A USER'S GUIDE TO FORTRAN PROGRAMS FOR WIGNER AND RACAH COEFFICIENTS OF SU 3 *

Yoshimi AKIYAMA ** and J.P. DRAAYER
Dep. of Physics, The University of Michigan, Ann Arbor, Michigan 48104, USA

Received 16 February 1973

PROGRAM SUMMARY

Title of program: SU3 WIGNER \& RACAH COEFFICIENTS
Catalogue number: ACRM
Computer: IBM 360/67; Installation: The University of Michigan, Ann Arbor, Michigan, USA
Operating system: MTS/360
Programming language used: FORTRAN IV
High speed storage required: $\mathrm{SU}_{3} \supset \mathrm{SU}_{2} \times \mathrm{U}_{1}$ Wigner coefficients, 13008 words
SU_{3} Racah coefficients, 14654 words;
$\mathrm{SU}_{3} \supset \mathrm{R}_{3}$ Wigner coefficients, 14202 words
SU_{3} Racah coefficients, 14654 words. $\mathrm{SU}_{3} \supset \mathrm{R}_{3}$ Wigner coefficients, 14202 words
No. of bits in a word: 32
Is the program overlaid? No.
No. of magnetic tapes required: None.
Other peripherals used: Card reader, line printer
No. of cards in combined program and test deck: 2046

Keywords: SU_{3}, Wigner coefficient, Racah coefficient, Clebsch-Gordan coefficient, Recoupling coefficient, Isoscalar factor, U-function, Unitary coupling, Unitary recoupling, K-band projection, Hypercharge.

Nature of physical problem

$\mathrm{SU}_{3} \supset \mathrm{SU}_{2} \times \mathrm{U}_{1}$ and $\mathrm{SU}_{3} \supset \mathrm{R}_{3}$ Wigner coefficients as well as SU_{3} Racah coefficients are calculated for arbitrary couplings and multiplicity.

Method of solution

A build-up process based on the Biedenharn-Louck prescription for specifying the outer multiplicity is employed to generate $\mathrm{SU}_{3} \supset \mathrm{SU}_{2} \times \mathrm{U}_{1}$ Wigner coefficients [1]. SU_{3} Racah coefficients follow through standard recoupling formulae [2]. $\mathrm{SU}_{3} \supset \mathbf{R}_{3}$ Wigner coefficients are obtained from the corresponding $\mathrm{SU}_{3} \supset \mathrm{SU}_{2} \times \mathrm{U}_{1}$ Wigner coefficients via unitary transformation coefficients relating $\mathrm{SU}_{3} \supset \mathrm{SU}_{2} \times \mathrm{U}_{1}$ and $\mathrm{SU}_{3} \supset \mathrm{R}_{3}$ basis states [3].

* Work supported by the U.S. National Science Foundation.
** Present address: Department of Physics, Nikon University, Tokyo, Japan.

Restrictions on the complexity of the problem
Factorials $M!, M \leqslant M_{\max }=32$, and binomial coefficients $\binom{N}{M}, M<N<N_{\max }=32$, are stored in common. Typically for $\mathrm{SU}_{3} \supset \mathrm{SU}_{2} \times \mathrm{U}_{1}$ Wigner coefficients $\Lambda_{1}+\Lambda_{2}+\Lambda_{3} \leqslant M_{\max }$ whereas for $\mathrm{SU}_{3} \supset \mathrm{R}_{3}$ Wigner coefficients $\lambda+\mu+L \leqslant N_{\text {max }}$. The limits $M_{\text {max }}$ and $N_{\text {max }}$ may be altered by modifying one and only one subprogram.

References

[1] J.P. Draayer and Yoshimi Akiyama J. Math. Phys, in press.
[2] K.T. Hecht, Nuclear Physics 62 (1965) 1.
[3] J.P. Draayer, Nuclear Physics A129 (1969) 647.

