A USER'S GUIDE TO FORTRAN PROGRAMS FOR WIGNER AND RACAH COEFFICIENTS OF SU₃ *

Yoshimi AKIYAMA ** and J.P. DRAAYER

Dep. of Physics, The University of Michigan, Ann Arbor, Michigan 48104, USA

Received 16 February 1973

PROGRAM SUMMARY

Title of program: SU3 WIGNER & RACAH COEFFICIENTS

Catalogue number: ACRM

Computer: IBM 360/67; Installation: The University of Michigan, Ann Arbor, Michigan, USA

Operating system: MTS/360

Programming language used: FORTRAN IV

High speed storage required: $SU_3 \supset SU_2 \times U_1$ Wigner coefficients, 13 008 words

SU₃ Racah coefficients, 14 654 words;

 $SU_3 \supset R_3$ Wigner coefficients, 14202 words

 SU_3 Racah coefficients, 14654 words. $SU_3 \supset R_3$ Wigner coefficients, 14202 words

No. of bits in a word: 32

Is the program overlaid? No.

No. of magnetic tapes required: None.

Other peripherals used: Card reader, line printer

No. of cards in combined program and test deck: 2046

Keywords: SU₃, Wigner coefficient, Racah coefficient, Clebsch-Gordan coefficient, Recoupling coefficient, Isoscalar factor, U-function, Unitary coupling, Unitary recoupling, K-band projection, Hypercharge.

Nature of physical problem

 $SU_3 \supset SU_2 \times U_1$ and $SU_3 \supset R_3$ Wigner coefficients as well as SU_3 Racah coefficients are calculated for arbitrary couplings and multiplicity.

Method of solution

A build-up process based on the Biedenharn-Louck prescription for specifying the outer multiplicity is employed to generate $SU_3 \supset SU_2 \times U_1$ Wigner coefficients [1]. SU_3 Racah coefficients follow through standard recoupling formulae [2]. $SU_3 \supset R_3$ Wigner coefficients are obtained from the corresponding $SU_3 \supset SU_2 \times U_1$ Wigner coefficients via unitary transformation coefficients relating $SU_3 \supset SU_2 \times U_1$ and $SU_3 \supset R_3$ basis states [3].

- * Work supported by the U.S. National Science Foundation.
- ** Present address: Department of Physics, Nikon University, Tokyo, Japan.

Restrictions on the complexity of the problem

Factorials $M!, M \le M_{max} = 32$, and binomial coefficients $\binom{N}{M}, M \le N \le N_{max} = 32$, are stored in common. Typically for SU₃ \supset SU₂ \times U₁ Wigner coefficients $\Lambda_1 + \Lambda_2 + \Lambda_3 \le M_{max}$ whereas for SU₃ \supset R₃ Wigner coefficients $\lambda + \mu + L \le N_{max}$. The limits M_{max} and N_{max} may be altered by modifying one and only one subprogram.

References

[1] J.P. Draayer and Yoshimi Akiyama J. Math. Phys., in press.

[2] K.T. Hecht, Nuclear Physics 62 (1965) 1.

[3] J.P. Draayer, Nuclear Physics A129 (1969) 647.