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I f  >, and >d are two quaternary relations on an arbitrary set A, a ratio/difference represen- 
tation for >, and ad is defined to be a function f  that represents 2, as an ordering of 
numerical ratios and ad as an ordering of numerical differences. Krantz, Lute, Suppes and 
Tversky (1971, Foundations of Measurement. New York, Academic Press) proposed an 
axiomatization of the ratio/difference representation, but their axiomatization contains an 
error. After describing a counterexample to their axiomatization, Theorem 1 of the present 
article shows that it actually implies a weaker result: if 2, and ad are two quaternary 
relations satisfying the axiomatization proposed by Krantz et a/. (1971), and if >,. and >d. 
are the relations that are inverse to 2, and >d, respectively, then either there exists a ratio/- 
difference representation for >, and >d, or there exists a ratio/difference representation for 
&+ and a,,., but not both. Theorem 2 identifies a new condition which, when added to the 
axioms of Krantz et al. (1971), yields the existence of a ratio/difference representation for 
relations >, and >d. 

Garner (1954) suggested that one could determine a ratio scale for loudness if 
subjects are able to judge what stimulus is a given fraction as loud as another 
stimulus and if, in addition, they could partition a loudness interval into a given 
number of subintervals of equal subjective size. His proposal assumes that there are 
distinct mental operations that can be carried out on the subjective representation of 
loudness, the one operation being isomorphic to the calculation of numerical ratios 
and the second operation being isomorphic to the calculation of numerical 
differences. Torgerson (1961) doubted that there exist two distinct operations of 
loudness judgment. He proposed that even if subjects are instructed, on the one hand, 
to judge the magnitude of subjective ratios and, on the other hand, to judge the 
magnitude of subjective differences, the mental operations underlying their responses 
would be the same. Michael Birnbaum and his colleagues have carried out an 
extensive program of experimentation devoted to testing these opposing hypotheses. 
On the whole, their evidence supports the theory that only one mental operation 
underlies judgments of ratios and differences, although this conclusion has not been 
universally accepted. * Birnbaum (1978, 1982), Hagerty and Birnbaum (1978) and 
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Veit (1978) have attempted to show that the sole underlying operation of magnitude 
judgment is a subtractive operation. Their arguments lie beyond the scope of the 
present discussion, 

The purpose of this article is not to discuss these psychophysical issues, but rather 
to present an axiomatization of the theory that two mental operations of magnitude 
judgment exist. The following formulation of this theory is due to Krantz et al. 
(1971), although some of the terminology is my own. If there are distinct mental 
operations of magnitude judgment that are isomorphic, respectively, to the calculation 
of ratios and of differences, then subjects ought to order pairs of stimuli in two 
different ways depending on whether they are asked to judge the magnitude of 
subjective ratios or the magnitude of subjective differences. Furthermore, these two 
orderings of stimulus pairs ought to possess a common numerical representation as 
orderings, respectively, of ratios and of differences. This common representation will 
be called a ratio/difference representation and is described formally in Definition 1. 
As a notational convention, if y and z denote elements of a set A, then yz denotes the 
ordered pair (y, z). 

DEFINITION 1. Let 2, and hd be quaternary relations on an arbitrary set A. Let 
Re ’ denote the positive real numbers and letf: A -+ Ret be any function. Then, f is a 
ratio/d@?rence representation for 2,. and >.d iff for all w. x, y, z E A 

(9 wx >,.w iffS(wYf(x) >f(~h!f(z), 

(ii> wx &Yz ifff(w) -S(x) >S(Y) -f(z). 

Thus, a ratio/difference representation is a function f that simultaneously represents 
an ordering >:, as an ordering of numerical ratios and an ordering >d as an ordering 
of numerical differences. 

Before discussing the ratio/difference representation, it will be helpful to set down 
several conventions. First, >r and >d denote the strict inequalities and -I and -rl 
denote the equivalence relations corresponding to 2, and hdr respectively. 
Furthermore, there is a trivial case that it is convenient to exclude, namely, if 
wx-,-vz and wx- d yz for all w, x, y, z E A, then any constant, positive real function 
is a ratio/difference representation for 2, and >d. Since this case is uninteresting, it 
will be assumed throughout this essay that 2, and >.d are nondegenerate in the sense 
that st >r uv and wx >d yz for some s, t, U, v, w, x,y, z EA. 

Krantz et al. (1971) propose an axiomatization of the ratio/difference represen- 

mental operation underlies judgments of subjective ratios and subjective differences. The theory 
originates with Torgerson (196 1). Studies supporting this theory include Birnbaum and Elmasian (1978). 
Birnbaum and Mellers (1978) Birnbaum and Veit (1974), Hagerty and Birnbaum (1978), Mellers. 
Davis, and Birnbaum (1984), Schneider, Parker, Farrell, and Kanow (1976) and Veit (1978. 1980). The 
theory that there are distinct judgments of subjective ratio and difference applying to a single mental 
representation has been defended by Rule and Curtis (1980) and Rule, Curtis, and Mullin (1981). 
Parker, Schneider, and Kanow (1975) provide evidence that distinct judgments of subjective ratio and 
subjective difference can be performed on the continuum of perceived line lengths. Marks (1974) and 
Stevens (1957, 1971) develop views that do not fall into either camp. 
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tation and construct a purported proof that the axiomatization is sufficient to 
establish the existence of the representation. Next, I will state their axiomatization, 
discuss its interpretation, and then describe a counterexample to the sufficiency of the 
axiomatization. Later, an analysis will be given that locates the error in the attempted 
proof of the representation theorem appearing in Krantz et al. (197 1). The following 
definition makes use of the concept of an algebraic difference structure which is 
defined in Krantz et al. (197 1, Definition 4.3). 

DEFINITION 2. Let 2,. and >d be quaternary relations on an arbitrary set A. Then 
2, and ad satisfy generalized ratio/d@erence compatibility iff (A x A, >,) and 
(A x A, >,) are both algebraic difference structures and for all x, y, z, x’, y’, z’ E A, 

(i) xy 2, xx iff xy >dxx, 

(ii) if xx’ wlyy -I zz’, then xy ad yz iff xl-v’ >.d y’z’, 

(iii) >, and hd are not identical orderings. 

Generalized ratio/difference compatibility is proposed by Krantz et al. (1971) as an 
axiomatizaton of the ratio/difference representation, although they do not use this 
terminology (cf. the hypotheses of their Theorem 4.3, p. 154). 

The assumption that (A X A, a,) and (A X A, ad) are both algebraic difference 
structures is quite plausible, since the existence of a ratio/difference representation 
implies that both structures have difference representations (the logarithm of the ratio 
representation is a difference representation). Intuitively, condition (i) asserts that >r 
and zd determine the same set of positive intervals. Condition (ii) is rather 
complicated in appearance, but it implies the more easily interpreted condition, 

(ii’) if xx’ -,. yy’ -,. zz’, then xy -dyz iff x’y’ -dy’~‘. 

Note that if uu -d UW, then u may be regarded as the >d midpoint between u and MI, 
i.e., the midpoint in the ad ordering. Thus, condition (ii’) asserts that if xx’, ~JJ’. and 
zz’ are all in the same >, equivalence class, then y is the >d midpoint between x and 
z iffy’ is the >d midpoint between x’ and z’. Condition (ii) is just an ordinal version 
of (ii’). Krantz et al. (1971) show that conditions (i) and (ii) of Definition 2 are 
necessary for the ratio/difference representation. To see that condition (iii) must hold, 
suppose that >r and ad were identical. If f were a ratio/difference representation for 
>:, and >ti, then logf would be a difference representation for &, so logf and $ 
would be difference representations for hd. By the uniqueness of the algebraic 
difference representation for (A x A, a,), there must be constants or /3 such that 
logf= af+ /3. It can be shown thatf(A) is dense in an interval of real numbers’ and 
consequently there exist x. y. z E A such thatf(x) #f(y) #f(z) #f(x). Since a linear 
relation between logf and f cannot be obtained if the range off has more than two 
values, >, and >d cannot be identical. 

‘The set f(A) is dense in an interval of real numbers iff for every x and z in that interval. x < z 
implies that there exists y Ef(A) such that .Y < 1’ < z. The proof thatJ(A) is dense in an interval of reals 
is given in Krantz et al. (1971. p. 159). 
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An important feature of generalized ratio-difference compatibility is that if it holds 
for a pair of relations >, and ad, then it must also hold for the corresponding inverse 
relations. In other words, define relations a,.* and ad* by the conditions 

wx >,* yz iff yz >+, wx, 

wx >d’ yz if yz >d wx, 

for every w, x, y, z EA. I claim that if >, and ad satisfy generalized ratio/difference 
compatibility, then &* and >d, must also satisfy generalized ratio/difference 
compatibility. Assuming that & and >d satisfy generalized ratio/difference 
compatibility, it is easy to check that (A X A, a,*) and (A X A, >@) are algebraic 
difference structures and that >,.* and >/d* satisfy conditions (i) and (iii) of 
Definition 2. As for condition (ii), the pairs xx’, yy’ and zz’ are in the same 2, 
equivalence class iff they are in the same >,., equivalence class. So the antecident of 
(ii) holds with respect to >, iff it holds with respect to >,.*. The consequent of (ii) 
asserts that xy ad yz iff x’y’ >d y’z’, but this is equivalent to asserting that xy >,,* yz 
iff x’y’ ad* y’z’. So if the consequent of (ii) holds with respect to ad, it also holds 
with respect to >d*. 

Thus, the definition of generalized ratio/difference compatibility possesses a kind 
of symmetry with respect to the relations >, and ad, and the inverse relations ark 
and ad,. This symmetry is the crucial defect in the conjecture that generalized 
ratio/difference compatibility implies the existence of a ratio/difference represen- 
tation. Consider the following counterexample to this conjecture. Let A = Re+. 
Define relations R and D by the conditions: for any w, x, y, z E Ret, 

wxRyz if w/x > y/z, 

wxDyz if w-x>,y-z, 

where / and - denote division and subtraction of real numbers. Obviously, R and D 
satisfy generalized ratio/difference compatibility and the identity function 
I: Ret -+ Re+ is a ratio/difference representation for R and D. Let R * and D* 
denote the relations inverse to R and D. By a previous argument, R” and D* must 
satisfy generalized ratio/difference compatibility. 

Suppose that generalized ratio/difference compatibility were sufficient to imply the 
existence of a ratio/difference representation, and let f be the ratio/difference 
representation for R * and D*. Since D* is inverse to D, -f must be a difference 
representation for D. Hence -f = ~1+ II for q E Re+ and 1 E Re. Similarly, since R * 
is inverse to R, l/must be a ratio representation for R. Hence, l/f = aI for some 
a, /3 E Ret. But then, for every x E Re + , 

-qx - ;I = -VI(X) - L =f(x) = l/aI(x)’ = l/ax4. 

Hence, -qax” + ’ -lax4= 1 for all xERe+. Obviously, this identity cannot be 
satisfied within the constraints on q, ,J a, and /3, Therefore, there cannot exist a 
ratio/difference representation f for R * and D*, so generalized ratio/difference 
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compatibility is not sufficient to imply the existence of a ratio/difference represen- 
tation. 

It should now be plausible that a more general statement of the counterexample 
also holds. Namely, if & and >d are any relations satisfying generalized ratio/dif- 
ference compatibility, then their respective inverses a,* and ad* also satisfy 
generalized ratio/difference compatibility. If generalized ratio/difference compatibility 
were sufficient to imply the existence of a ratio/difference representation, then both 
pairs of relations, & and ad, and >,* and >da, would possess ratio/difference 
representations. The essence of the counterexample is to show that this cannot be. At 
most one pair of relations, & and >d, or the inverses &* and&, could have a 
ratio/difference representation. Theorem 1 asserts that exactly one pair of relations, 
>, and ad, or >,* and hd,, has a ratio/difference representation if either pair satisfies 
generalized ratio/difference compatibility. 

THEOREM 1. Let >r and >d be quaternary relation on an arbitrary set A, and let 
>,.+ and ad’ be the respective inverse relations. If a,. and >d satisfy generalized 
ratio/d@erenCe compatibility, then either there exists a ratio/difference representation 
f for >, and ad, or there exists a ratioldtgerence representation g for >,.* and hde, 
but not both. Moreover, iff or g exists, then it is a ratio scale. 

The proof of Theorem 1 is based on Lemma 1 stating the solution to a functional 
equation. 

LEMMA 1. Let I, be a nonempty interval of real numbers and let I, be a 
nonempty interval of positive real numbers. If H: I, + I, is a continuous, strictly 
increasing function satisfying 

H-’ H(rx):H(ty)]=t.H-,[H(x)~H(y)] (1) 

for all x,y E I, andfor any t E Re+ such that tx, ty E I,, then either (i) or (ii) holds: 

(i) H(x)=a+nlogxforalZxEZ,,whereaERe,nERef, 

(ii) H(x)=Gaxse-/3 for all xEI,, where a,BERe’, /?ERe and 6=+1 

or -1. 

Aczel (1966, Sect. 3.1.3) proves Lemma 1 for the case where I, = Re+. Krantz et al. 
(1971, Sect. 4.5.3) develop the present generalization of the lemma, except that their 
proof appears to rule out the possibility in solution (ii) that 6 = -1. That this is an 
oversight can be established by checking that H(x) = -x-l is a function satisfying 
(1). The proof of Lemma I will be given in the Appendix because it is rather lengthy. 
Readers who wish to skip the proof may nevertheless want to note that the error in 
the proof of Krantz et al. (1971) occurs on p. 163 where it is inferred that a function 
called y1 is strictly increasing. As shown in the Appendix, y1 can either be strictly 
decreasing or strictly increasing. 
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The proof of Theorem 1 presented here is very close to the proof of Theorem 4.3 in 
Krantz et UZ. (1971, pp. 158-163), except for the modifications resulting from the 
reformulation of Lemma 1. To abbreviate the many references to Krantz et al. 
(1971), this work will be referred to as Fnd in the remainder of this article. 

Proof of Theorem 1. Let di be a difference representation for (A X A, >d) and let 
dZ be a ratio representation for (A X A, a,). Notice for future reference that -4, must 
be a difference representation for (A x A, &) and l/& must be a ratio representation 
for (A x A, >.,*). Let Ri = g,(A), i = 1,2. Define h: R, -+ R, by h[#2(x)] =4,(x) for 
any x E A. The function h is well defined because condition (i) of Definition 2 implies 
that h(x) = MY) iff XY vr xx iff xy-,x.x if? d,(x)=di(y). 

It can be prove tht there exist intervals I, E Re and I, 5 Re’ and a strictly 
increasing, continuous function H: I, -+ I, such that Ri is a dense subset of Ii 
(i = 1,2), H[@*(x)] = h[q&(x)] for all x E A, and 

H-l H(t4;W4]=t.H-, [ H(u);H(v)] 

for all U, u E I, and t E Ret for which tu, tv E I, (see Fnd, pp. 159-160, for proofs of 
these properties). Lemma 1 states the possible solutions of this functional equation. 

Solution (i) of Lemma 1 implies that #r(x) = H[#,(x)] = a + q ’ log&(x) for all 
x EA. Hence $i is a difference representation for (A x A, >,), because (6, is a ratio 
representation for that structure. Since 4, is also a difference representation for 
(A x A, >,), the orderings >, and ad must be identical, contrary to assumption. 
Therefore, solution (i) must be excluded. 

Solution (ii) of Lemma 1 implies that #i(x) = H[#2(~)] = i?a#,(~)~~ -p for every 
xEA. If 6=+1, then $i(~)+P=ad~(x)~ for all xEA. Therefore,f=(d, +/3=a#f 
is the desired ratio/difference representation for >, and >d. Iff’ is any other ratio/ 
difference representation for >, and >d, then f’ = yfA for y,A E Ret because f’ and f 
are both ratio representations for >,, and f’ = Irf + o for ?I E Ret and w  E Re 
because f’ and f are both difference representations for >d. Hence yf’ - 7zf - w z 0 
(where = signifies “is constantly equal to”), so A= 1, y = Z, and cu = 0. Thus.f’ = nf 
so f is a ratio scale. If 6 = -1, then --#i(x) -p = a[ l/#2(x)]B for all x EA. Since -4, 
is a difference representation for ad* and l/d2 is a ratio representation for ar-, we 
have g=-4, -/3=a[l/&le as the ratio/difference representation for >,+ and ads. 
The proof that g is a ratio scale is the same as the proof forf. 

There cannot exist both a ratio/difference representation f for >, and >d and a 
ratio/difference representation g for >,* and >.d*, for suppose they both existed. Then 
l/g would be a ratio representation for >, and -g would be a difference represen- 
tation for >.d. By the uniqueness of these representations, f = -ag - p = q( l/g)’ for 
a,q,AERe+ and ,f? E Re. Hence 

-agA + ' -pg” -qrO. (2) 
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Since g(A) is dense in a nonempty interval of real numbers (see Fnd, p. 159 for the 
proof), there are no a, 1 E Re + for which (2) is satisfied. So f and g cannot both 
exist. Q.E.D. 

It is clear from Theorem 1 that the ratio/difference representation can be 
axiomatized by supplementing generalized ratio/difference compatibility with 
conditions that distinguish between the case where a representation exists for >, and 
>d, and the case where a representation exists for a,.* and >d*. Such conditions will 
now be described. Suppose that >, and ad satisfy generalized ratio/difference 
compatibility, that $ is a ratio representation for >, and that v is a difference 
representation for >.d. Consider the possible relations between 6 and I+Y. There exists a 
ratio/difference representationffor a?, and asd ifff is a ratio representation for >, and 
f is a difference representation for hd, i.e., iff a#’ =f = A+Y + r for a,P, A E Re’ and 
7 C Re. Therefore, the existence of a ratio/difference representation f is equivalent to 
the existence of constants q = a/A E Re+ and fi = -r/A E Re such that 

ly=il$B+p. (3) 

By the same reasoning, there exists a ratio/difference representation g for >,* and >de 
iffa$-“=g=--Aw+tfor a,p,JERe’ and r E Re, and this is equivalent to 

‘y= -?l$rB +p (4) 

for q=a/lEReC and ,U = r/A E Re. Furthermore, it can be shown that 

w=~llog(61 +P (5) 

for VERe’ and ,U E Re is equivalent to the hypothesis that, with the exception of 
condition (iii), all assumptions of generalized ratio/difference compatibility are 
satisfied, i.e., >, and >d are identical orderings, (A x A, 2,) is an algebraic difference 
structure and conditions (i) and (ii) of Definition 2 hold. 

Fagot (1963) points out that there is a simple way to distinguish between (3), (4), 
and (5). To describe the appropriate diagnostic property, it will be helpful to 
introduce some temporary existential assumptions. Later, these assumptions will be 
dropped once the basic ideas have been explained. Suppose that for every w, z E A, 
there exist a >, midpoint and a >d midpoint in the sense that there exist U, u E A 
such that wu -vT uz and wu wd UZ. If this is the case, one can define binary operations 
jr and jd on A by selecting for each w, z E A, elements w  1,. z and w  Id z satisfying 

NW lr z) -r (w lr 2) z, (6) 

w(w idZ) -d cw idZ) ” (7) 

By definition, w  1,. z is a >, midpoint between w  and z, while w  Id z is a midpoint 
between w  and z. Given a ratio representation Q for 2, and a difference representation 
w  for ad, the relations (6) and (7) imply that #(w)/#(w irz) = #(w lrz)/@(z) and 
dw) - dw id z> = wtw Id z> - W(z>* Thus, $(w lrZ> = M(w) $w’z and 
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w(w Id z) = [v(w) + 11/(2)]/2. In other words, #(w lr z) is the geometric mean of $(w) 
and 4(z), while w(w Id z) is the arithmetic mean of v(w) and w(z). Fagot (1963) 
points out that (3)-(5) can be distinguished by the conditions: 

(a) Equation (3) holds iff d(w Id z) > #(w lr z) for all w, z E A such that 
6(w) # !Nz)* 

(b) Equation (4) holds iff #(w Jdz) < d(w lrz) for all w, z E A such that 
d(w) # 4(z)* 

(c) Equation (5) holds iff o(w Id z) = Q(w (, z) for all w, z EA. 

Thus (3~(5) are distinguished by whether for every pair w, z E A of nonequivalent 
stimuli, d applied to the >d midpoint of w  and z is strictly greater than, strictly less 
than, or equal to the geometric mean of 4(w) and d(z). 

Since (3) implies that a ratio/difference representation exists for 2, and ad, the 
equivalence in (a) shows that the ratio/difference representation can be axiomatized 
by augmenting generalized ratio/difference compatibility with a qualitative axiom 
guaranteeing that )(w Jd z) > d(w jr z) f or all w, z E A such that d(w) # Q(z). The 
following postulate formalizes this property: 

(d) For all w, z E A, if wz hrzz, then (w jdz)(w j,.z) >,zz. 

If (d) is added to Definition 2, and if >, and h.d midpoints exist for every pair of 
elements, then 2, and &, possess a ratio/difference representation. Although this 
statement should be qualified in ways described below, one can say heuristically that 
the error in the axiomatization stated in Krantz et al. (1971) is that it fails to assert 
that >.d midpoints of nonequivalent stimuli must strictly exceed corresponding 2, 
midpoints. 

Rather than to include (d) in an axiomatization of the ratio/difference represen- 
tation, however, it is preferable to weaken (d) in ways that increase both the 
generality and the empirical testability of the axiomatization. Assuming that >, and 
ad satisfy generalized ratio/difference compatibility, either (3) or (4) must hold. But 
if there exists even one pair w, z E A such that d(w) # 4(z) and d(w Id z) > #(w 1,. z), 
then (b) implies that (4) is false. But then, (3) must be true, so a ratio/difference 
representation exists for a-, and >d. This argument suggests the postulate: 

(e) There exist w, z E A such that (w Id z)(w jr z) >r zz and wz ?Lr zz. 

If (e) is added to the assumptions of Definition 2, then >, and ad possess a ratio/dif- 
ference representation. The advantage of (e) over (d) is that it only requires that a ad 
midpoint exceed a >, midpoint for one pair of nonequivalent stimuli, and hence, its 
empirical verification is simpler than that of(d). 

The only shortcoming of (e) is that it requires that a >, midpoint and a ad 
midpoint exist for at least one pair w, z E A such that wz 7Ld zz. Since this existential 
claim might be difficult to establish in certain applications of the theory, it would be 
preferable to weaken it. To see the appropriate weakening, appeal must be made to 
the following technical point. It is proven in Fnd (p. 159) that if (A x A, 2,) and 
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(A x A, ad) are algebraic difference structures,and if 2, and >d possess a ratio/dif- 
ference representation, then there exist intervals I, and Id of real numbers such that 
#(A) is dense in Z, and t&4) is dense in Zd.3 Therefore, even if midpoints w  II z and 
w  Id z do not exist, there must exist elements that are arbitrarily close to the midpoint 
locations in the sense that for any E > 0 there exist p, q E A such that E > ] log 4(p) - 
log[$(w) (b(z)] “2 ] and E > ] w(q) - [v(w) + v(z)]/2 ]. It should be plausible that (e) 
can be reformulated using elements that are close to if not precisely at the >, and >.d 
midpoints of w  and z. The desired condition is stated in: 

(f) There exist w, x,y, z E A such that wx >d xz, wy Gryz, wz Ar zz and 
xy >r xx. 

Intuitively, the elements x and y of (f) may be thought of as having been chosen to 
satisfy E > [v(w) + v(z)]/2 - v/(x) > 0 and E > log Q(y) - log[d(w) #(z)]“~ > 0 for 
some very small E. In other words, x is close to and below the >d midpoint of w  and 
z, and y is close to and above the >, midpoint of w  and z. 

Theorem 2 asserts that if (A x A, >,) and (A x A, >J are algebraic difference 
structures such that 2, and ad possess a ratio/difference representation, then (f) must 
be satisfied. Indeed, for any choice of w, z E A such that wz 4, zz, there exist x, y e A 
satisfying (f). Conversely, if >, and ad satisfy (f) and generalized ratio/difference 
compatibility, then a ratio/difference representation exists for 2, and >.d. Before 
stating the representation theorem, it will be useful to state and prove a lemma 
showing that (f) implies condition (iii) of Definition 2. This lemma permits the 
substitution of (f) for condition (iii) of Definition 2 in the axiomatization of the 
ratio/difference representation. 

LEMMA 2. Let (A x A, 2,) and (A x A, 2,) be algebraic differertce structures 
satisfying conditions (i) and (ii) of Dej?nition 2. if there exist w, x, y, z E A such that 
wx >d xz, wy Grjvz, wz 7L, zz and xy >, xx, then ad and & are not identical. 

ProoJ Since (A x A, >d), is an algebraic difference structure, there exists a 
difference representation f for >d. Using the difference representation, it readily 
follows that if ab >da’b’, then ba cd b’a’, and if ab ada’b’ and bc >d b’c’, then 
ac>,a’c’, for any a,b,c,a’,b’,c’EA. Let w,x,y,zEA satisfy WX>~XZ, wy<,yz 

and xy >,xx. By (i), xy >,xx. Now wx >Sd wx and xy >,XX imply wy >d wx, and 
LX >d zx and xy >,xx imply zy >d~~, i.e., xz >dy~. Hence wy >d wx >d~~ >d yz. 
But then wy >dy~ and wy &yz, so >d and 2, are not identical. Q.E.D. 

The ratio/difference representation can now be axiomatized using conditions (i) 
and (ii) of Definition 2 and the condition formulated in Lemma 2. 

THEOREM 2. Let >, and ad be quaternary relations on an arbitrary set A such 
that (A X A, >,.) and (A x A, ad) are both algebraic difference structures. Then there 
exists a ratio/d@erence representation f for >, and ad iff the following conditions 
(i)-(iii) hold: fir any x, y, z, x’, y’, z’ E A, 

’ See footnote 2 for the definition of “dense in an interval of real numbers.” 
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(i) xy 2, xx iff xy 2d-w 
(ii) if xx’ wT yy’ -T zz’, then xY>~ yz zjjf x’y’ >d y’z’, 

(iii) there exist w, x, y, z E A such that wx adxz, wy Gryz, wz 7Ld zz and 
xy >r xx. 

Proof: First, suppose thatf is a ratio/difference representation for >, and >d d. It 
is proven in Fnd (p. 153) that the existence off implies conditions (i) and (ii) of 
Theorem 2. To prove condition (iii), first note that we are assuming throughout this 
essay that ad is nondegenerate in the sense that ab >d a’b’ for some a, 6, a’, b’ E A. 
If ab -d bb wd b’b’ -d a’b’, then ab -d a/b’, contradicting ab >d a’b’. Since 
bb -d b’b’, either ab 7Ld bb or a’b’ ?Ld b’b’. In either case, there exist w. z E A such 
that wz ?Ld zz. Choose any such w  and z, and let s, t E Ret satisfy 
s = b-(w) +f(z)lP and t = ]f(w)f(z)] I”. Then 4s’ =f(w)* + 2f(w)f(z) +f(z)’ 
and t* =f(w)f(z), so 4s’ - 4t2 = [f(w) -f(z)]’ > 0. But then s - t = (s’ - t’)/ 
(s + t) > 0, so s > t. Let E = s - t. 

We know from the proof of Theorem 1 that f(A) is a dense subset of an interval of 
positive real numbers (see Fnd, p. 159). Therefore there exist x, y E A such that 
e/2 > s -f(x) > 0 and s/2 >f(y) - t 2 0. Hence E > s -f(x) +f(y) - t. Since 
s--t==, O>./-(Y)--f( x , ) i.e., f(x)/(y) > 1. Hence xy >,xx. From the choice of s 
and x, 2f(x) <f(w) +f(z). Thus, f(w) -f(x) >f(x) -f(z), i.e., wx >.d xz. From the 
choice of f and Y, f(y)* >f(w)S(z), so f(w)/!(y) <f(y)/!(z), i.e., WY <,YZ. Hence 
we have proven the existence of w, x, y, z E A satisfying wx >d xz, wy Gryz, wz 7Ld zz 
and xy >r xx. 

Conversely, suppose conditions (i)-(iii) of Theorem 2 hold. By Lemma 2, condition 
(iii) of Definition 2 follows from condition (iii) of Theorem 2. Since condition (i) and 
(ii) of Definition 2 and Theorem 2 are identical, generalized ratio/difference 
compatibility is satisfied by 2, and >d. By Theorem 1, either there exists a ratio/dif- 
ference representation f for 2, and ad, or there exists a ratio/difference represen- 
tation g for 2,. and ad*, but not both. Choose w, x,y, z E A satisfying (iii) of 
Theorem 2. If g exists, then g(w) - g(x) < g(x) -g(z), and g(w)/g( y) 2 g( y)/g(z). 
Hence 2g(x) > g(w) + g(z) and g(w) g(z) > g(y)‘. Since g(w) # g(z), we have 

4g(x)2 - 4g( y)’ > g(w)’ + 2g(w) g(z) + g(z)’ - Ww) g(z) 

> [g(w) -&)I2 > 0. 

Therefore [g(x) + g(y)1 [ &> - g(y)1 > 0. Since g(x) + g(v) > 0, we have 
g(x) -g(y) > 0, i.e., g(x)/g(y) > 1. Hence xy >,* xx, or equivalently, xy <r xx. But 
this contradicts xy >,. xx. Therefore g does not exist, so f exists. Q.E.D. 

Since under the hypotheses of Theorem 2, conditions (i)-(iii) of that theorem are 
necessary and sufficient for the existence of a ratio/difference representation, they 
may be regarded as defining a property called “ratio/difference compatibility.” 

DEFINITION 3. Let 2, and ad be quaternary relations on an arbitrary set A. 
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Then, we say that & and ad satisfy ratio/difSerence compatibility iff (A x A, 2,) and 
(A x A, ad) are algebraic difference structures and conditions (i)-(iii) of Theorem 2 
are satisfied. 

The terminology makes sense because ratio/difference compatibility is a special 
case of generalized ratio/difference compatibility and Theorem 2 establishes that 
ratio/difference compatible relations possess a ratio/difference representation. 

The following corollary points out that if there exists a pair of nonequivalent 
elements for which >, and h.d midpoints exist, then there is a simple test for whether 
a ratio/difference representation exists for 2, and >dr or for >,.* and ad*. 

COROLLARY 1. Let & and ad be quaternary relations on an arbitrary set A such 
that 2, and 2d satisfy generalized ratioldlflerence compatibility. Let >,+ and >.d, be 
the respective inverse relations to 2,. and ad. Suppose that w, x, y, z E A are any 
elements satisfying wx md xz, wy -T yz and wz 7Ld zz. Then, xy &7L, xx and 

(i) xy > I xx z@ there exists a ratio/dSfference representation f for >, and >d, 

(ii) xy <? xx lg there exists a ratio/difference representation g for >r. and hde. 

Proof: Let w, x, y, z E A satisfy wx N~XZ, xy wr,yz and wz 7Ld zz. Note that 
wx -p xz, wy NT* yz and wz 7Lde zz, by definition of a,.* and >?d-. By Theorem 1, 
either there exists a ratio/difference representation for 2, and ad, or there exists a 
ratio/difference representation for >,+ and ad*, but not both. If f exists, then 
f(w) -f(x) =f (x) -f(z). f(w)lf(y) =f (y)/f (z) and f(w) -f(z) f 0. Hence 
2f (x) =f (w) +f (z) and f (y)’ =f (w)f (z), so 

4f (x)’ - 4f(Y12 = If(w) -f (41’ > 0, (8) 

Since j(x) + f (y) > 0, the left side of (8) can be factored to yield f(x) -f(y) > 0. 
Thus f (x)/f ( y) > 0, so xy > r xx. Conversely, if xy > r xx, then w, X, y, z satisfy (iii) of 
Theorem 2. Since >, and >d satisfy generalized ratio/difference compatibility, the 
remaining assumptions of Theorem 2 are satisfied. Therefore there exists a ratio/dif- 
ference representation f for 2, and ad by Theorem 2. A completely analogous 
argument shows that g exists iff xy >r+ xx, i.e., iff xy <I xx. Since f or g exists, we 
have xy ?Lr xx in either case. Q.E.D. 

According to Corollary 1, if 2, and ad satisfy generalized ratio/difference 
compatibility and if it is possible to find a hd midpoint x and a >, midpoint y for 
some pair of nonequivalent stimuli, then it is easy to establish whether 2,. and >d, or 
a,.* and hd* possess a ratio/difference representation. If x is strictly greater than y, a 
ratio/difference difference representation exists for >P and asd. If x is strictly less than 
y, a ratio/difference representation exists for >r* and >.d*. Furthermore, it must be the 
case that either x is strictly greater than y or x is strictly less than y. Earlier, the 
heuristic remark was made that the axiomatization of the ratio/difference represen- 
tation in Fnd falls short of being sufficient because it omits the requirement that the 



450 JOHN M.MIYAMOTO 

ad midpoints of nonequivalent elements must be strictly greater than the 
corresponding 2, midpoints. This remark is valid in any case where it can be 
established that there exists at least one pair of nonequivalent elements for which a >, 
midpoint and a >d midpoint both exist. If no such pair exists, the weaker condition 
(iii) of Theorem 2 will do in its stead, although its verbal formulation is not as simple 
to state. 

APPENDIX 

The proof of Lemma 1 given here parallels the logic of the proof given in Fnd 
(pp. 160-163), with the exception that a correction is substituted at the point where 
that proof goes wrong. The present proof also differs from that of Fnd in that certain 
constructions are explicitly formalized here, whereas they are only informally 
sketched in Fnd. To facilitate comparisons between the present proof and that of Fnd, 
equations will be numbered in the manner (k/n) to indicate that the equation is the 
kth equation of the present essay and the nth equation of the relevant sections of Fnd 
(pp. 152-154; 158-163). For example, Eq. (1) will henceforth be referred to as 
Eq. (l/5) since it is the first equation of this article but Eq. (5) in the indicated 
sections of Fnd. Equations only appearing in the present article will be numbered in 
the usual manner, consecutively with the other equations. 

Proof of Lemma 1. It is routine to check that functions of the forms (i) and (ii) 
are continuous, strictly increasing, and satisfy (l/5). We must show that these are the 
only functions that satisfy (l/5). 

For t E Re+, define Z2(t) and Z,(t) by 

Z2(t) = {x E I, : tx E Z2}, 

II(t) = {H(x) E I, : x E Z*(t)}. 

If there exist a greatest element x* and a least element x* in I,, let 
2 = (x*/x*, x*/x*}. If x* or x* does not exist, let 2 = 0, where 0 denotes the 
empty set. Define T = {s E Re + : Z*(s) # 0) -Z. It is routine to show that T is an 
interval of real numbers, s E T iff s-l E T, and for any s E T, Z,(s) and Z,(s) are 
intervals of real numbers. (The reason for the fussy definition of T is that if 
s =x*/x*, then Z*(s) = {x*) is not an interval. So x*/x* and x*/x* must be 
excluded from T if we are to have that Z,(s) is an interval for all s E T.) 

By a neighborhood of unity, we simply mean an interval containing 1. The proof 
depends on constructing a neighborhood of unity having certain desirable properties 
(namely, equations (9), (1 l/l l), and (12/12)). This neighborhood of unity (denoted 
U) can be constructed as follows. Since Z2 is a positive interval, we can choose 
a,b,c,dEZ,suchthata>b>c>danda/b=c/d.Let~==and~=~.Since 
a > ,u > x > d, we must have ,u, 7c E I,. Choose <E Re+ such that r’ = a/b = c/d. 
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Then @=a, {-‘,u==, &r=c and c-‘n=d. HenceC1,nEl,(r)nI,(r-‘). Moreover, 
if 5-l < a < 5 and x E I,(<) f7 I,(<-‘), then <-lx < ax < &X so x E 12(a). Therefore 
463 n U5-1) E I,(a) f or every a such that r-’ < a < t. Define U= {t E T: 
r-’ < tZ < Q. Note that if s, t E U, then <-I < sf < <. Hence, st E T and 12(<)n 
I,(<-‘) c_ I,(st). Also, if t E U, then <-’ < t;-“’ < t < (I” < 5 so 1*(r) n 12(<-‘) L 
1,(t). We have established that there exist ,u, 71 E I, such that P # 7~ and 

for every s, t E U. 
It can be shown that (l/5) implies that 

H(tx) = y,(t) H(x) + Y*(t) (lo/lo) 

for all t E T and x E Iz(t), where y2 is some real valued function and y, is a positively 
valued function (Fnd, p. 161). Furthermore, using (9), it can be shown that y, and y2 
satisfy the relations 

Y,W) = Yl@> Yl(O, (ll/ll) 

Y,(~)lY&) - 1 I = YZ(S)lYI(~) - 11 (12/12) 

for every s, t E U [Fnd, p. 1621. For the sake of completeness, the derivation of 
(lo/lo)-(12/12) given in Fnd will be repeated here. 

For any t E T, define f,: I,(t) + I, by S,(u) = H[t . H-‘(u)] for every u & Z,(t). 
Since f, is a composition of continuous functions, it is continuous. For any 
u, ZI E 1,(t), let x = H-‘(u) and z = H-‘(v); by definition of I,(t), x, z, tx, iz E I, so 
by (l/5) we have 

(13/g) 

Therefore f, satisfies Jensen’s equation; its only continuous solutions on an interval 
1,(t) have the form f,(u) = y,u + yz (Aczel, 1966, Sect. 2.1.4). Here, y, must be 
positive since f, is increasing. Noting that y, and y2 may depend on t and that 
u = H(x) for some x E Z*(t), we have f,[H(x)] = y,(t) H(x) + y2(t). Applying the 
definition of f,, we have (IO/IO). Now choose any s, t E U. We know that 
tp, tlr E Z*(s) and s,u, sz E 12(f) for the y, II satisfying (9) because p, II E 1*(s) n Z,(t) f-7 
I&). From (lo/lo) we have 

y,(st)[H@) - H(n)] = HW) - fWn) 

= Y,(~)IWP) - HW)l 

= Y,(S) Y,(wG) - H(n>l. 

480/27/4-E 
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Since H is strictly increasing, H(n) - H(n) # 0. Therefore (1 l/ 11) holds. 
Furthermore, repeated application of (lo/lo) yields 

Multiplying out this last equation and rearranging terms yields (12/12). 
The proof now splits into two cases. First, suppose yI = 1 in U. Then Eq. (lo/ 10) 

implies that 

Wx) = H(x) + Y&) (14/13) 

for any t E U, x E ZJt). For arbitrarily chosen s, t E U, we may not have st E U. 
Nevertheless for the y, rt E I, satisfying (9), Eqs. (14/13) and (lo/lo) imply 

f-f@) + Y&I + Y&I = H(w) + YES) 
= H(stp) 

and similarly, 

H(n) + Y&I + Y&I = Y,W H(n) + ~z(sf>. (15) 

Hence, H(u) -H(n) = yl(st)[H@) -H(n)]. Since H(U) #H(x), yi(st> = 1. Com- 
bining this with (15) yields 

Y&C) = W) + YAG (16/14) 

for any s, t E U. 
Second, suppose yi & 1 in U. It is claimed in Fnd (p. 162) that in this case, 

y,(t) = 1 iff y2(t) = 0, but this statement is too strong. If yi(r) = 1, then (12/12) 
implies that yJt)[y,(s) - l] = 0. Since s E U may be chosen such that y,(s) # 1, it 
follows that y,(t) = 0. Therefore, yi(t) = 1 implies that y*(t) = 0. The converse, 
however, is not true. Even if y2(t) = 0, if y2(s) = 0 for all s E U, then yr(t) need not 
equal 1. For example, if H is the identity function, then H satisfies (l/5), and 
H(tx) = y,(t) H(x) + y2(t), where y1 is the identity function and y2 = 0. But then for 
t # 1, y2(f) = 0 but yi(t) # 1. This error does not lead to invalid inferences in the 
remainder of the proof presented in Fnd. 

If y, & 1, choose s, t E U such that yi(s), y,(t) # 1. Separating variables in (12/12) 
yields 
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where p # 0 iff y2(t) # 0 for some t E U such that yl(t) # 1. Thus, y*(t) =/3[y,(t) - I] 
for all t E U (including those t for which yl(t) = 1). Substituting this in (lo/lo) yields 

Wx) + P = Yl(w(x) + PI (17/15) 

for all t E U and x f Z,(t). 
It is important to examine the sign of H(x) +p, First suppose that H(x) + /? = 0 

for some x E I,. Since I, is an interval, there exists y E I, such that y < x or x < y. If 
y < x, choose t E U such that y < tx < x. Then tx E I,, so (17/15) implies that 
H(tx) + P = y&)[H(x) + P] = 0 = H(x) + 8, contradicting the assumption that H is 
strictly monotone increasing. Similarly, x < y leads to a contradiction of the same 
assumption. Hence, H(x) + p # 0 for every x E I,. But now, if H(x) +/l < 0 and 
H(,v)+P>O for some x,yEZ,, then there exists z E I, such that H(z) + /3 = 0 
because H is continuous and I, is an interval. Since this is impossible, H(x) + ,8 > 0 
for all xEZ, or H(x) -i-p< 0 for all xEZ,. 

To see that there exists H satisfying (l/5) for which H(x) + /3 is always negative, 
let H(x)=-x-’ for xERe + . Then H is a continuous, strictly increasing function 
satisfying (l/5), p = 0 and H(x) + p < 0 for all x E Re+. On the other hand, if H is 
the identity function on Re’, H satisfies (l/5), /3 = 0 and H(x) + p > 0 for all 
xERe+. 

Note that Eqs. (1 l/l 1) and (16/14) are satisfied by all s, t E U. As pointed out in 
Fnd, these equations are variants of Cauchy’s equation whose respective solutions in 
any neighborhood of unity are 

Yl(f> = te, U8/16) 

Y*(f) = rl 1% t (19/17) 

for some real 8 and r (see, also, Aczel, 1966, Sect. 2.1.4). If y, = 1 in U and thus 
(16/14) holds, then yz must be strictly increasing because H is strictly increasing and 
(14/13) holds. Thus, q in (19/17) must be positive. 

The critical error in the derivation in Fnd occurs at this point. It is asserted in Fnd 
that if y1 f 1 in U, then y1 is strictly increasing because H is strictly increasing and 
(17/15) holds. But this inference is valid only if H(x) t p is necessarily positive, and 
as previously noted, this condition is not satisfied. Since H(x) + p can either be 
always positive or always negative, y1 can either be strictly increasing or strictly 
decreasing. Hence, if y1 & I, the parameter B of (18/16) can either be strictly positive 
or strictly negative depending on the sign of H(x) t p (for any x E I,). 

The remainder of the proof is essentially the same as the proof given in Fnd. 
Suppose y1 f 1 in U. Then from (18/16) and (17/15) we have 

H(tx) + P = te[H(x) f P] (20/19) 

for all t E U and x E Z,(t). Choose an arbitrary x,, in the interior of I,. For any 
x E I, such that x/x0 E U, (20/19) yields 

H(x) + P = H[ (x/x,,) x0] + P = (x/x# (H(x,) t P] = axe (21) 
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where Q =x; “[H(x,) + p]. To show that (21) actually holds for all x E I,, let 
V= {xeZ,:x > x,, and H(x)+/I # axe}. If V is nonempty, let u be the greatest lower 
bound of V. Choose y E V and x E I, - V such that y > u > x > x,, and y/x E U. 
Since H(x) + /3 = ax’, (20/19) implies that 

H(Y) t P = (Y/-4”W) + PI = aYe 

contradicting the choice of y. Hence V = 0. Similarly, let W = (x E I, : x < x0 and 
H(x) + /3 # axe}. If W is nonempty, let w  be the least upper bound of W. Choose 
y E W and x E I, - W such that y < w  < x < x0 and y/x E U. Repeating the previous 
argument shows that H(y) + p = aye, contradicting the choice of y. Hence W = 0. 
Therefore (21) holds for all x E I,. But this shows that H(x) = axe - p for all x E I,. 
Since H is increasing, the definition of a and (2 1) imply that a > 0 iff H(x,) + p > 0 
iff B > 0. Let 6 = +l or -1 depending on whether H(x,) + /I > 0 or (0. Then we can 
stipulate that a and 0 be positive, and H(x) = Gaxse --/I. 

If yi = 1 in U, then from 

for t E U, x E I*(t). Again 
x E I, such that x/x0 E U, 

(14/23) and (19/17) we have 

H(tx) = H(x) + ?/ log t 

choosing an arbitrary x0 in the interior of I, and any 

H(x) = ~[W%) x01 = Wd + ?PW x/x,1 
(22) 

=?/logxta 

where a = H(x,) - v log x0. But the same argument used to show that (21) holds for 
all x E I, when y, & 1 in U proves that (22) holds for all x E I, when y, E 1 in U. 

Q.E.D. 

REFERENCES 

ACZEL, .I. (1966). Lectures on functional equations and their applications. New York: Academic Press. 
BIRNBAUM, M. H. (1978). Differences and ratios in psychological measurement. In N. J. Castehan, Jr. & 

F. Restle (Eds.). Cognitive theory- (Vol. 3). Hillsdale, N. J.: Erlbaum. 
BIRNBAUM, M. H. (1980). Comparison of two theories of “ratio” and “difference” judgments. Journal of 

Experimental Psychology: General, 109, 304-3 19. 
BIRNBAUM, M. H. (1982). Controversies in psychological measurement. In B. Wegener (Ed.). Social 

attitudes and psychophysical measurement (pp. 401-485). Hillsdale, N. J.: Erlbaum. 
BIRNBAUM, M. H., St ELMASIAN, R. (1978). Loudness “ratios” and “differences” involve the same 

psychophysical operation. Perception & Psychophysics, 23, 403408. 
BIRNBAUM, M. H., & MELLERS, B. A. (1978). Measurement and the mental map. Perception & 

Psychophysics, 23 (S), 403-408. 
BIRNBAUM, M. H., & VEIT, C.T. (1974). Scale convergence as a criterion for resealing: Information 

integration with difference, ratio and averaging tasks. Perception & Psychophysics, 15, 7-15. 
FAGOT, R. F. (1963). On the psychophysical law and estimation procedures in psychophysical scaling. 

Psychometrika, 28, 145-160. 



THE RATIO/DIFFERENCE REPRESENTATION 455 

GARNER, W. R. (1954). A technique and a scale for loudness measurement. Journal of fhe Acoustical 
Society of America, 26 (I), 73-88. 

HAGERTY, M., & BIRNBAUM, M. H. (1978). Nonmetric tests of ratio vs subtractive theories of stimulus 
comparison. Perception & Psychophysics, 24, 121-129. 

KRANTZ, D. H., LUCE, R. D., SUPPES, P., & TVERSKY, A. (1971). Foundations of measuremenf (Vol. 1) 
New York: Academic Press. 

MARKS, L. E. (1974). On scales of sensation: Prolegomena to any future psychophysics that will be able 
to come forth as science. Perception & Psychophysics. 16, 358-376. 

MELLERS, B. A., DAVIS, D. M., & BIRNBAUM, M. H. (1984). Weight of evidence supports one operation 
for “ratios” and “differences” of heaviness. Journal of Experimental Psychology: Human Perception 
& Performance, 10, 216-230. 

PARKER. S., SCHNEIDER, B., & KANOW, G. ((1975). Ratio scale measurement of the perceived length of 
lines. Journal of Experimental Psychology: Human Perception and Performance, 104, 195-204. 

RULE, S. J., & CURTIS, D. W. (1980). Ordinal properties of subjective ratios and differences: Comment 
on Veit. Journal of Experimental Psychology: General, 109, 296-300. 

RULE, S. J.. CURTIS, D. W. & MULLIN, L. C. (1981). Subjective ratios and differences in perceived 
heaviness. Journal of Experimental Psychology: Human Perception and Performance, 7, 459466. 

SCHNEIDER, B., PARKER, S., FARRELL, G., & KANOW, G. (1976). The perceptual basis of loudness ratio 
judgments. Perception & Psychophysics, 19, 309-320. 

STEVENS, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153-181. 
STEVENS. S. S. (197 1). Issues in psychophysical measurement. Psychological Review. 78, 426-450. 
TORGERSON. W. S. (1961). Distances and ratios in psychophysical scaling. Acta Psvchologica, 19 (5). 

201-205. 
VEIT, C. T. (1978). Ratio and subtractive processes in psychophysical judgment. Journal of 

Experimental Psychology: General, 107, 81-107. 
VEIT. C. T. (1980). Analyzing “ratio” and “difference” judgments: A reply to Rule and Curtis. Journal 

of Experimental Psychology: General, 109. 301-303. 

RECEIVED: September 21, 1983 


