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ABSTRACT 

Structural reliability depends on uncertainties in resistance and loads. In 
many practical cases the resistance dominates and a reduction of  
uncertainty about resistance is an effective way of  increasing safety. It can 
be accomplished by proof loading. 

A truncated distribution is considered and reliability indices are 
calculated for various proof load levels. The structural reliability is 
sensitive to proof loading for larger coefficients of  variation of  resistance. 

A Bayesian approach is applied to develop a posterior distribution for 
resistance, after proof loading. Reliability indices are calculated for 
various ratios of  the coefficients of  variation of  load and resistance. 
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Non-dimensional proof load 
Probability of failure 
Load effect 
Reduced variable, load effect 
Proof load 
Resistance 
Reduced variable, resistance 
Variable representing objective uncertainties in R 
Variable representing subjective uncertainties in R 
Realization of S 
Variable representing result of proof loading 
Survival of the ith consecutive proof loading 
Failure at the ith consecutive proof loading 
Reliability index 
Central safety factor 
Standard normal distribution function 
Standard deviation 

Subscripts 
Q Load effect 
q Reduced variable, load effect 
R Resistance 
r Reduced variable, resistance 

Superscripts 
Mean value 

* Truncated distribution or its parameter 

1. INTRODUCTION 

Structural safety is a function of the relation between the resistance, R, 
and load effect, Q. The structure performs its function as long as R is not 
less than Q, and probability of failure, PF, is: 

PF = P(R < Q) (1) 

If the cumulative distribution function (CDF) for R is FR, and for Q it is 
FQ, then: 

PF = FR(x)dFQ(x)dx (2) 
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or 

PF = 1 -- F Q ( x ) d F a ( x ) d x  (3) 
oc 

In practice, a direct use of eqns. (2) and (3) is rather limited because of 
numerical difficultiesL Instead, safety can be measured in terms of a 
reliability index, fl, as defined by Cornell 2 and modified by Hasofer and 
Lind. 5 The relationship between fl and PF is: 

PF = * (  -- fl) (4) 

where • is the standard normal CDF. 
If both R and Q are independent and normal random variables, then: 

= ( R  - + ( s )  

where/~ and (r R are the mean and standard deviation, respectively, of R; 
and Q and (re are the mean and standard deviation, respectively, of Q. 

If both R and Q are independent and lognormal random variables, 
then: 

fl = In (R/O_)/(V 2 ÷ V~) 1/2 (6) 

where V R and VQ are coefficients of variation of R and Q, respectively. In 
eqn. (6) it is assumed that In R -- In/~, ~ -- In Q, In (1 + Va) = VR and 
In (1 + VQ)-- VQ. 

If R or Q are neither normal nor lognormal, then ~ can be calculated 
using a procedure suggested by Rackwitz and Fiessler. 9 The method is 
based on normal approximations of non-normal distributions at the so- 
called design point. 

In practical cases the structural reliability depends mostly on the lower 
tail of FR and on the upper tail of F e. Better knowledge of these tails may 
allow for an increase in 8. 

Proof loading may provide additional knowledge about resistance. For 
example, a structure which survives a certain load may be considered as 
more reliable than one which has never been exposed to such a load. 
Recently Grigoriu and Lind 4 and Madsen and Lind 6 developed 
probabilistic models for prototype testing of series-produced structures. 
This paper deals with evaluation of the effect of proof loading on 
structural reliability. The distribution of resistance, truncated at the 
proof load level, is considered first. Then Bayesian approach is used to 
develop a posterior distribution. 
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2. R E S I S T A N C E  A N D  L O A D  M O D E L S  

The distributions of  resistance have been established on the basis of  tests, 
engineering experience and judgement.  For  typical structures, the 
coefficients o f  variation are given in Table 1 after Ellingwood et al. 3 The 
values of  Va vary from 8 % for pretensioned concrete beams to over 20 % 
for masonry walls. 

Load, Q, can be considered as a combinat ion of  various components  
(dead load, live load, environmental loads, etc.). Load models were 
presented by Ellingwood et al. 3 and Nowak  and Lind. 7.s Coefficients of  
variation for the total load effect are between 10 and 20 %; they are larger 
in special cases. 

The relationship between nominal load and nominal resistance is 

TABLE I 
Co¢tficients of Variation of Resistance (after Ellingwood et al. 3) 

Material Member Vs 
1 2 3 

Structural steel Tension members I I 
Compact beam, flexure 13 
Beam-column 15 
Plate girder, flexure 12 
Axially loaded column 14 
A325 high-strength holt, tension 9 
Braced beams with stiffened flanges 17 
Columns with stiffened flanges 20 
Flexure grade 40 14 
Flexure, grade 60 1 I 
Flexure, pretensioned beams 8 
Flexure, post-tensioned beams 9.5 
Short column, compression failure 16 
Short column, tension failure 12 
Slender column, compression failure 17 
Slender column, tension failure 12 
Shear, no stirrups 21 
Shear, minimum stirrups 19 
Concrete, inspected 19 
Concrete. uninspected 21 
Brick, inspected 18 
Brick, uninspected 21 

Cold-formed steel 

Reinforced concrete 

Masonry walls 
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established by the code. For a given load, Q, the required resistance is 
specified. The central safety factor, 0, can be calculated knowing the 
mean-to-nominal ratios for R and Q. For typical cases, 0 is about 3.0. In 
further analysis, both R and Q are assumed to be lognormally distributed 
and 0 = R/Q = 3-0. 

3. PROOF LOADING 

Loading of a structure can be considered as a test. The result is either 
survival or partial or total failure. The load may be a service load (dead 
load, live load or environmental load) or a specially imposed test load. In 
both cases the proof load level, Qp, can be considered as the lower bound 
on F R, so that FR(x ) = O, for x _< Qp. 

The reliability of structures surviving a proof load, Qp, is considered 
using two models for FR: a truncated distribution and a posterior 
Bayesian distribution. 

3.1 Truncated distribution analysis 

Let fR be the probability density function of resistance prior to proof 
loading. For a structure which has survived the load Qp the density can be 
changed into a truncated function: 

f ~ ( x )  = ~ fR(x)/(1 - FR(Qv)) for x > Qp (7) 
(o for x _< Qp 

Examples offR and f~  are shown in Fig. 1. 
The reliability index for the structure prior to proof loading is given by 

eqn. (6). For a truncated distribution of R, fl is equal to the distance from 
the failure boundary ( R -  Q = 0) to the origin in the space of reduced 
variables. 

Let r and q be the reduced variables, such that: 

r = In (R/f~)/V~ (8a) 

and 

q = In (Q/Q_)/V e (8b) 

Then the failure boundary in terms of r and q is" 

rVR + In/~ - qVQ - In Q = 0 (9) 



Fig. 1. 
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Failure boundaries in reduced space for Ve/V Q = 2.5 and various levels of proof 
loading. 
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Fig. 3. 
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Failure boundaries in reduced space for VR/V o = 1.0 and various levels of proof 
loading. 

The proof  load, Qp, can be expressed, non-dimensionally, as: 

p = In (Qp/R)/VR (10) 

The truncated probability density function (eqn. (7)), becomes: 

f * ( x ) =  exp - 1 - ~ ( p )  for x>p (11) 

t. 0 for x<p 

The reliability index corresponding to J~* is calculated as a general- 
ization of  the Hasofer-Lind 5 definition. A non-linear transformation 
of  r to a new reduced Gaussian variable, r*, is made, so that: 

L j forr>p (12) 

Thus the failure region in the Gaussian probability space is t ransformed 
into: 

• - ' / ~ ( r * ) [ l  - -~(p)]+~(p)}VR+lnk-qVo-- lnO<O (13) 

In two-dimensional space (r, q), the boundary of  that region is plotted for 
the ratios V~/Vo. = 2.4, 1.0 and 0-4 in Figs. 2, 3 and 4, respectively. Four 
values of  non-dimensional proof  load are considered: p = - 1, - 2, - 3 
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Fig. 4. 
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and - 4 .  For comparison, the failure region boundary prior to proof 
loading is also plotted. The reliability index is a norm of the failure region 
given by the above inequality. 

Reliability indices were calculated using a specially developed 
computer program. The value of V R is selected so that prior to proof 
loading the reliability index is fl = 3.10. The results of calculations are 
shown in Figs. 2, 3 and 4. In Fig. 5, fl values are plotted v. non- 
dimensional proof load level p (in the reduced space). As expected, proof 
loading is most effective for cases with larger VR/V Q ratios. For 
VR/Vo. = 0"4, to increase fl by 20 ~ a proof load equal to/~ is required 
(p = 0). But then the chance of survival of the test is reduced to about 
5 0 % .  

3.2 Bayesian approach 

Uncertainties in resistance can be classified as objective or subjective. The 
objective uncertainties are those that are measurable, for example 
dimensions or strength of material. The subjective uncertainties are those 
which pertain to the designer's judgement or intuition. The resistance can 
be considered as a product of two variables: 

R = SR'. (14) 

where R' is a variable representing the objective uncertainty in R and S is a 
corrective factor introduced to count for imperfections in the predicted 
model (subjective uncertainties). In the following analysis the Bayesian 
approach is used to reduce the variation in S by proof loading. 

The probability conditional on experimental results (proof loading) 
can be given by the well-known Bayesian formula: ~ 

P(XIA,)P(A~) 
P(A,IX) = (15) 

[P(XIAj)P(Aj)] 
i=l 

where A; is one of the possible cases or parameter values, A 1 L3"" • t,_) A,, is 
the total space, A; ~ A j  i s~  for any i v~j,P(Ai) is the prior probability of 
Ai, X is experimental or observed data and P(Ai]X) is the posterior 
probability of A~. 

If the parameter A varies continuously, then the sum in eqn. (15) can be 
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Fig. 6. Probability density functions of S: prior Is, and posterior ]~', ]~4~ and ] ~ .  

replaced by an integral. And so for the corrective factor S in eqn. (14) the 
posterior density function becomes: 

P(XlSUs(S) 
./~(s) ~_~ P(XIS) js(s)ds  (16) 

where is(S) is the prior density function of S. 
The structure may be subjected to a series of proof  loads. If 

X l, X 2 . . . . .  X, denotes consecutive test data, then the posterior density 
function, fs,  can be modified as follows: 

P(X lS)Ls(S) 
j~(s) = ~ ~ P(X,  IS)fs(s) ds 

P(XzIS)f~(s) 
/~'(s) ~ ,  P(XzlS)f~(s)ds 

P(X"IS)f~s"-1)(s) (17) 
j~"~(s) = ~ p ( x . l s )  f~s ._ ~)(s) ds 

Xi in eqn. (17) is the result of the ith application in a series of n proof  
loads. Two events are considered: the structure survives the proof  load or 
fails. Let X[ denote survival and Xi' denote failure. Then the conditional 
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Fig. 7. 
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Fig. 8. 
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Fig. 9. 
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Reliability indices v. proof load level, for 10 applications of proof load. 
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Fig. 10. Reliability indices v. number of applications of proof load for V~,/V~ = 1,0. 

probabilities in eqn. (17) can be derived as follows. Probabili ty of  survival 
of  p roof  load, Qv, is: 

P(X~ls) = P(SR '  >_ QplS = s) (18) 

For  S and R' lognormal, eqn. (18) becomes: 

P(X[Is) -- 1 - ~[(In Qp - In (s[C))/VR,)] (19) 

Proof  load level can be expressed as a non-dimensional parameter, p, 
equal to: 

p = ( Q p - / ~ ' ) / 6 t ¢ ,  (20) 
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Then Qp can be calculated from eqn. (20) and it can be replaced in 
eqn. (19). After transformation, eqn. (19) becomes: [ ( s ) / ]  

P(X~'Is) = ¢b In 1 +pVa. VR" (21) 

Similarly, the probability of failure at proof load, Qp, is: 

P ( X [ ' I s , = * [ I n ( 1 7 V ' R ) / V R , ]  (22, 

For the posterior density functions the reliability indices were 
calculated using the Rackwitz and Fiessler procedure. 9 Three ratios of 
V R, to V e were considered: 2.5, 1.0 and 0.4, and three ratios of V R, to Vs: 
4.0, 1.0 and 0.25. 

in Fig. 6 the posterior densities,fs, are plotted for various numbers of 
proof loadings, n. In Figs. 7-9 the reliability indices are plotted v. proof 
load level for various n, VR,, V s and V 0 ratios. In Fig. 10 fl values are 
plotted v. n. 

Structural reliability can be significantly improved by proof loading in 
the cases when Vs is larger than or equal to VR,. The reliability indices are 
less sensitive to the ratio of V R, to V o. 

4. CONCLUSIONS 

In practical cases, the variation of resistance dominates structural 
reliability. The distribution of resistance may be improved by proof 
loading; a structure which survives a certain load can be considered as 
more reliable than one which has never been exposed to load. 

A truncated distribution function was assumed for resistance of a 
structure which survived a proof load. Reliability indices were calculated 
for various ratios of the coefficient of variation of resistance and load. For 
low ratios of VR to VQ the proof loading is ineffective, and regardless of the 
proof load level, as shown in Fig. 5. 

Uncertainty in resistance for objective and subjective reasons is 
considered. Proof loading has been used to reduce subjective un- 
certainties on the basis of a Bayesian approach. Reliability indices have 
been calculated for a series of proof load applications, various ratios of 
coefficients of variation VR,, V s and VQ for various proof load levels. 
Values of fl are more sensitive to the ratio of VR,/Vs, than to VR,/Vo. 
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