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Summary--There is a considerable amount of experimental work establishing that the resistance to 
heat conduction between two solids in contact depends on the contact pressure, decreasing with 
increasing pressure. However, there are no solutions of thermoelastic contact problems taking into 
account this nonlinear behavior. In the present paper, we consider the thermoelastic Hertz contact 
problem and assume a contact resistance which is inversely proportional to pressure. The solution is 
compared with those assuming perfect or imperfect contact. 

I N T R O D U C T I O N  

The heat transfer between two solids in contact is of considerable physical and technological 
interest. A sizable amount of experimental work is devoted to the study of the resistance to 
heat conduction across the interface b~tween two solids in contact [1, 2, 3]. Since contacting 
surfaces are not in ideal contact, the presence of asperities leads to contact resistance which 
decreases with increasing pressure in a nonlinear fashion. 

There is little analytical work on the subject, however, and in most thermoelastic contact 
problems the contact is considered perfect. Under this restriction it has been observed [4, 5] 
that there is no solution satisfying the physical inequalities of the problem for one direction of 
heat flow, namely when the heat flows into the material with the smaller distortivity. 
Barber [6] started with an example assuming a pressure dependent resistance and considered 
the limiting case, which leads to linearised boundary conditons and gives an acceptable 
solution for the said direction of heat flow. Specifically, his analysis showed that the limiting 
case corresponds to a zone of 'imperfect' contact located between perfect contact and 
separation. This new contact zone transmits zero pressure and still provides resistance to heat 
flow. A series of problems (e.g. ['7, 8]) has been solved using the idea of imperfect contact. 

One significant result that has emerged from this work is that multiple solutions are 
obtained for both directions of heat flux under certain conditions [9, I0]. The thermoelastic 
contact problem with linear or linearised boundary conditions appears beset with questions 
of existence, uniqueness and even stability of solutions. Some of these questions were tackled 
by Duvaut ['11] in a concise paper which considered the unilateral contact between an elastic 
solid and a rigid wall assuming pressure-dependent resistance to heat flow. For this problem, 
and under certain restrictions on the contact resistance, he was able to prove existence and 
uniqueness. 

No solution has so far been obtained, to our knowledge, using the nonlinear boundary 
condition mentioned. In this paper, we obtain a solution to the plane thermoelastic Hertz 
contact problem assuming a contact resistance inversely proportional to pressure. Both 
directions of heat flow are considered. 

F O R M U L A T I O N  

The geometry of the plane Hertz problem is shown in Fig. 1. Two elastic cylinders with different material 
constants and parabolic profiles are pressed together with a total force P. The total heat flux through the contact is 
denoted by Q. The contact interval established under these conditions has unknown extent 2a. The formulation is 
based on a Green's function for interior thermoelastic contact [ 12]. Details of the preliminary analysis are given in 
[7], and we record here only the essentials: 

Derivative of the gap between the solids 

dx 2 n M . ] _ o ~ - + ( 6 1 - t ~ 2 )  j. q(~)d(+Kx+B. (1) 
- a  
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FIG. 1, Geometry of the thermoelastic Hertz contact problem. 

Derivative of the temperature jump across the interface 

dz_  1 kl +k 2 ~ q(O 

In these equations p(x) is the contact pressure, g(x) the gap, z(x) the temperature jump, q(x) the heat flux at the 
interface, K is the curvature mismatch and B an arbitrary constant. The material constants M and 6 are given by 

M = 2/~1Uz/[/A (~2 + 1) + ~2 (K1 + 1)] (3) 

6 = ~t(l +v)/k, (4) 

where r = 3 - 4v for plane strain, v is Poisson's ratio, # the shear modulus, k the conductivity and ct the coefficient of 
thermal expansion. Subscripts are used to denote quantities pertaining to the upper or lower solid. Continuity 
conditions are automatically satisfied with the present formulation, and the only remaining boundary conditions are 

dg 
d~=0, bxl<a (5) 

z(x) = R(x)q(x), Ix[ < a (6) 

R(x) = A/p(x), (7 i 

where R is the contact resistance and A is a constant describing the relation between thermal contact resistance and 
pressure for the particular material combination and surface condition. 

In addition we must satisfy the two auxiliary conditions 

f l p ( 0 d ~ = P _  (8) 

f ~ q ( 0 d ~  = (9) Q. 

Finally, for a physically meaningful solution, the gap and the contact pressure must be non-negative. The method 
of solution used in the sequel cannot enforce these inequalities and their validity must be verified a posteriori. 

Differentiating (5) and (6), with respect to x and using (l) and (2) we obtain 

d 
fa  P(O d~, = -2nM[K+(61-62)q(x)], Ixl<a (10) dx ,~ {--x 

7t k~7 0_.-xL~-~ =AdxLp(x)3 '  IxL<a. ( l l )  

These two singular integral equations must be solved together with (8) and (9). It is possible by manipulating (10) 
and (1 l ) t o  obtain a single nonlinear integro-differential equation of the Cauchy type, but there seems to be no 
advantage in doing so. 

N U M E R I C A L  S O L U T I O N  

To solve the system of equations [ 10, 11,8, 9] we adopt a series representation based on Chebyshev polynomials. 
First we set 

x = acosq~, ~ = a c o s 0  (12, 13) 

and then expand p(O) and q(O) in series 

p (0)=  ~ pmsinmO, 0 < 0 < r t  (14) 
modd 

q(0)=  ~. q. sinnO, 0 < 0 < m  (15) 
n odd 
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The form of the series guarantees that the heat flux and the pressure will vanish at the ends of the contact interval, 
and takes into account the symmetry of the problem. Equations (10) and (11) become 

d •  ~ p. i"  sin0 sinm0 
m odd ~0 co-o~-~osos ~ dO 

=2nMasindp[K+(@~-62) ~ qnsinndpl, 0 < ~ < n  (16) 
n odd 

q. sin ntb 
kl + k  2 1 f'~ sinO sinnO d nodd 

- - k , k  z --nasin~b.odd ~ q ' j o  c o s 0 - c o s ~ b d 0 = A d ¢  ~ pmsinm¢ 
0 < t p < n .  (17) 

m odd 

Observing [ 13] 
" sin 0 sin nO dO 

cos 0 - cos  ¢ 
ncosn¢, n = l , 2  . . . .  

j '~ cos nO dO n sin n~ 
o cos 0 - cos 4, sin n~ ' 

n = 0 , 1  . . . .  

and integrating (17), we obtain 

m p m s i n m ¢ = 2 M a s i n ¢ [ K + ( t $ , - 6 2 )  ~. q. sinnq~], 0 < ¢ < n  
modd nodd 

kl+k2 1 ~ [c°s(n -- 1)~b c ° % 1 ) ¢  1 
klk2 2a modd ~" .oddqnPm L ~---1 sinm~b 

.4:1 

= - ,4 ~ q, sin n¢  + , 4 C  Y p .  sin me, 0 < ¢ < n, 
nodd modd 

where C is a constant of integration. Applying the transformation 

yo ' ) r~bd~b, r odd sin 

to (20) and (21) and performing some elementary integrations we obtain 

4 M a f n  [ 1 1 ]} 
P '=  n ~ K~r6 '*+(6~-82)  nZodd q" r 2 d ( n - 1 )  2 r 2 - ( n + l )  2 , rodd 

k l + k 2 a n [ -  1 1 ] n 
I ~. ~ q , ( P  . . . .  1 +P . . . .  * ) - -  ,~d~q,(P~ . . . .  I+P . . . .  1) / = ~ ( - aq, + aCp,), 

k~k2 8 L . o d d n - - I  
n#l 

We next introduce the following dimensionless constants 

e I = M a / P  

A klk  2 
F, 2 -- 

Ma k I +k2 

e3 = Q(61 --62) 
and normalize q, and p, 

q, = (Q/a)~, 

p, = (P /a)p,. 

Substituting (14, 15) into (8) and (9) yields 

Pl =2/1t, ql = 2 / n .  

Equations (23) and (24) are now written as 

r odd 

=l(c -1  l S,,), rodd, 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

r odd. 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30, 31) 

(32) 

(33) 
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where 

S,~= .~ n _ 1  (/3 . . . .  + ~  . . . . .  l -  .~ w(/3, , ,+ /3  . . . . .  ~ 134) 
n odd n odd /1 + I 

l 1 

and the constant C has been redefined. 
Terminating the series at r = N, equat ions  130, 31, 32, 33), yield a system of 2(N + 1 ) equations for the unknowns 

P,, qr, a and  C. 
The system is solved by iteration as follows: we assume values for qr(r = 3, 5 . . . . .  N), and solve (32) and (30) for Pr 

(r = 3, 5 . . . . .  N)  and  Ka. We then substitute into (33) and solve (33) and (31) for C and the updated values of q,. We 
repeat the process until the solution converges. 

R E S U L T S  

The algebraic sign of the constant e3 determines the direction of heat flow: a positive sign 
indicates heat flowing into the material with the larger distortivity, while a negative sign 
indicates heat flowing in the opposite direction. Representative results are shown in Fig. 2 for 
both directions of the heat flux. We note that the contact pressure and the heat flux q(x) at the 
interface vanish at the end-points of the contact. As e2 decreases, the heat flux develops a peak, 
as we should expect, since in the limit as e2 tends to zero we should recover the case of perfect 
contact in which the heat flux is square root singular at the ends of the contact region. The 
pressure is affected qualitatively only near the contact ends and for negative e3. 

Figures 3 and 4 show the variation of Ka with e3 and et, respectively. We find that Ka varies 
approximately linearly with ~3 and inversely with et. A similar relation was obtained in the 
earlier solution [7]* assuming perfect contact, which in the present notation can be written 

Ka = - -  ~ .  ( 3 6 )  

~;t 7[ 

In fact, we recover the results of  [7] in the limit as e2 tends to zero, and the results show that 
Ka is comparatively insensitive to ~2. 

For the opposite direction of heat flow (e3 < 0), the limit as e2 tends to zero would be 
expected to correspond to a solution involving imperfect contact--i.e, a zone of low pressure 
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FIG. 2. Representative graphs for heat flux and contact pressure. 1. e~ = 2 x 10 3, g2 = 0.1 x 10 -3 ,  
e 3 = - - 1 . 5 x 1 0  -3, 2. e l =  1 .9x103 ,  e 2 =  1 x l 0  -3,  e 3 = - - 1  x 1 0 - 3 ,  3. th = 1 x l 0 3 ,  e 2 = 0 . 1  

× 10 3 ~3 : 0.18 X 10 -3, 4. e I = 2 X 103, g2 = 0.01 X 10 -3, g3 : -- 1 × 10 3. 

* Equat ion  (31) of  [7] conta ins  a misprint .  It should read P / M k a  z = n + 4 Q ( 6 ,  + 62)/nKa. 
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FIG. 3. Var ia t ion of Ka with g3 for e 1 = 1 x 103, e2 = 0.1 x 10- 3. Dotted line corresponds to perfect 
contact (e2 = 0). 
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FIG. 4. Var ia t ion of Ka with e, for e2 = 0.1 x 10 -3, e 3 = - 1 x 10 -3. 

and high thermal contact resistance--near the ends of the contact region. The pressure 
profiles in Fig. 2 (curve 4) suggest the development of such a region, but for smaller values of 
e 2 the solution involves tensile contact tractions. It is probable that another branch of the 
nonlinear solution does not involve tension, but the region over which this happens is too 
small to ascertain computationally. 

We know from Duvaut's work [-11] that there must be at least one physically acceptable 
solution for all values of  e2, but unfortunately the present iterative formulation does not 
enable us to force convergence on this solution in preference to that involving tensile 
tractions. 
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