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ABSTRACT Surface bifurcation in a quasistatically loaded solid is an important instability 
phenomenon occurring at high levels of strain. After a discussion of theoretical 

as well as experimental work done in this area , a general formulation for the 

surface buckling of an incrementally linear three dimensional halfspace is pre- 
sented and corresponding necessary conditions for the onset of this instability 
are derived. 

Introduction and Motivation 

A very interesting stability phenomenon occurring during quasistatic straining of 

solids at adequately high strain levels, is the development of a surface waviness on their 

traction free boundaries. The importance of this phenomenon--which hereby will be referred 

to as surface instability or surface buckling--lies in the fact that it precedes, and sub- 

sequently,triggers more severe kinds of instability (e.g., shear localization) which ulti- 

mately lead to the failure of the solid in question. 

In the first part of this paper, a somewhat lengthy review of the work done thus far 

on the subject of surface buckling will be presented in an effort to show the importance of 

this pheonomenon as a triggering mechanism for the failure of a large class of solids. In 

the second part, a general mathematical analysis of the surface buckling problem for any 

three dimensional incrementally linear solid is given and necessary conditions for the onset 

of this instability are derived. To the best of our knowledge , only sufficient conditions 

for the onset of surface buckling have been presented in the literature so far and that for 

the case where the solid enjoys certain symmetries. An interesting consequence of our gen- 

eral analysis is the theoretical explanation of the experimentally observed fact that the 

resulting surface wrinkles are in the form of rather long parallel waves with a very short 

wavelength. 

Analytical and Experimental Investigations Involving Surface Buckling in Solids 

The possibility of a plane , traction free surface of a homogeneously strained solid to 

lose flatness and develop surface wrinkles (i.e., waves) at adequately high levels of strain 

was first noted by Biot [ll in his study of the plane strain deformation of hyperelastic 

solids. Biot's analysis of the traction free infinite halfspace problem shows that, as the 

parallel to the free surface stress increases (in absolute value that is), it reaches a level 

where bifurcation becomes possible in the form of a sinusoidal surface wave of arbitrarily 

short or long wavelength. The corresponding eigenmodes decay exponentially beneath the sur- 

face with a wavelength of the same order as the one in the surface variation. 

In a subsequent investigation of bifurcation phenomena in the plane strain tension 

test, Hill and Hutchinson [21 found the following interesting behavior which is common to 

a wide class of incrementally linear solids (hyperelastic as well as rate independent elastic- 

plastic solids fall into this category). In the course of deformation of an orthotropic 

plane rectangular block with two opposite sides traction free and the other two sides shear 
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traction free, while constrained to remain straight, the below described sequence of 

events takes place as the two constrained ends are being pulled apart. The first bifurca- 

ted solution occurs after the tensile load reaches its maximum value and is in the form 

of diffuse necking. Subsequently, different bifurcation (with respect to the uniform strain 

configuration) eigenmodes become available as the distance separating the two end faces 

of the recta,ngular solid increases tid, finally,with the material still in the elliptic 

regime* a surface bifurcation at the free ends becomes possible. Upon continuation of the 

deformation, the material loses ellipticity and,thus,failure by shear localization becomes 

possible. An exactly analogous type of behavior for the compression case has been found by 

Young 131. The possibility for surface buckling in a finitely strained rectangular iso- 

tropic incompressible hyperleastic block was also found by Sawyers 141. 

In a subsequent numerical (using the f.e.m.1 investigation, Tvergaard, Needleman and 

LO 151 have established the connection between the surface buckling phenomenon and the on- 

set of failure by shear localization in the case of a hyperelastic as well as a rate inde- 

pendent elastic-plastic rectangular block under plane strain tension. By assuming a slightly 

imperfect block, i.e., a block whose free surface has a sinusoidal undulation of negligibly 

small (compared with the block's dimensions) amplitude, they found that as the strain in the 

block increased near the critical level for the onset of a surface bifurcation, the strain 

pattern started becoming increasingly non-uniform with the surface wave amplitudes growing 

rapidly. Eventually,the strain near the region of one of the wavelets became the maximal 

one for the entire body and soon reached the critical level for shear localization, at 

which point a shear band with size comparable to that of the surface wavelength started 

propagating inwards. 

Surface buckling plays a very important role in the stability analysis of a plate sub- 

jected to finite bending. In a theoretical investigation of the bifurcation phenomena 

associated with the finite strain pure bending test of a thick plate (obeying constitutive 

laws of the type considered in [21) under plane strain conditions , Triantafyllidis [61 found 

that, as the plate's curvature increases, the first bifurcation encountered is a surface 

bifurcation on the compressive zone of the plate which is followed by (as the curvature 

keeps increasing) a similar instability on the tensile zone. Upon further increase of 

the curvature, the outer zones of the plate lose their ellipticity. In a subsequent numer- 

ical investigation of this phenomenon using finite elements, Triantafyllidis, Needleman and 

Tvergaard [71 showed (using a slightly imperfect plate as in [51) that as the curvature in- 

creases pastthe critical ones for the onset of the surface buckling at the two surfaces of 

the plate, the amplitude of the surface ondulations grows very rapidly, Strain at one of 

the surface ripples dominates and eventually reaches the critical level for loss of ellip- 

ticity in the material. At higher curvatures,the deformation pattern is strongly reminis- 

cent of a plastic hinge type of failure. 

A number of investigations where the onset of a surface instability plays an important 

role in the body's failure mechanism have followed,much in the spirit of the initial work in 

[21 and [Sl. We mention here the work by Larsson, Needleman, Tvergaard and Storakers 181 

on the instability of internally pressurized ductile thick metal cylinders where a surface 

bifurcation on the inner surface of the tube provided enough strain localization in order to 

trigger a shear band type of failure. 

Quite recentlY.Tvergaard f81 using a more sophisticated rate independent plasticity 

model (than in the above studies) capable of incorporating void nucleation and growth 

*By abuse of language we say that a material is elliptic at a given stage of deformation if 
the corresponding incremental equilibrium equations are elliptic. 
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analyzed the ductile shear fracture at a free surface. Again in this case,the strain local- 

ization mechanism which triggers shear bands is a surface bifurcation. 

In all the aforementioned works, the boundary value problems considered involved the 

plane strain approximation. Hutchinson and Tvergaard DOI have investigated surface bifur- 

cation in an infinite incompressible halfspace using two different finite strain versions 

of the J2 deformation theory of plasticity. In their investigation, where the material con- 

sidered was always orthotropic with one axis of orthotropy perpendicular to the free sur- 

face, they examined the possibility of bifurcation only for some predetermined type of eigen- 

mode. A similar type of analysis involving a surface bifurcation in a non-plane strain 

problem was presented by Bassani, Durban and Hutchinson 1111 for the instability of a pres- 

surized cavity. There, as in 161, the surface instability was the first one encountered as 

the cavity volume increases. 

Experimental observations involving surface irregularities that develop at adequately 

high strain levels in statically loaded solids have repeatedly been reported in the past. 

Hahn and Rosenfield Cl21 have observed strain induced surface irregularities in plane 

strain tension of ductile metals. These wavelike irregularities, which they call superbands, 

run perpendicular to the maximum tensile direction and are about one grain wide and many 

grains long. Microcracks were observed, which, upon continuation of the loading, developed 

into a shear crack type failure much the same way as in the calculations reported in 151. 

As far as observations of surface instabilities in the case of finite bending of 

metallic bars, wrinkles on the compressed zone of the bar have been observed by Mylonas [I31 

(see also t141). More recent experiments on finite bending of aluminum bars by Hutchinson 

and Tvergaard [lOI also produced surface buckling on the tensile site of the bars. 

A very nice pattern of surface wrinkles appears in some of the specimens of Larsson 

1151 during an experimental investigation of stability in thick Alpine and copper tubes 

subjected to internal pressure. In these experiments the axisymmetric state of deformation 

bifurcates into an eccentric shape and during the final collapse of the tube, considerable 

bulging in one side is observed until fracture occurs. In that highly strained bulged 

region, surface waves parallel to the tube axis have been observed in the case of the alum- 

inum specimens (but not for the copper ones) prior to fracture. 

Mathematical Analysis of the Surface Bifurcation 

Here the general problem for the surface bifurcation of a homogeneous, incrementally 

linear three dimensional halfspace will be formulated and necessary conditions for the on- 

set of this instability will be derived. 

Consider an infinite body whose current configuration occupies the halfspace x3 s 0. 

The bifurcation eigenmode ui (Xi ,x2,x3) for the traction free halfspace problem has to satis- 

fy the following incremental equilibrium equations inside the halfspace (e.g., see I1011 

L. ‘ 
i2w! Uk,ej = 

0* (xaE IR, x3 5 0) 

while the boundary conditions on the traction free surface are 

L 
i3ld Uk,P = ' (xaE II?, x3 = 0) 

(3.11 

(3.2) 

*Note: Here and subsequently the usual convention of employing Greek indices, if their range 
is from 1 to 2 and Latin ones if their range is from 1 to 3, is adopted. Summation of 
repeated indices is tacitly assumed unless an index is enclosed between parentheses. A 
comma followed by an index denotes partial differentiation with respect to the corresponding 
coordinate. 
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In addrtion,for ui to be a surface mode, it has to satisfy 

u. - 0, U. -0 as 
1 l,j x3- -- 

(3.3) 

The (constant) incremental moduli L. 
ljkf 

may in general depend on material properties, current 

Stresses and the deformation history of the material up to the present state, in the case of 

a rate independent elastic-plastic material. In accordance with standard procedures in the 

theory of bifurcation, a monotonically increasing scalar load parameter X also termed as the 

"time like" parameter will be assumed to uniquely characterize, for a given deformation his- 

tory, the present state of the material. In the initial stress-free state of the material, 

A is taken to be zero and subsequently increases monotonically as the loading process evolves 

Thus,the spatially constant incremental moduli will be considered to be functions of the load 

parameter, i.e., L.. 
ljkl (')- 

Assuming that the buckling eigenmode ui is twice continuously differentiable and uni- 

formly bounded on the halfspace x3 _ < 0, one can ensure the existence of the Fourier trans- 

form iii(Wo'X3) = 3{ Ui(Xa'X3); xa - we) in the sense of distributions (see Schwartz [161). 

Although ui is a function in the classical sense, d. 
1 

will not generally be so and, thus,the 

subsequent equations are to be understood in the distribution sense. On taking the Fourier 

transform of the incremental equilibrium equations (3.1) , one obtains the following system 

of ordinary differential equations with respect to x3 (x3 5 0) 

(-iwe) (-iwg) LiekBC3 + (-iwY) (Li3kr + Liyk3) Q, 3 + Li3k3 I?, 33 = 0 (3.4) , # 

The general solution to the above System of equations when (3.3) iS also taken into account 

turns out to be 

ii, (wa,x3) = jI, '(j) ALj) exp (-icz 
(1, x3) 

(3.5) 

where ‘(j) are the three roots with positive real parts of the following sixth order alge- 

braic equation: 

Det LLicrks z, I$ 
* 

+ CL. 
13ky 

+ L. ) w 
l-fk3 Y 

s+L 
i3k3 

z21 =o (3.6) 

* 
with 

*1 
E cos cl ) :* = sin n and we = c : where c>o 

0 

The requirement that all the roots of (3.6) should be nonreal stems from the fact that we 

are interested only on surface bifurcations in the elliptic regime of the material and the 

condition that (3.6) admits no real root ensures the ellipticity of the incremental equili- 

brium equations (3.1). Thus the z 
(7) 

in (3.5) are of the form 

s(j) 
= ej(n) + i Bj(f2) ; Bj > 0 (3.7) 

(j) The (complex) constant vectors Ak (D) can, without loss of generality, be chosen to have 

unit norm and should also satisfy the system 

lLiak5 '12 'B + (Li3ky 
+ L. 

lyk3 
) : 

7 s(j) + Li3k3 
sfj)l .Lj) = 0 (3.8) 

while the CCj, entering (3.5) are unknown distributions* depending cnweor equivalently on 

c, n, i.e., stj) = stj) (we). 

*All distributions involved in this argument are temperate ones in view of the boundedness of 

Ui. An outline of the proof leading to the necessary conditions for surface bifurcation is 
given here with no attempt of further mathematical rigorization, which although possible, 
lies outside our scope. 
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The Fourier transform of the boundary condition (3.21 yields 

(-iwe) Li3ka Cik + Li3k3 dk 3 = 0 # 
(x3 = 0) (3.9) 

which combined with (3.5) provides the following necessary condition for the existence of a 

surface bifurcation: 

Sij(") SCj) OJJcL) = o ; sijw 3 [Li3ka Gc 
(j) 

j-1 
+ 'i3k3 '(j)' Ak 

Equation (3.10) has to hold in the w,,w2 plane. The only possible 

satisfied is if Ctjf has a line support, i.e., 

way that this can be 

SUPP ‘stj, 1 = Iw, = t c cos n 
0 ’ w2 = 

* c sin noI; c > 0, no 6 [0,X) (3.11) 

with the angle no E 10,s) satisfying 

Det lSij (not1 = 0 (3.12) 

Thus as it follows from our construction of the Fourier transform of the solution to the 

(3.10) 

surface bifurcation problem, the existence of a real angle iI0 E tO,n) is a necessary con- 

dition for the existence of a bifurcation eigenmode satisfying (3.1) - (3.3). 

case of the traction free halfspace with an incrementally linear constitutive 

surface bifurcation will first become possible for the minimum load parameter 

solution to (3.12) exists, i.e., the critical load Acr will satisfy: 

Thus in the 

behavior, a 

X for which a 

Det [S.. 
13 

(A,sI)l # 0 ; n 6 [O,n) ) 0 5 x5x 
cr 

Det lSij (Xc,, Qa)t = 0 ; DYE IO,af 
(3.13) 

The above procedure for the specification of the critical load corresponding to the onset of 

the surface bifurcation is applicable to any incrementally linear material without appealing 

to any symmetry property of the solid in contrast with the already existing analyses for the 

problem (see for example flO1). This approach is particularly advantageous in the case of 

general anisotropic materials as one can see in 1171 where a plane strain version of this 

method has been employed. 

Finally, an interesting remark is made about the shape of the corresponding eigenmcde 

at the onset of the surface bifurcation. Assuming for simplicity that 'ilzr in (3.13) is 

unique and using the fact that 5 . iw&l has a line support (on 
(3) 

--w , sin nco + W* cos nz 5 0) 

as well as the fact of the uniform boundedness for u k, one can deduce that (see Schwartz [161f 

'(j) 
can be put in the form 

‘(jt (we) = 5*(j) (w, cos 0: f m2 sin n~I6C-u~~ sin SIB + w2 cos 0:) (3.14) 

where 6 is Dirac's distribution. Employing (3.'14) into (3.5) and upon inversion of the 

Fourier transform, one will obtain that 

uk = uk (x, cos n: + x2 sin nz, x3) (3.15) 

which indicates that on the halfspace's surface, the bifurcation eigenmode is in the form of 

waves running parallel to the -x1 sin fl% + x 2 ~0~ nz direction. The amplitude of these 

waves, as well as their shape, is not determined by this analysis. In the experimental ob- 

servations mentioned before the width of the parallel surface ripples is several gain sizes 

(in the case of metal polycrystals) while their length is orders of magnitude longer exactly 
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as indicated by (3.15). (In the case of a nonunique fl:, more than one such set of parallel 

surface waves will exist.) 

Conclusions 

Surface bifurcations are an important physical mechanism that precedes and subsequent- 

ly triggers through strain localization ,more severe types of instability (such as shear 

bands, fractured zones, etc.1 when the maximum strain occurs on the solid's free surface. The 

necessary conditions for the onset of this phenomenonin any three dimensional incrementally 

linear solid have been derived, and a theoretical explanation for the observed shape of the 

bifurcation eigenmode has been established. The generality of the proposed method makes it 

particularly useful for the study of surface bifurcations in generally anisotropic solids 

where the methods that are available in the literature thus far fail to apply, in view of 

the required material symmetry and restrictions on the form of the assumed eigenmodes. 
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