0.1% on the p-parameter. 

The substance for the argument that the two-loop corrections grow like m 2 for 
large m comes from previous studies on massive Yang-Mills theories [3] and 
equivalently, the gauged non-linear a-model [4]. The non-linear a-model is what the 
Higgs sector of the standard model becomes if one lets the Higgs mass m go to 
infinity at the lagrangian ( =  tree) level. This non-linear a-model is non-renormaliz- 
able, and gives rise to infinities in the p-parameter: logarithmic (simple poles in 
n - 4 using dimensional regularization) at the one-loop level and quadratic (poles at 
n - 3) at the two-loop level. At the one-loop level the coefficients of the simple pole 
terms are precisely equal to the coefficients of the terms proportional to In m in the 
standard model [1,4], and it is on this basis that one guesses a similar relation on the 
two-loop level. 

An explicit calculation of the large Higgs mass effects at the two-loop level may 
therefore be of both direct experimental and more indirect theoretical interest. Are 
there really other than logarithmic effects if the Higgs mass is made large? If there 
are only logarithmic effects then this may well change our view on the necessity of 
the Higgs system. Of course, there is still the question of uncontrollable growth of 
the W-W scattering amplitude at the tree-level (the so-called unitarity limit), but this 
problem is not really fully analyzed and understood. The only thing one can say is 
that higher-order effects become important at this energy if the Higgs mass is large, 
but this means that the perturbation expansion breaks down, and not that the Higgs 
mass cannot be large. 

In this paper we present the results of a calculation of large Higgs mass effects to 
the p-parameter at the two-loop level. The work itself is quite substantial, and 
requires also a precise understanding of the complexities of gauge theory renormali- 
zation. Most things turn out the way one would expect from the beginning, with one 
exception: while the two-loop behaviour is indeed like m 2, it is clearly not related in 
any obvious way to the non-linear a-model. This aspect, very interesting and 
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intriguing, will not be discussed in any detail in this paper, although we will point 
out where the origin is of this anomalous behaviour. 

In sect. 2 the model and our notations are defined. In sect. 3 the essential 
ingredients of the necessary one-loop calculations are presented. Sect. 4 contains a 
discussion of the renormalization procedure that we adopted, and in sect. 5 the 
required calculations are outlined. In sect. 6 details of the evaluation of two-loop 
self-energy diagrams are given, and in sect. 7 reducible and counterterm contribu- 
tions are discussed, including a more detailed discussion of quadratic counterterms. 
In sect. 8 results are summarized, in particular the correction to the p-parameter. 
Appendix A gives some details on the evaluation of the occurring integrals, and the 
necessary equations are listed. 

While large parts of the calculation were done by hand also, we have relied heavily 
on the use of the computer program Schoonschip. Appendix B gives some details. 

2. The model 

This section can be brief. We use the lagrangian and notation as given in ref. [5}. 
There is only one point on which we want to elaborate, and that is the gauge fixing 
terms and the gauge transformations leading to the ghost lagrangian as given in that 
paper. The gauge fixing term is* 

)'_'g, = - C '  C - }(C ~ ) 2 -  ),(C.4)2. (2.1) 

With (C follows by hermitian conjugation): 

( " =  - 0  Wff + M~5", 

,~t q,o 
(::'~ = - 0 " ~ °  + c 

C A = - c) A,. (2.2) 

In this paper we will drop the subscript 0 from c 0 and s 0. referring to cos and sin of 
the weak mixing angle. The ghost lagrangian follows by subjecting the C to an 
infinitesimal gauge transformation. Thus: 

!2~h,,~,= +at X' (6Wff ) + M X "  (6(I)')+c),X (6W~ ) + M X  (6ep ) 

+8~, Y° (6W~,°) + M Y°(6eO°)+O, yA ([~A,). (2.3) 
C 

* F o r  a n  u n k n o w n  r e a s o n  these  t e r m s  w e r e  m i s r e p r e s e n t e d  in ref. [5]. 
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The quantities 8W etc. follow by considering an infinitesimal gauge transforma- 
tion with gauge parameters A: 

8 W  u" = i g A + ( c W f  + s A , ) - i g ( c A  w + s A A ) W ,  - -- OJ[  + . 

= - i ca + w ;  + w ;  - a , a  W, 

8A u = - igsA ' W~ + igsA W :  - -  OuA a . 

( c 2 - s 2 A w  + 2 s A A ) * * - ½ g Z A  ' -  M A *  6q~' = ~igA ' O ° -  l ig c 2 

6ca ° = - ~ ig(  a - q ,  - A -  4 ' ) - ~  A w Z  - W, 
AC C 

g 4°A w (2.4) 6 Z =  z g ( A + O  + a - q ~ " ) + ~ c  . 

Note that Z represents the Higgs field, and W ° the neutral vector boson (often 
called the Z in the literature). In the above equation one must replace A ~ by X ' ,  A 
by X , A w by yO and A A by yA tO obtain the correct ghost lagrangian. The gauge 

parameters A ' ,  A- ,  A w and A a are related to the pure SU(2) and U(I)  gauge 
parameters A' and A ° as follows: 

A : =  (}-(A'  $ iA2), 

A w = cA 3 - sA  o ' 

A A = sA 3 + cA °.  (2.5) 

This is similar in structure to the equation for the vector bosons, see e.g. (2.1) of ref. 

[51. 
The fermion sector is relevant insofar that we will define the p-parameter on the 

basis of low-energy processes such as ~-decay, as described in an earlier paper [2]. In 
practice no one or two-loop graphs involving fermions need to be calculated, as will 
be shown later. This is a consequence of the particular procedure followed in this 
paper. We will work in the limit of small fermion mass, thus neglecting diagrams 
with the Higgs coupled to the fcrmions. If cver fermions with a mass comparable to 
the vector boson mass are discovered then such diagrams must be included. 

3. One-loop calculations 

As a first step we have calculated: 
(i) all infinities (poles in n -  4) of all one-loop graphs but without fermion 

internal lines; 
(ii) all terms behaving like rn 2 of all self-energy graphs (with some exceptions for 

the Higgs self-energy graphs), including terms proportional to n - 4; 
(iii) the complete set of tadpole diagrams but without fermion internal lines. 

The terms proportional to n -  4 are important, because at the two-loop level they 
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may combine  with poles to give a finite contribution. Since we will ignore Higgs- 

fermion couplings we do not need such terms for the Higgs self-energy diagrams. 
That  we may ignore diagrams with internal fermions will become clear in the 

following. 
Infinities and terms proport ional  to rn 2 are unobservable at the one-loop level* 

and can thus be absorbed in the parameters of  the lagrangian. The most transparent 
way to represent the results is as follows. Replace in the invariant lagrangian the 

various fields and parameters as follows: 

Wf- --, W ~ ( 1  + 8 ) ,  

w."--, w."(l + ¢,)+¢,~A.. 

.4. --, A.(X + ~)+ 6.,,,w.". 

,#-- ,#(1 + 6 z ) ,  Z ~ Z ( I + 6 z ) + M 6 , ,  

M - - * M ( 1  + 6.~t), r n - - * m ( 1  + 6,,,). 

c-~c(a +¢,,). g---,,~(1 +6~). (3.a) 

Instead of 8.~ 4 and 6,, we will use quantities 81 and 6 z, related as follows: 

6 t -- 6 M + ½8,, 62 =- &t  - 6,,. (3.2) 

The immediate advantage of this notat ion is the simplification in those terms that 
depend on r n 2 / M  2. 

The terms mentioned in (i) to (iii) are reproduced by using the values: 

81 = ( _ _  __ 31 ) A ..~.. 81 f ' 2 c  21 

25 3 3M 2 3M 2 3m2 IA + 
&t, - 4c 2 2m 2 4c4m 2 4M 2 ] - 

~2~1, 8{} ~ + 3c 2 1 
- 12c 2 

S 

" Except for diagrams with external Higgs lines. 
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+ 1 '1 a + 8el ,  8;,: = 2' 4c  2 ! 

, = 
", M 2 3m 2 '~ 

- -  - -  l + 3 +--IA+3tr" 
3 M -  + 1 + :  

2cam 2 4c 2 m 2 4 M  2 , 

(~g = - -  4!a (~.,, = - -  s 2 ( 4 3  - 4 2 s ' 2 )  A ,  a - g 2  ( 3 . 3 )  

' 12c 2 8~r2(n - 4) 

The  f ini te  quan t i t i e s  3~f, {~2f" 3Zf, an d  3,t, c o n t a i n  no  pole  terms,  and  are related to 

the ca lcu la t ions  (ii) and  (iii) m e n t i o n e d  above.  In o rder  to correct ly  r ep roduce  the 

one - loop  results  one  mus t  take: 

3 1 r =  3 z r - -  m2g  2 
• 8 = 2 V ~ { ~ + ~ ' ( ~ t ° g  "'-~- &)}, 

& , -  m292 { 9rr ' '  ~ } 
- 8 r r 2 ~  32,,'~ + .t, - ~ log me , 

. : / _  M2 3.,e + + 3M2 flog M: 8,f 
8 ~  2 I 4 m  2c4 8c  2 a 2 m  2 8 M  2 1, 2 m  2 ' I 

+ 1 + 3M 2 '11 M 2 3m 2,  ~ 

• 87; ~ ) o g 7 + ~ ' ° g  m-/ 

~_~ 2 g. ~ ~2 ~ __ 
32c4m 2 192c 2 "~' 16m 2 6 4 M  2 

M 2 1 I M 2  3m2 

8c4m 2 16c 2 ~ 4 m  2 16M 2 

M2) M2_ 3M / 
+ ~ + - -  log 1~ + log2M 2 

4m-" , ~ ] 

+ 
m 2 

4 " 
8C m -  

,) 3,,2) 
- -  + - -  l o g  - - -  + - - -  log 2 

16c 2 ~ . 32c 2 16m2c 4 c 2 

3m 2 3rn 2 ] 
+ - - l o g m  2 - - l o g 2 m  2 (3.4)  

16M 2 3 2 M  2 " 

In the above  e = n - 4 .  As said before,  t ak ing  these express ions  as given,  the 

one - loop  results  are reproduced .  G i v i n g  these te rms a m i n u s  sign leads to the 

cance l l a t i on  of all such terms at the one - loop  level. 
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Concerning 62f, essentially referring to the renormalization of the Higgs mass m ,  

the following must be noted. In this quanti ty we have kept only the terms propor-  
tional to m 2, and these terms are chosen such that if 82r is introduced in the 
lagrangian with a minus sign then a calculation of  the physical Higgs mass (the 

location of the pole of the Higgs propagator)  gives the result n l v h  = m up to leading 

order in the parameter  m. 
The infinities in the ghost sector are reproduced as follows. Use the same gauge 

fixing terms as before, and do not  replace the W etc. by W(I + 8) etc. in these 

functions. However  for the gauge transformations one must use "renormalized'"  
gauge transformations,  and some subtleties are to be noted here. Start from the 

" b a r e "  gauge transformations, for example: 

WJ ) -+ I+~, ° + 8WJ ) . A~, -" A ,  + 8A~,. 

Now make the various replacements, W =  W(1 + 8) etc. In the example chosen we 

get: 

o W O ( 1  W~, (1 + 8 o ) + 8 o . , A ~ - - - "  , .  + 6 o ) + 8 , , , A ~ + 6 ~  ('. 

A,,(I + 84) + 8Ao~;, -0 A~,(I + 8.4) + 8.,( WJ'+  8A-~,. 

In here 6W and 6A-are obtained from 8/4 / and 6A by making the various replace- 
ments. Working out the two equations above one finds as the new gauge transforma- 

lions: 

w 2 - - ,  w "  +(1  - e , , ) a w , , ' -  a , , ,aa  2 / x  , • 

>1. --. A.  + (1 - 8 . ) 8 A -  - 8.,,8 ~ " .  (3 .5)  

Here only terms up to order ,g'~ need bc retained. 
Fur thermore also replacements must be made for the A: 

.,~" - .  (1 + ~,;),~ " + 8'  v '  
0.4" ' 

A ~---, (1 + * [ ) A '  (3.6) 

The quantities 8 '  must be taken as follows: 

(' - - - )  80 = ,; + h,  2 l 
, 12c'-, " 

6 A = ~;s-'A, 6/4o = 6cs 

8 / =  b' a .  

I 8o4 = - csA. 

(3.7) 
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The above demonstrates a known fact [6]: to correctly reproduce (or counter) the 
one-loop infinites etc. one must replace fields by their "renormalized" values, e.g. 
W ~  W(1 + 8), but not in the gauge conditions. This means that in going from the 
original lagrangian to the above described one also a change of gauge is involved. To 

be clear, the starting point is: 

~= l~inv(W, M . . . .  )+IS f (W, M ) +  E~h (W, M ) .  

Step one, replace W etc. by W(1 + 8). Step two, make a change of gauge that 
eliminates these changes in the gauge fixing lagrangian. Let us consider in some 
detail what this means to the mass terms in the ghost lagrangian. The original 

lagrangian contains the gauge fixing term 

- O W .  + Mq~ + 

and, concentrating on the second term, a ghost mass term induced by a gauge 
transformation of q~ ': 

- M 2 ~ + X  ~ 

Now perform step 1, the replacement M ---, M(1 + 6M), Z --, Z(1 + 8 z) + ( M/g)6,, 
and ~ ---, 4,(1 + 6z) and also a rescaling of the ghost fields whose precise form is not 
relevant for this discussion. The gauge condition and the ghost mass term become 

respectively: 

M,'(a+~,+Sz), -M2~'X-(l+28~,+~8,). 
The 8, term comes from the term - ½ g M ~ x ' Z  in the ghost lagrangian. Now 
change the gauge condition back to its original value by adding on a term 
- ( 8 ~  + 8z)Mep ÷ to that gauge condition. As a consequence the ghost mass term 

changes, we get an addition - ( 8  M + 8z)M2~+X ¢ . Including a term 8~' coming from 
the ghost rescaling we have for the ghost mass term: 

- M 2 ~ ' X * ( I  +6~+6M+½6,--6:)= - M 2 ~ ' X ' ( 1  +8~+8 l - 6 z ) .  (3.8) 

The choice of 61 as a parameter instead of 6 M becomes clear here. Similar things 
happen all around. Furthermore, it is seen that the ghost mass term changes 
differently from the W mass term; that latter becomes after the various replace- 
ments: 

W;(1 + + 281). 

Also here there is a tadpole contribution originating from the W- W ~ Z term, 
This is perhaps the right moment  to emphasize our strategy. Here we do not 

choose counterterms in any particular way. We have simply listed what contribu- 
tions of the types mentioned before occur at the one-loop level. The fact that no m 2 
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Fig. 1. 

. . . .  = 0  

terms occur in ghost self-energy diagrams manifests itself here in the fact that the m 2 

dependence of 6~ is equal to that of 6z- If the ghost self-energy diagrams would have 
had such dependences then we would not have been able to reproduce them through 
a replacement type technique, as done above. The fact that this replacement-gauge- 
changing technique correctly reproduces all m 2 dependencies shows that at the 
one-loop level there are no physically observable effects going with rn 2. 

The latter is actually not strictly true. One-loop diagrams with external Z( = Higgs) 
lines have m 2 dependencies other than given above in the form of a replacement 
prescription. The only terms that we have included are those that occur in the Z 
self-energy diagrams insofar as needed to determine the physical Z-mass (the 
location of the pole of the propagator). 

As noted above, we have explicitly computed the m dependence in self-energy 
diagrams only. We thus have not explicitly checked that three-point and four-point 
diagrams have the dependence as suggested by the replacement recipe. That this is 
true however follows from the Ward identities. As a first step, consider diagrams 
with three external W-lines. Quite evidently such diagrams have no terms behaving 
like m 2. Now consider a Ward identity involving two W-sources and one C-line (fig. 

1). 
Now C involves a W and a ~ line, thus the left-hand side contains diagrams with 

three external W-lines as well as with two W-lines and one ~ line. In addition, there 
are self-energy type diagrams, such as shown in fig. 2. 

If we perform in the lagrangian the various replacements, but with a minus sign, 
then there is n o  m 2 dependence in any self-energy diagram, and since there is none 
to begin with in diagrams with three external W-lines it follows that the total of the 
diagrams with one ~ and two W-lines, including counterterms of that type, has no 
rn 2 dependence. This argument can be repeated to cover diagrams with any number 
of q~- and W-lines, but cannot be extended to diagrams with external Z-lines, because 
for instance diagrams with one Z and two W external lines are not obviously free 
from m 2 dependence. 

4. Renormalization 

Questions of convenience and habit determine the renormalization procedure to 
be followed. The foregoing section is strongly suggestive of the procedure that we 
followed, which is this. 
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Fig 2. 

The starting point of our two-loop calculations is the lagrangian obtained from 
the original (bare) lagrangian by performing the various replacements, but with a 
minus sign, and the described change of gauge. This of course makes no difference 
as far as the physics is concerned, it only changes the relation between experimental 
quantities and the parameters in the lagrangian. But this relation becomes in fact 
simpler, there are no m 2 terms in the relation between the physical W-mass and the 
parameter M; similarly for the Higgs mass m (at least as far as the relevant leading 
order in m terms are concerned). 

There are some subtleties concerning the replacement recipe. Such replacements 
generate also quadratic terms, e.g. W~,W~ becomes I,V W~, (1 + 28 c + ~?). In the WW, 
WA, and AA terms these quadratic terms, of order g a  cannot be ignored and must 
be taken into account. 

The lagrangian so obtained has the following virtues: 
no m 2 dependence on the one-loop level: 
no m 2 dependence in the ghost sector; 
no m 2 dependence in two-loop vertex diagrams with outgoing fermion lines. 

The latter point needs some elaboration. In principle m ~ dependence arises through 
diagrams containing W self-energy insertions. One must show that together with the 
counterterms this dependence vanishes (see fig. 3a, b). 

Let us consider such a diagram (fig. 3c). We encounter an integral of the form: 

f d,, p f d,,q 
7 p T p ( 2 p -  q ) ( 2 p -  q) 

(p2 +rn.i)2(p2 + M2)2(q2 + )2 + m  2) 

f 

I 
a 

Z 

b c 

Fig. 3. 
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We have not specified various indices. The q integral is quadratically divergent, and 
has an rn 2 dependence. At the one-loop level this dependence is extracted by 
developing the denominator ~): 

q2 = [ q2 {1 2qp + p2 + . . .  } f 
Y ( q 2 + M 2 ) ( ( q + p )  2 + m  2) J ( q 2 +  M 2 ~ ( q 2 + m  2) q a + m  2 

(4.1) 

Only the first term in the expansion gives rise to an m 2 dependence, and can be 
evaluated easily. Unfortunately at the two-loop level this procedure fails, because the 
p integral becomes more divergent. In the case at hand the p integral is very 
convergent, and we can permit ourselves one step, thus writing: 

1 1 p2 + 2qp (4.2) 
(q+p)2+m2 q2+m2 (q2+m2)((q+p)2+mZ) 

The first term is easily evaluated; since there is no more overlap in the p and q 
integrations one reproduces the one-loop result times a p integral. This will cancel 
precisely against the counterterm. The second term gives rise to an integral of the 
form: 

f d4pd4q 
ypyp(2p - q ) ( 2 p -  q)( p2 + 2qp) 

( p 2 + m ~ ) 2 ( p Z + M  2)2(q2+M2)(q2+mz)((q+p)2+m2 ) 

Counting degrees of divergence we see a logarithmic divergence in the q integral, a 
logarithmic divergent p integral, and the overall integral is also logarithmically 
divergent. This implies no dependence proportional to rn 2 for large m. The treatment 
holds equally well for fermion self-energy diagrams such as shown in fig. 4. The final 
integrals are linearly divergent, but that makes no difference to the argument. 

This argument shows that the inclusion of the finite terms proportional to m 2 in 
the lagrangian liberates us from the necessity to evaluate two-loop diagrams with 
fermion external lines. Important  in this respect is the absence of diagrams with the 
Z coupled directly to the fermions. The small mass fcrmions known at low energy, to 

Fig. 4. 
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be used in our definition of the p-parameter, couple sufficiently weakly to allow 
restricting ourselves such diagrams. Also, one may learn from the above that 
inclusion of counterterms does not necessarily lead to vanishing m 2 dependence of 
self-energy diagrams plus counterterms. If those self-energy diagrams plus counter- 
terms occur as part of a sufficiently divergent integral then new rn z dependencies 
may arise. This, in fact, is what happens in 2-loop self-energy diagrams. 

5. Radiative corrections 

To fit the lagrangian parameters to experimental quantities and to calculate the 
0-parameter up to order gain2 one needs to calculate two-loop corrections to 
Coulomb scattering, e and e -  scattering and to /3-decay. Two-loop irreducible 
corrections to these processes fall in different classes, shown in fig. 5. The unspeci- 
fied blobs contain irreducible two-loop diagrams. All outgoing lines are fermion 
lines. With our choice of the lagrangian we need to consider only W and A 
self-energy diagrams as occurring in fig. 5a. The other diagrams do not give rise to 
behaviour proportional to m 2 or higher. Most of this is obvious, or has been 
discussed in sect. 4. Furthermore there are products of one-loop a n d / o r  counterterm 
corrections. From these we must carefully disentangle the contribution of the 
quadratic counterterms because they do not cancel completely against diagrams 
containing the product of two single loops. 

The essential part of the calculation is the evaluation of the two-loop vector boson 
diagrams, to be treated in the next section, and the evaluation of one-loop graphs 
with counterterm insertions, to be treated in sect. 7. 

6. Vector boson self-energy' diagrams 

We need the vector-boson self-energy diagrams in an expansion around k 2= 0, 
where k is the momentum of the external vector boson. For IV" W~- and W~, °IV,,, ° we 
only need the constant term. but for A~,W~ ° and A~A~ we also nccd the k28,, and 
k,k~ terms. No diagrams with internal fermion lines need be considered. The only 

d b c 

Fig. 5. 
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W 

x I 
\x / 

Fig. 6. 
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d iagram for which this is not obvious is of the form shown in fig. 6. While the 
fermion self-energy diagram is quadrat ical ly divergent,  the other integrals are not 
and. at most,  logari thmic behavior  with respect to m is possible. Also diagrams with 
internal ghost lines behave at most as log m 2. 

There  are approx imate ly  300 irreducible diagrams contr ibut ing to order eq4m 2 to 
these self-energies. The relevant topologies are shown in fig. 7. The internal lines 
may be W, A. ~ or Z lines. Fur thermore  there are reducible graphs and graphs 
containing counter terms.  The evaluation of the d iagrams proceeds as follows. First 
the d iagrams are reduced to scalar integrals. Only a limited set of  integrals occurs. 
The  resulting expressions are added together and finally the expressions for the 
scalar integrals given in appendix  A are substituted. 

To  show how the procedure works we present explicitly two examples.  
(ii) A d iagram contr ibut ing to the W ' W  mass. see fig. 8. The corresponding 

expression is 

1 ,  f d,,pd,,q p~,p 1 m 4 I 
( 2 ~ . ) - i v  4 M 2 ( p e + m , ) - ( p 2 + M 2 ) ( ( p + q ) - + M 2 ) ( q 2 + M : , )  

Thc answer is of the form A6,, and we obtain A by mult iplying with 8,,,/n. 
Substi tut ing next p2 _._, ( p2 + M 2) _ M 2 gives 

| m 4 C v  

(2,n.)4i 4 M  2 n [ (2m]MIM)-  M2(2mMIMIM)]" 

The notat ion and further evaluation is given in appendix  A. 

Fig. 7. 
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/ ~ . ~  ~ 

W + ~ ~ ~ W- 
<. .) 

Fig ~;. 

(ii) A p h o t o n - p h o t o n  se l f -energy  d i a g r a m ,  see fig. 9. T h e  c o r r e s p o n d i n g  expres -  

s ion is 

"~ 4 

s "m 1 . f d "p d"q 
4 M  2 ( 2 ~ r / i  

( 2 p  + k ) . ( 2 q  + k ),, 

((  p + k )2 M 2 M2 M 2 _ + ) (p2+ )({q+k)2+ )(q2+M2)((p q)-+rn 2) 

In this  case  we use a t r ick:  we i n t r o d u c e  F e y n m a n  p a r a m e t e r s  x , . v  for  the 

p r o p a g a t o r s  wi th  p + k,  p r espec t ive ly  q + k,  q. T h e n  we shif t  the i n t eg ra t i on  

p a r a m e t e r s  

p ---, p - k x ,  q--* q -  k x .  

T h e  in t eg rand  b e c o m e s  

[ 2 p  + k( l  - 2 x ) ] u [ 2 q +  k ( l  - 2 x ) ] , ,  

[ p 2 + M 2 + k 2 x ( l _ x ) ] Z [ ( q + k ( y _ x ) ) 2 + k 2 y ( l _ y ) + M 2 ] [ ( p _ q ) ; + m 2 ]  " 

/-'~ , "'%, 
k / i , k 

I \ 

I • 

\~'..q + k I I ,l,f p+k 

Fig. 9. 
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Nex! we expand in k, keep the quadratic terms and do the x, ), integration. This 
gives 

{ 2 2(k .q)2 
1 S 2 m  4 4puq ,"  - ~ k  + ]l//2 "1"42) 4 

(2~.)4i aM 2 , (p2 + M2)3(q2 + M2)2 ( p 2 +  )2(q2+ 

'k 2 
( p2 + M 2  )2(q2  + ,~//2 ) 3 

}kuk~ ] l 
( p 2 +  , ~ / / 2 ) 2 ( q 2 +  ,$,/2) 2 ( ( P - - q ) 2 + m 2 )  

Next we use 

( G ¢ , .  + a,,o¢,. ÷ 8 . .¢ , , )  f d"pd"q F( p, q)&q~q,ql3 = f d"pd"q F( p, q)( p. q)q n 2 + 2n 

Subsequently one expresses everything in terms of p2, q2 and r 2= ( p - q ) 2 .  One 
2 " "~ 2 q4 obtains terms in the numerator of the form r q-, p-q . etc. These are worked out 

through substitutions 

r 2 - - . ( r 2 + m 2 ) - m  2, p e - - . ( p 2 + M 2 ) - M 2 "  q2- - - , (q2+M2)-M2.  

Finally keeping only terms behaving like m 2 one obtains the expression: 

1 s2m4 k 2~,~,, [ 1 { (3MI2M) _m2(3Ml2Mlm) 
(2~)~,  g 2 t T , , - ~  

+ m 

- (3MIMIm ) + 2M2(3MI2MIm)} 

M 2 
n 2 + 2 n  { ( 4 M I 2 M ) - m 2 ( 4 M [ 2 M I m ) - ( 3 M I 2 M I m )  

- (4M[MIm) + 2Me(4MI2MIm)}] 
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+ - -  (2rr) a i l  s2rn'*M2 k~,k,,[ n 2-1+ 2n { (3MI2M)-m2(3MI2MIm) - (2MI2MIm)  

- (3mlMIm) + 2M2(3MI2MIm)} 

+ - -  
M 2 

n 2 + 2n 
{ ( 4 M I 2 M ) -  m2(4ML2 M[m ) - ( 3MI2MIm ) 

- (4MJMlrn) + 2M2(4MI2MJm)} 

+ ~(2MI2M[rn)]. 

A few remarks are in order. We did not include diagrams containing tadpoles. The 
inclusion of  the complete tadpole counterterm cancels all one-loop tadpole contribu- 

tions and the two-loop tadpole diagrams couple to W ' W-- and W ° W  ° with relative 
strength c 2, and therefore do not contribute to the p-parameter.  Fur thermore  one 
easily sees that the topology (I) does not contribute to the W masses, while 
topologies C, D, H and I do not contribute to the AA and AW wave-function 
expressions (terms proport ional  to k 2 and k~,k~). 

7. Reducible and counterterm contributions 

These contain products  of one-loop contributions. Since the only place where m 2 

corrections appear  in one loop, relevant for four-fermion scattering, is in the W 

self-energy, one must consider one-loop insertions. However we have chosen the 
counterterms in such a way that such terms are cancelled. As an example consider 

fig. 10. 
This also demonstrates  the need to include terms proport ional  to e = n - 4 in the 

counterterms. If this were not the case the pole term in the vertex multiplied with the 

Fig. 10. 

= 0 
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- 0 - 0 -  x O -  - 0  x × × 

Fig. 11. 

em 2 term of the self-energy diagram would give an m 2 contribution in the amplitude. 
A peculiar fact is the need to include quadratic counterterms. The relevant rn 2 
dependent quadratic counterterms in the lagrangian are: 

4M2SA6,fA~,WuO+ , + {( 1 ,3 ) , } - -  M-W/,  W u - 8 1 t -  ~ 8 1 t + ~ 8 ,  A - - a f t  

55 43 / + - -  W~,°W) 2 - _ 8 ' t -  v S l f + 8 c 2 8 , r +  i28, A - 8 2 , / .  (7.1) 

They do not cancel against products of one-loop diagrams and must be explicitly 
included. All other one-loop diagrams and counterterms cancel, like for instance the 
set shown in fig. 11. To show the situation with respect to the quadratic counter- 
terms consider the W-A amplitude. Including quadratic counterterms we have the 
set of diagrams shown in fig. 12. Diagrams a and c, b and e cancel; also d and g and 
f and g, and thus i survives. We may therefore ignore diagrams a-h,  but must 
include i explicitly in our calculations. We emphasize that the above obtains by a 
replacement operation in the lagrangian; if we did not include diagram i we would 
not have the same physics as with the original (bare) lagrangian. 

Concerning diagrams (see for example fig. 13) with counterterm insertions we can 
be brief. The only noteworthy fact is that there are counterterms not corresponding 
to vertices in the bare lagrangian. The replacements W--,(1 + 8 ) W + S A  and 
similarly for A w generate such vertices. Specifically one has Ae?°Z, A W ° Z ,  Ae/~¢ ° W °, 

et W ° Z Z  and Y ° Y A Z  terms, apart from various two-point counter vertices. 

W 

) 
,,WA 

W 1 
b 

~A 

[WA 

) 

e 

WA 

WA 

AA 

Fig. 12. 
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-C> 
Fig. 13. 

8.  R e s u l t s  

A d d i n g  all con t r ibu t ions  (except  two- loop  tadpoles,  as noted above)  we find the 

fol lowing ampl i tudes  

- 1 . s 2 m  2 1 

a.a,,= T - i - , T  t k , ,& - k ~,L,) - I ~ (  ,U , .  - k ~a,., ). (8.1) 

- 1 . m____2_ 2 [ s 
A.  w,,? 

256 t M 2 ~ c 

(8.2) 

l.- m4[ 3 1 2  ] 
W/ W~ = a, '6~.~-~ l~gTe + T ~ l ° g m 2 -  " ~r 

[ 43 log m 2 301 43 2 2  ( { } ]  1 ') m2 + ~ i 6 . . m  2 4____~3 + log 
16e 2 32 e 192e + l > l ° g  m - . 32c2 ' 

61 2 L} ~7 + .,6:~rr + -i-~rr(3 - .>.,.C- - -  ~' ] =-La.,,, (8.3) 3 + i~ 

32c 2 

W u ° W ° -  i8"" m 4  [ 3 ~ 1 t 2 , " ,, ~ ] 
" 4{.2 M 2  ~ + TT~ og m 2 -  %x rr + :5+rr~/3 -- ,,~{'_"-- .,;24 

i 8  +[ 41__~e 2 43 l o g m  2 301 + _ _  + + 
4c 2m 32 ~ 192t" + ~z~'~l°g2n12 

) 43 2 3rr2 ,,, 1 log m 2 + ...¢~rr + - -  
32{.2 128c 2 

9 ~ 3  27 C t6= 45 ] 
+ + > 6 -  - -  j ~ } 8 , , ,  (8.4) 

128c 2 32 c 2 256c 2 " 

with C = .(~ Cl(~rr) where  C l (x )  is the so-called Clausen funct ion,  related to the 



J. ~,an der BiL M. Veltman / Higgs mass  correction 

Fig. 14. 
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Spence function: 

C l ( ] ~ r ) = R e [ l ~ i X { - s p ( 1  - 1 )  + • x = 1 + Sp 1 - x 

(8.5) 

Notice that both the A~A, and A~,W,, terms are transversal. For the A~A~ term this 
follows from the Ward identity for the photon propagator. For the AuWJ ~ term this 
follows from the OvA Ward identity, which effectively tells us that the neutrino 
charge is zero. Combined with the fact that in our renormalization scheme there is 
no g2m2 contribution in the vertex correction, the result follows. As an extra check 
we also calculated the topologies A to I and the diagrams containing tadpoles as 
shown in fig. 14 for the AA propagator. The sum has to be transversal because of the 
photon-photon Ward identity. This indeed turned out to be the case. We now turn 
to the evaluation of the correction to the 0-parameter. 

There are four free parameters g, s, M and m. They can be fixed by comparison 
with four experimental quantities for which we take the electric charge e, the 
Fermi-coupling constant G from #-decay, the neutral cross-section ratio o (~ ,e ) /o (ve)  
and the physical Higgs mass. Our choice of counterterms is such that 2 = mex p rtl 2. The 

electric charge is defined through Coulomb scattering. The following diagrams 
contribute (see fig. 15). This leads to: 

/AA '/ ' egxp --_ e 2 = g ~ S  ~ eexp 
• ,~'expSexp - - ,1 + (2¢r)  4i , I '  4 ~  -- ot -- , ~  

with fA a defined above. For g-decay one has the diagram shown in fig. 16. This leads 
to the relation 

G F = ~ M -  ~ 1 +  
, (2"n")4iM 2 ., 

+ ~21oop 
Fig. 15. 
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~ / 3 - - -  + 

'0 e 

Fig. 16. 

For v~,e scattering we have the diagrams of fig. 17. This leads to the amplitude 

m ~ ol , 

16M 2 1 + M2(2~r)4 i ( ~,y (1 + y s ) u ~ ) ( O T " ( ( + y s ) e )  

with 

= 1 - 4s 2 + 4SefAW'---------'-2 
(2vr)4i 

The ratio of the total cross sections for v~,e and ~e can be calculated from this 
expression. It is 

O" ';': ~ 2 - - ~ + 1  

o "~ ~ 2 + { + 1  

Thus: 

S&p = ~ ( 1 - ~ ) l . p  = s 
(2,rr)4i 

Comparing the expressions for/.t-decay and ue scattering we find that the p-parame- 
ter is given by 

1 +  
4 "~ g m- ~ (  -21  

c %  fc - 1 +  ~--~M2 tg '~ t  16384 
(2 r )a iM 2 (2~r)4iM: 

- -  - ] ~ C  + ~,~2~'¢3 + ~ ' ~ - /  

4m2 4 ) ,  
= 1 + ~4--~tg20(5.854-10 

@ 

~ loop 

Fig. 17. 
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where we used for the constant C, given before, the numerical value 0.586. For s we 
used the value s 2 = 0.23. Together with the one-loop results we have the following 
for large m 2. 

p 1 3a In m2 a2 
= - -  + 9.49- 10 4 m2 m_~: 

16~rc2 M 2 ~;2(,2 M 2 - 1 -5 .66 .10-4 log  M2 

+ 2 . 8 5 . 1 0  7 m2 
M 2 "  

In this expression one can take the various parameters to be the experimental ones. 
This is due to the renormalization scheme we adopted. If we had not explicitly 
subtracted the Higgs self-energy terms one would have m~p = m 2 + O(g~m4/M"-).  

Substitution of this expression in the one-loop result would have given an extra 
g4m2 type contribution. Our subtraction scheme evades this problem. 

To get some idea of the order of magnitude we have listed in table 1 some 
numerical values. There is in fact quite a strong cancellation among the various 

terms in the second-order expression for 30 (individual terms are about 10 times 
larger than the total), The Higgs mass must be very large before the second-order 

correction is as large as the first order, in fact this happens for m - 137 M -- 10 TeV. 
At that point there is a complete cancellation, and no correction results, but this is 

quite meaningless since by then the next order is expected to dominate. If wc 
extrapolate our result for the magnitude of the two-loop corrections to a guess for 
the three-loop corrections then we expect the three-loop correction g 6 m 4 / M  4 to be 

approximately the same as the two-loop rcsults if m / M  > 45. i.e. m - 3.3 TeV. Then 
perturbation theory breaks down. It is very unclear what happens if the Higgs mass 

is in this area. 
We finally comment on the result as compared to the two-loop quadratic di- 

vergencies of the non-linear o-model. These we have computed also, and they are 

unrelated to the above results. Partly the correspondence is lost because one cannot 

exchange loop integrations and the large-m limit. But more specifically, in the 

TABI.I: 1 
C o r r e c t i o n s  to ~, as a f u n c t i o n  o f  m/ : '~ !  

m/M 3,,, ~,, 3,,, + a 

5 - - 0 . 1 R . I O  -' 0.71 -10  s 0 .1~" I0  ~ 

10 0 . 2 6 . 1 0  2 0 . 2 9 - 1 0  ~ - 0 . 2 6 " 1 0  

20 - 0 . 3 4 - 1 0  2 O . 1 1 - l O  ~ - 0 . 3 3 - 1 0  ' 

50 -0 . , :1 .4 .10 " 0.71 . 1 0  ~ 0 . 3 7 - 1 0  2 

100 - 0 . 5 2 .  10 -" 0 .29 -  10 -~ 0 .24-  10 2 

14(I 0 . 5 6 . 1 0  2 0 . 5 6 . 1 0  -' 0 
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Z 

W + i ~ Z ~\ W- 

Fig. 18. 

non-linear o-model all knowledge of the Higgs self-interactions is lost. For example, 
the diagram of fig. 18 has no correspondence to anything in the non-linear o-model. 
Such diagrams give, among other things, rise to the constant C, containing the 
Clausen function. It is trivial to see that no such Clausen functions arise in the 
non-linear o-model. 

One might well ask if our results could be further influenced by adding other 
Higgs serf-interactions. One could imagine particles that may or may not be heavy, 
and couple to the Higgs but not to the other particles. It is not easy to see what this 
could do. Essentially only one guess can be made. If such particles could be very 
heavy one could apply the Appelquist-Carrazone-Symanzik decoupling theorem to 
argue that their influence can be neglected. This is certainly true for finite m. 
However, in the limit of large m one might again run into complications concerning 
the exchange of limits. The subject clearly needs further investigation. 

This work was supported in part by the Department of Energy, contract no. DoE 
DE-AC02-76ER01112. 

Appendix A 

FORMULAE FOR SCALAR INTEGRALS 

We define 

( M1 l ,  MI 2 " "  MI,,, I M21 . . . .  M2 n2 [ M31 . . . .  M3 n~ ) 

"~ "-' "~ 1 1 1 = j d . p j d . q l  f r-~ ]---[ I-[ p2 
, = , , = l k - ,  ( + M ~ )  (q2+M]j)( (p+q)2+M2k ) 

(A.1) 

The basic formula one needs is (M, M IMIIM 2). All other expressions can be found 
from this one through the use of partial fractions, differentiation and partial p. For 
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instance by partial p (see ref. [10]): 

1 { Mo ( Mo Mo [M 1 I M2 ) (M°IM'IIM2) = 3 -  n 

+M2(M1MIIMolM2)+M~(M2M21MolM,)} .  (A.2) 

Another  useful relation is 

- ( n  - 3)( M~M~IM2]M3)- 2M2( M~MI[M2M2[M3)-(  MIIM2IM3M3) 

+( M1M ,)( M.~M3)+( M ? -  M 2 -  M 2 • . _ • 3)(M1M, IM2 M~M3)=O. (A.3) 

where 

1 ,)2 ' (A.4) (MiMl)=fd,,p (p2 + MI- 

By partial fractions 

( Mo. M 1 I Mzl M3 ) 
1 

M,~ - M? (( Mt I M"IM3 ) - ( M° I M2 M~ )).  

( M, MIM 1 , M 1 [M2)= - - -  
0 

OM( ( M" MIM~IM2). 

As a shorthand we sometimes write (M. MIMIm) =  (2MIMIm)  where this use is 
unambiguous.  Using Feynman parameters one finds 

( M, MIMI [M2)= - -  
- ' n ' 4 ( ~ m 2 )  '' 4 [ ' ( 2 -  !~'1) 

r ( 3  - ~, ,, ) 

fo I fo I n/2 × dx  d ) ' ( x ( 1 - x ) )  ' 2 y ( 1 - ) ' ) -  " / :  

× tt 2 
l ' ( 5 - n ) ( y + t t 2 (  l - y ) ) 5  ,, 

1 
+ ~nl'(4 - n) 

.V+ tt2(l - y )  

with 

/a 2 . ~  + h ( 1  - x) M? 
x(1 - x )  M 2 

b = 
M? 
M 2 '  
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Define n = 4 + e. Performing the y integration gives 

(M'MIM~IM2)=Tr4[ - 2 1  ] - - + - ( 1  - 2YE-- 21og(~rM2)) 
E 2 /? 

+~.4 [ _ ~- - 1'2 ¢r2 + YE -- "I 2E + (1 -- 27v)log(TrM 2 ) 

-log2(~rM 2) -f(a, b)] + O ( e )  

where we used 

l 2 r(z) = ~ - ~'E + (,'2 ~2  + _~,E) z + O ( z 2 ) ,  

Yr. is the Euler constant  YE = 0.577215665 and 

f(a'b)=~'dx(sp(1-tt2) P'-Zl°~g-~2) " I  - ~2 

Sp(x )  is the Spence function or di- logarithm defined by 

S p ( x ) = f x  I n ( l - y )  d y .  
J0 Y 

Performing the x integration we find 

f(a,b)= ½ log2a-  Sp( a -__....~b ) a  

a + b - 1  
+ 2 ( -  

(z --, 0 ) .  

a + b - I  
2¢- 

' b -a  , a -b  

¢ - = ( 1 - 2 ( a + b ) + ( a - b ) 2 )  1/2, 

xl=½(l+b-a+vf-),  x 2 = { ( l + b - a - ¢ -  ). 

s (1 
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Through explicit symmetrization in a and b and the use of  the relations: 

Sp(1 - x ) =  - S p ( x ) - l o g x l o g ( 1  - x )  + ~r  "~, 

Sp x - S p ( x ) - , l o g - ( - x ) - '  " 

we can simplify this formula to: 

f ( a ,  b) = - ½1ogalogb 

a + b - 1 + ~ log2)?  
¢ XI 

with 

1 f ( 2 ) =  ~ 1 

n = l ~'7 2 

Yl Yl 

Xl  _ I 10  2 X2 ] + ] i o g 2 - y  4 g ~ - + ~ ' ( 2 )  . l Yt Y2 

In the actual calculation we need the expansion of these equations for the large 
m = Higgs mass. As it happens these integrals occur with coefficients containing m 2. 
and in order to have an answer correct to order m:  we need the following 

expansions: 

(m, m l M  l IM2), to order 1 / m  6 , 

( M  l, M2lMl[m ), t oo rde r  1 /m  a, 

(rn, m]mpM l), to order 1 / m  2, 

(M, MJmpm), to order 1. 

In addition we need (rn, m lmlm ). In the following we will give these expansions 
going two orders further than needed for the purposes of this paper. Also we ignore 
the constant  3' and the factor vr 2 appearing in the logarithms, which effectively 
means that one must read ~ + log(~'M 2) for log M-'. In the final result we will have 
only logarithms of  ratios of  masses, and this replacement becomes irrelevant. 
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(i) Us ing  the pa rame te r s  a = M ~ / m  2 a n d  b = M ~ / m  2 we have 

2 1 1 ' 
( m m l M ,  I M , ) = ~ r  4 - ~ + - _ 2 1 o g m 2 + l o g m  2 - 1 o g 2 m  2 -  

4, / / "~  
- "  E £ 

- ~ +  a + b + ¼a 2 + ¼b 2 + ab + { a  3 + 3a2b  + 3ab  2 + ~b 3 

+ ~ a  4 + ½t-a3b + 44'~a262 + t4ab3 + -l~b 4 

+ ~ a  5 + ~4a4b + 35a3b 2 + 35a2b  3 + 2~ab 4 + ~Tb 5 

- ( log a l o g  b + -~'rr2)( ab + 2 a b  2 + 2 a 2 b  + 3ab 3 + 9a2h 2 + 3a3b 

+ 4 a b  4 + 24a2b  3 + 24a3b  2 + 4a4b)  

- l o g ( a ) ( a  + ~a 2 + ab + ~a 3 + 4 a 2 b  + ab 2 + ~a 4 + 8a3h 

~ 4 ~  + ~ x a 2 b 2  + a b3 + } aS + ~3 a o + 4 0 a 3 b  2 + 2 0 a z b  3 + a b  4) 

- l o g ( b ) ( b  + ~b 2 + ab + }b 3 + 4 a b  2 + a2b  + ~b 4 + Bah 3 

+ : - 2 1 a 2 b 2 + a 3 b +  ~ b S + - 3 a o  + 4 0 a 2 b 3 + 2 0 a 3 b e + a 4 b  . 

(ii) U s i n g  the pa rame te r s  a = M ( / m  z and  b = M 2 / m 2 :  

( M 1 M I I M 2 I m )  rr4[ 2 
£ 2 

1 2 log M? + log M? - log-'M? -  log:. 

-- ~ -- a - b - ~a 2 - 3ab - ~b 2 - tga~ - l} a21?~ - 9at f l  - "~h ~ 

_ t ! g a a  _ ~ a 3 b  _ l ~ a 2 h 2  _ 2 0 a b  3 _ 4ot_,,4 
4 t*  14  A t z  

1 _ 2 [  i _ b 2 + sTJ t 4 ~ b + 2ab  + + 6ab  2 + 3a2b  

+ b  3 + 12ab  3 + l g a 2 b  2 + 4a3b  + b 4) 
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l a 2  l a3 + l o g ( a ) ( a +  3ab+ 2 +.  + 7a2b+ 5ab 2 

231 

+¼a'+gab+~S ~ ~Xa2b  +Tab 3) 

+ l o g ( b ) ( b  + ab + ~b 2 + a2b + 8ab 2 

+ > b + a3b + + 23ab ~ + 

+ Iog (a ) log (b ) (b  + 2ab + b 2 + 3a2b + 6ab 2 + b ~ 

+ 4 a 3 b  + lga2b 2 + 12ab 3 + b4)} • 

(iii) With b = M 2 / m 2 :  

= ~ [ _  2 + _ _ 
(mmlmlM ) 

[ ~2 
1 2 log m 2 + log m 2 - logZm z - ,L:~r 2 

] 
, 2 47 h-~ } b -  - ~|. - ~ + b + % h  + l s ~ -  + l o g b ( -  l~b 2 ~,b ~ 

l J  

(iv) The expression for ( M M I m l m )  may be obtained as follows. Use eq. (A.3) for 

the case M l = M, M 2 = M 3 = m. One needs ( M M l m m l m ) =  ( M M r m l m m ) ,  given 
above. The expressions for M M  and mm are obtained by differentiating the equation 
for F ( m )  given below. 

(v) Finally ( m l m l m m )  is given by: 

2 
( m l m l m m  ) = ~ "  - - ~  + - - 1 2 log m 2 4- log m 2 l o g 2 m  2 t l , '~ )] 

, - - 2-- 12rr - + ~.~ CI( l~rr . 

with 

C I ( x ) =  ~ s innx  
t /" t t=  I 

One computes  V."{-CI({ ~r)= 1.171953619344, with quite unnecessary precision. 
Also appearing are expressions involving the product  of two one-loop integrals. 

r _ _ r - - C _ " l  1 "" 1 
o 



232 J. t,an der B G M. Vehman / Itiggs mass correction 

To evaluate these one needs 

dap 2i,a- 2m 2 
F(m)= f p: + 'n 2 ~ + ilr2m2[y - 1 + log(Trm2)] 

/r2 _ 2 7 + 1  +eilr2m 2 - ~  + t72 l 

~(7 - 1)log(rrm 2) + 4LIogZ('n'm2)] + O(e2),  + 

where as usual e = n - 4. 

Appendix B 

In this appendix we will discuss some of the technical details related to the use of 
the computer program Schoonschip. 

The major problem here is the proliferation of particles and diagrams. Not 

counting the fermions there are 16 different particles, and 4 different masses. Of the 

order of 300 essentially different two-loop self-energy diagrams contribute up to 
order m 2 and must be calculated (which is just about possible to do by hand.) That 

is, up to writing things in terms of the expressions (mlMlMo)  etc. defined in 
appendix A. The further work, substituting the expansions in terms of m z, makes 

this problem really too big to do by hand, if we want any certainty that no errors 
come in. 

Also the evaluation of diagrams with counterterm insertions is quite cumbersome. 
The evaluation of one-loop three- and four-point diagrams is very cumbersome, 

involving the evaluation of thousands of diagrams, but we need only the infinite 
parts of these diagrams, and that can also be worked out from the self-energy 

diagrams and a few vertex diagrams using gauge invariance. We have nevertheless 

done that work, mainly as a check on our computer programs, including the 

complete list of vertices of the standard model. This also tests the method used with 
respect to combinatorial factors used if identical particles occur. The latter seemed 
to present a formidable complication, till we discovered a general rule that we found 
out later to be contained also in an old paper by Wu [8]. The way it works is very 
well suited to computer evaluation. 

The first problem was to invent a procedure whereby all possible diagrams would 
be generated, and where the program would all by itself pick out the correct vertices 
and work out the diagrams. We will illustrate the method on a simple case. 

As a first step the various relevant topologies are written down. Thus for one-loop 

self-energy diagrams there are two topologies, see fig. 19. The particles are numbered 

© 

Fig. 19. 
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from 1 to 16, and with each particle we associate a character (for example A for the 

photon,  U for the W, V for W and so on). There are then 16 different propagators  
(AA, UV, VU etc.). We now write down the general form of some topology with 
unspecified names for the particles and simply let the computer  run through all 
possible choices for the propagators.  That would give rise to 162 = 256 diagrams. 
Many of these will be zero, because the corresponding vertices do not exist. The 

computer  program looks up the vertex table in all these cases, and if the vertices 

exist the diagram is kept, the expressions for the vertices arc substituted and the 
whole is worked out further. 

Now, if we do this we will do double counting, because a diagram with for 

example an AA and an UV propagator  will occur twice (see fig. 20). We therefore 

must divide the total result by two. This leads to the fact that diagrams that contain 
two identical particles and occur only once (sec for example fig. 21) get a factor !, 

which is the correct rule for the combinatorial  factor in this case. This procedure is 

perfectly general, and we simply must for any topology divide by the amount  of 
double count ing and then the combinatorial  factors are automatically correct. 

In order to allow the computer  program to go through this in an efficient way it 

was necessary to build in some special small capabilities into Schoonschip. For 
instance, a list of  charges of the various particles can be given, and the program 
would first check conservation of charge in the various vertices before searching the 
list of vertices. The same can be done with respect to ghost lines. In the end a 
situation resulted whereby the whole two-loop calculation was done in a few 

minutes. The worst case was the collection of  one-loop diagrams with four external 
lines; the number  of diagrams worked out was p robab ly"  of the order of 10000. 
There the evaluation itself was very trivial, because only the infinite part was needed. 
Again, we could have done without this. but it provided for a very good check of the 
system. 

~' We never asked, and the program never said. It took about 3 minute,',. Tile diagrams arc generated at 
a rate of about 10,000/minute. 



234 J. can der Bq. M. Veltman / lligg~ mass correctton 

References 

[1] M. Vcltman, Acta Phys. Pol. B8 (1977) 475; 
B. Lee, ('. Quigg and R. Thacker, Phys. Rev. Lett. 38 (1977) 883 

[2] I). Ross and M. Vehman. Nucl. Phys. B95 (1975) 135: 
M. Veltman, Nucl. Phys. 13123 (1977) 89: 
M. Chanowitz, M. Furman and I. liinchliffe, Ph~,'s. l,ett. 78B (1978) 285 

[3] M. Velunan, Nucl. Phys. B21 (1970) 288 
[4] T. Appelquisl, C. Bernard. Phys. Rev. I)22 (1980) 2(X): 

T. Appelquist. C. Bernard, Phys. Rev. 1")23 (1981) 425: 
A l.onghitano, Ph',s. Rev. D22 (1980) 1166; 
A. Longhitano, Nucl. Ph'¢s. B188 (1981) 118: 
R. Akhour?,.', YP.  Yao, Ph','s. Rev. D25 (1982) 3361 

[5] (i. Pa:,sarino, M. Vehman, Nucl. Ph','s. B160 (1979) 151 
[6] (i. "t t looft and M. Veltman. 1972 Prec. Marseille Conf.. Ed  Ch. Korthals-Altes: Nucl. l'h,,s. B50 

(1972) 318 
[71 (;. "t ltooft, M. Veltman, Nucl. l'h','s. 1344 (1972) 189 
[Sl T T. Wu. Ph,,,s. Rev. 125 (1962) 1436 


