II. REDUCED SU(3) MATRIX ELEMENTS *

D. BRAUNSCHWEIG **

Dept. of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

Received 8 February 1978

PROGRAM SUMMARY

Title of program: REDUCED SU(3) MATRIX ELEMENTS
Catalogue number: ABKH
Computer: AMDAHL 470V/6, IBM 360/370; Installation: Univ. of Michigan, Ann Arbor, Mich.
Operating system: MTS
Program language used: FORTRAN
High speed storage required: 212 kwords
No. of bits in a word: 32
Overlay structure: none
No. of magnetic tapes required: none
Other peripherals used: card reader, line printer (card punch)
No. of cards of combined program and test deck: 907
CPC library programs used:
Catalogue number: ABKG
Title: REDUCED SU(3) CFPS
Ref. in CPC: 14 (1978) 109
Catalogue number: AAC*
Title: DATA FOR ABKG
Ref. in CPC: 14 (1978) 109

* Work supported by the U.S. National Science Foundation.
** Present address: Goddard Space Flight Center, Seabrook, MD, USA.

Keywords: Nuclear physics, $\operatorname{SU}(3), S U(4)$, shell model, matrix elements, nuclear structure, pseudo-SU(3), one-body operators, two-body operators, theoretical methods

Nature of physical problem

Reduced SU(3) matrix elements (RME) are calculated for a general one or two body tensor operator, between arbitrary shell model states in an $S U(3) \times S U(4)$ or $S U(3) \times S U(2)$ scheme. Matrix elements in the angular momentum scheme can then be obtained by multiplying these RME with the appropriate $\mathrm{SU}(3) \supset \mathrm{R}(3)$ coupling coefficients available through the code of ref. [2].

Method of solution

One and two body tensor operators are explicitly constructed in terms of fermion creation operators. Since the (BRAI and |KET/ states obtained by using the appropriate routines of the code of ref. [1] are also written in terms of fermion creation operators, the overlap can be calculated directly. This method is typically $2-3$ orders or magnitude faster than the usual CFP expansion.

Restrictions on the complexity of the problem
The (BRA| and |KET) states are restricted to those that can be calculated with the code of ref. [1]. No other restrictions exist.
Unusual features of the program
The same array naming convention adopted in the code of ref. [1] is kept. This allows a saving of up to 35% of high speed storage in IBM 360/370 or similar operating systems.

References
[1] D. Braunschweig, Comput. Phys. Commun. 14 (1978) 109.
[2] Y. Akiyama and J.P. Draayer, Comput. Phys. Commun. 5 (1973) 405.

