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1. INTRODUCTION

One of the objectives of this paper is to show that the usual homological
consequences of the existence of big Cohen—Macaulay (henceforth, C~M)
modules (e.g., the new intersection conjecture of Peskine—Szpiro and Roberts
and the Evans—Griffith syzygy conjecture) follow from the direct summand
conjecture when the residual characteristic of the local ring is positive. This
gives a new and substantially more elementary proof of the standard
homological conjectures in case the characteristic of the ring itself is
positive, and reduces the general case of all these conjectures to one rather
down-to-earth conjecture. Of course, this places the direct summand
conjecture in a position of central importance, so that it now merits an all-
out attack. Some partial results on this problem are given in Section 6. (The
conjecture asserts that a regular Noetherian ring R is a direct summand (as
an R-module) of every module-finite extension ring S > R.)

The other main objective of this paper is to formulate and develop a
theory of certain “canonical elements” in the local cohomology of special
modules of syzygies. (Neither the modules of syzygies nor the induced maps
between them are canonical, but the identification between the canonical
elements is independent of the choices.) In particular, a canonical element
ne € Ha(syz" K) is associated (see Section 3 for details) with each n-
dimensional local ring (R, », K) (rings are commutative, associative, with
identity; “local ring” means Noetherian ring with a unigque maximal ideal).
The conjecture that 7, is nonzero for all local rings R turns out to be
equivalent to the direct summand conjecture: for a given R, an infinite family
of cases of the latter implies the former.

* The author was supported in part by grants from the National Science Foundation and
the John Simon Guggenheim Memorial Foundation.

503
0021-8693/83 $3.00

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.



504 MELVIN HOCHSTER

The canonical elements behave very functorially, so that the conjecture
“ng # 0 for all local R” lends itself to a large number of equivalent
formulations. In fact, we formulate a condition equivalent to #,+#0
(“property CE”) in Section 2 without reference to local cohomology, and it
is this form that we use to prove equivalence with the direct summand
conjecture and utilize to deduce the usual homological conjectures. It is
worth noting that 7, # 0 whenever R has a big C—M module. (This is the
essential content of Theorem (3.8).)

The reader should be aware that, roughly speaking, the conjectures under
consideration here are known for rings containing a field and in dimension
<2, and open otherwise. See {14, 18, 25].

To emphasize the very elementary nature of the arguments in the early
part of the paper, we have avoided all unnecessary machinery, including
local cohomology. This is slightly awkward occasionally, but seems
worthwhile.

In Section 3 we formulate and study the theory of canonical elements. In
Section 4 we discuss some connections with canonical modules pointed out
to be author by Joseph Lipman. In Section 6 we return to an investigation of
the direct summand conjecture. In particular, we give a new proof of it in
char. p > 0, and in mixed characteristic we show that it reduces to the case
of a formal power series ring over a complete unramified discrete valuation
ring.

The author is indebted to E. Graham Evans, who suggested a conjecture
closely related to (3.16) several years ago, and to Joseph Lipman, for many
valuable conversations concerning the material in this paper.

2. ProPERTY CE, THE DIRECT SUMMAND CONJECTURE,
AND THE DEDUCTION OF THE HOMOLOGICAL CONJECTURES

If x is the sequence x,,..., x, € R and M is an R-module, K, (x; M) denotes
the (homological) Koszul complex of M with respect to x,,...,x,. If £is a
positive integer, x’ = x}...., x4. If s > ¢, there is a map K, (x*; M) - K, (x'; M)
which multiplies the free generator indexed by i, --- i, by (x; --- x; )

We first want to define what it means for a local ring to “have property
CE” or to “satisfy CE.” (This will later turn out to mean that the canonical
element 7, associated with R is not 0.)

(2.1) DEFINITION. A local ring (R, »2, K) of dimension n satisfies CE
(or has property CE) if for every projective resolution

--—»Pl.—y---—>Pl——>P0—->K——>O
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of the residue class field X and for every system of parameters x,...., x,, for
R, if ¢ is any map of complexes K,(x;R)— P, which lifts the quotient
surjection R/(x,,..., x,,) = K, then ¢,: K,(x; R)— P, is nonzero.

Of course, since the projective resolution is exact and K,(x; R) is free,
there do exist such maps ¢. We also note that projectives over local rings are
always free [23]. Moreover:

(2.2) Remarks. (1) K,(x;R)=R.

(2) The condition is independent of the resolution, since given two
resolutions P, , @, there are maps P, — Q,, Q4 — P, which lift the identity
map on K.

(3) Hence, it is enough to consider a minimal resolution of K.

(4) One need only assume that the induced map R/(x,,..., x,) R = K is
nonzero (for one can multiply by a unit to adjust this otherwise).

(5) 1If Q. is a projective resolution

—»Q}.—»--- - 0Q,—0

of M (e, H(Qx)=0, j> 1, while Hy(Q«)=M), let syz;(M; Q) denote
Coker(Q;,,~ @,), i 20, which we identify with Ker(Q;,_,— 0, ;) if i>2.
(We also abbreviate this to syzi, M, syz'(M, Q,), or syz' M, if the meaning is
clear from the context.) Then given a map ¢: K (x;R)— P, as in the
definition of “R satisfies CE,” there is an induced map ¢, : R — syz"(K; P)
(R =K ,(x; R)). Evidently, if ¢,=0, then ¢, =0, while if ¢, =0 we may
choose ¢, to be zero.

Thus, R satisfies CE if and only if for some (equivalently, every) choice of
P,, for every system of parameters x,,..., x, and for every choice of ¢, the
induced map

#x: R (or K, (x; R))- syz"(K; Py)
is nonzero.

(6) The choice of ¢ is unique up to homotopy. It follows easily that ¢,
can be altered only by a map of R to syz"(K; P,) which extends to R" =
K, ,(x;R) and R is mapped into R" via rt- r(x,, =Xy, (=1)""' x,). It
follows that ¢,(1) can be altered precisely by adding an element of
(%1 5ees X,) SYZ" (K5 Py).

Thus, R satisfies CE if and only if for some (equivalently, every) choice of
P, for every choice of x,..., x,,, and for some (equivalently, every) choice
of ¢: K, (x; R) » P, which induces the quotient surjection R/(x,,..., x,) = K,
the induced map

05 : K (x; R) - syz" K/(x, ... x,,)) syz" K
is nonzero.
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(7) ¥ ¢, is one induced map K,(x;R)-P,, then the map
K, (x'; R) > K4(x; R) described earlier yields a choice of y: K, (x’; R)— Py
and hence a map K ,(x'; R) - P,. This map turns out to be (x/™' --- x,7") 4,,.
Combining this observation with (6), we see that R satisfies CE if and only
if for some (equivalently, every) choice of P, , for every choice of system of
parameters Xx,.,..., X,, and for some (equivalently, every) choice of ¢, for all
positive integers ¢

X7t X9, (1) € (e xh) sy2” K.

(8) If the condition given in the last sentense of (7) holds for one
system of parameters x,,..., x,,, then it holds for every system of paremeters.
To see this note that if y=y,,.., y, and z=1z,,..., z, are two systems of
parameters and (z,,..,2,) R < (.., V)R, say z;=37_,a,;y;, 1<i<n,
then there is a map K, (z; R) » K (y; R) such that the matrix of the induced
map on K,’s is A"(a;); hence if we can find an admissible map ¢ from
K. (y;R) to a free resolution of X such that ¢, =0, we can compose with
K.(z; R) - K. (y; R) to obtain such a map for z.

Hence, if ¢, O for all choices of ¢ for a family of systems of parameters
Xypoes Xups £ =1, 2, 3,.., such that the ideals (x,,,..., x,,) are cofinal with th
powers of », then ¢, + 0 for all systems of parameters and choices of ¢. In
particular, we may choose x;, = x!.

Yet another characterization of satisfying CE that we shall need in the
sequel is

(2.3) PROPOSITION. (R, #) satisfies CE if and only if for every system of
paramelers X,,..., X,, for every free complex F

i Fim i Fys 0

with finitely generated F;, and for every map ¢: K.(x; R)— F, such that
9o(R) has a nonzero image in H,(F,)® K, where K =R/, the map
¢,: K, (x; R)— F, is nonzero.

Proof. = The hypothesis implies that we may choose an augmentation
Fy— K- 0 so that we still have a complex and the map R/(x,,..., x,) > K
induced by K.(x; R) - F, is nonzero. But then we may map F, - K- 0 to
projective resolution P, — K — 0 such that the induced map on K is the
identity and the composition then gives a map K, (x; R) - P, which induces
a nonzero map R/(x,,..,x,) R —» K. But then if R satisfies CE, we have
(F,» P,) o ¢,+0, whence ¢, + 0, as required.

< is obvious. Q.E.D.
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(2.4) COROLLARY. Let (R, m)—>" (S, ») be a local homomorphism of
local rings and x,,..x, a system of parameters for R such that
h{(x )s..s B(x,) is a system of parameters for S. Suppose that S satisfies CE.
Then R satisfies CE.

Proof. Given a counterexample ¢: K,.(x; R)—> F, to the statement of
Proposition 2.3, apply &X S to obtain a counterexample over S, Q.E.D.

We next motivate the study of rings which satisfy CE by proving that the
new intersection conjecture holds for such rings. Later we shall see that
virtually all the other usual consequences of the existence of big C-M
modules (other than the existence itself) also follow.

We first recall the new intersection conjecture of Peskine—Szpiro |26) and
Roberts [27], in its simplest form.

(2.5) Conjecture (new intersection conjecture). Let (R, =) be a local
ring and let F be a finite complex of finitely generated free R-modules:

0-F;»-« »F;>.-- 2 F;-0.

Call the length of F ., d. Suppose that the homology modules H(F ) all have
finite length (i.e., are killed by a power of ) and that Hy(F,)+ 0. Then
dim R < d.

This conjecture was proved for local rings of positive prime characteristic
p > 0 independently in [26, 27], and it is observed in [15] that it holds
whenever R has a big C-M module. It is important, since it implies the
original Peskine~Szpiro intersection conjecture [25], Auslander’s zerodivisor
conjecture |1, 2] and an affirmative answer to Bass’ question |[3]. See also
[14, 18, 22] for more information.

We now give a purely elementary proof that if R satisfies CE, then the
new intersection conjecture holds for R. We then show how to deduce that
every local ring of positive residual characteristic satisfies CE from the direct
summand conjecture (which is known [13] for rings containing a field). This
yields a new proof of the homological conjectures in char p > 0; moreover,
the general case reduces to poving the direct summand conjecture.

For application to the syzygy problem studied by Evans and Griffith [6],
we prove a slightly improved version of the new intersection conjecture. First
note that if H,(F4) =0, we can shorten the complex by splitting a piece off
the right-hand end, and so instead of assuming that H,(F,)# 0, one might
as well assume that H (F,)+ 0. We can then weaken the condition that
H(F,) have finite length as follows:

(2.5°) Conjecture (Improved new intersection conjecture). Let (R, ») be
a local ring and let F,, be a finite complex of finitely generated free modules

0-F;— .- > F;—»0

481/84/2-15



508 MELVIN HOCHSTER

such that H(F,) has finite length for i >0 and H,(F,) has a (nonzero)
minimal generator z such that Rz has finite length. Then dim R  d.

(2.6) THEOREM. Let (R, ) be a local ring which satisfies CE. Then the
improved new intersection theorem holds for R.

Proof. Let F, be a complex of length d < dim R =n as described in
(2.5°), and let x = x,,..., x, be a system of parameters for R. Choose a map
¢o: R - F, such that the image of 1 in F, maps to the minimal generator z of
H(F4) such that R, has finite length. It follows that ¢,(1) & #»F,, i.e., ¢4(1)
is apart of a free basis for F,;. We shall show that for sufficiently large ¢, ¢,
lifts to a map of complexes

6: K (x'sR)> F.

In fact, we shall use induction on i to prove that we can define ¢ out to stage
K (x*; R) for all i, possibly enlarging . Let M = Coker(F, - F,). Let K;(t) =
K(x';R). Since Rz has finite length, we have AnnRz> (x{,..,x)R for
large ¢, so that for sufficiently large ¢ we have a commutative diagram

Fy —— M

b

Ko(t) = R/(x1 50 X3)

R

Working inductively, we suppose that for some i>0, we have already
defined ¢,,..., ¢; as indicated in the diagram

wor— Fipy — F, —— » Fy » M -0
Coo | |
. o; %0

o K () K o = Ko() — R/(X) ety X, ) — 0

so that the diagram commutes. The problem is then to define ¢,,, so as to
make the leftmost square commute. While we cannot necessarily do this for
the value of ¢ already selected, we can do it for ¢ + s sufficiently large. To see
this, let Z = Ker(F,» F,_,) and B = Im(F,, , > F,). Since H(F,) = Z/B has
finite length, we can choose a positive integer ¢ such that (x,,..., x,)* Z < B.
By the Artin—Rees lemma, we can choose a positive integer s such that
(x5s X, F,NZ < (x),..., X,)° Z = B. By combining the map of complexes
to stage i with the map of Koszul complexes, we obtain a diagram
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—_— Fi+| bixt — FI i FO M 0
I’ﬁi ]’00 I
K({t) —— - K, () R/(x},, xt)——0

[ -] i

.
K (04 ) L Kt 4 5) s s K+ 8) > RISy XU ) —— 0.

We can complete the first step of the proof by constructing a map
K;, ,(t+5)— F,,, which makes the diagram commute. But it follows from
the definition of the map u of Koszul complexes that uK,(t+s)c
(X150 X,)" K (f) whence the image of any free generator U; of K;, (¢ +5)
under Qu,d;,, lies in (x,,.,x,)° F;. Moreover, &, 6u,d;  U;=
¢, 4;_1(d;d;, U)=0, whence (p,u)d;, \ U, € (x,,...,x,)° F;NZ B, and
we can choose f; € F,;; such that 6, , f; = (¢,u,)(d;, , U,). If we choose such
an f; for each free generator U; of K; (¢ + s), the map which sends each U,
to the corresponding f; makes the diagram commute.

Thus, we eventually obtain a map ¢: K, (x’; R) - F, for some suitably
large ¢. Since F, =0, ¢,=0, and R cannot satisfy CE. This contradicts the
assumption. Q.E.D.

The improved new intersection theorem is proved for local rings R which
have a big C-M module in [6], although it is not explicitly stated there. The
next result shows that if every local ring satisfies CE, then the syzygy
problem of Evans—Griffith can be settled affirmatively. In particular, the
direct summand conjecture implies an affirmative answer for the syzygy
problem.

(2.6°) CorROLLARY. Let R be a Cohen—-Macaulay domain and let M be a
non-free kth syzygy with pd M < oo. Suppose that all local rings of
homomorphic image domains of R satisfy CE. Then M has torsion-free rank
at least k.

Proof. Precisely as in [6], we note that we can localize a counterexample
sO as to get a new counterexample such that the new M is locally free on the
punctured spectrum of the new local ring. Assume that we are in this
situation. Consider a minimal generator w € M and let I be the order ideal of
w, i.e.,

I=0,(w)={f(w): f € Hom,(M, R)}.

As in [6], we note that if M is a counterexample of smallest rank k, we must
have ht I < k — 1. Hence, we can choose P > I with ht P  k — 1, and we can
then tensor a minimal free resolution of M, say

0-F;».->F,-M-0
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with 4 =R/P. We thus obtain an A4-free complex with augmentation M
(where N denotes N/PN), namely,

0-F,» - 5 Fy>M-0.

Here, d=pd, M  dimR —k <dim R — (k — 1) =dim 4. As in [6], we note
that z, the image of w in M, generates a nonzero submodule of finite length
(in [6] it is shown even that the image of w in M/IM generates a submodule
of finite length) and since w&€ M — »M we know that z is a minimal
generator of M. But then d < dimA contradicts the hypothesis that A
satisfies CE, for we may apply Theorem (2.6). The contradiction shows that
a counterexample cannot exist. Q.E.D.

This is virtually the same argument given in [6]; the difference is that
Evans—Griffith use big C—M modules to establish the improved new inter-
section theorem (which they do not isolate explicitly) rather than talking
about property CE.

We next observe

(2.7) THEOREM. If a local ring (R, », K) has a big Cohen—-Macaulay
module M, then R satisfies CE.

Proof. Recall that M is a (not necessarily finitely generated) R-module
such that some system of parameters x,,..,x, is an M-sequence and
(X} 30es X, ) M = M (equivalently, » M = M). Then, for all ¢, x\,...,x! is an M-
sequence. Suppose we have a map ¢ from K, (x’; R) to a minimal projective
resolution F* of K such that ¢, = id, and ¢, = 0. Since K, (x; M) is acyclic,
we may lift any map w,:F,—» K(x;M) to a map w:F, - K,.(x'; M).
Choose y, such that y,(R) & »M. Then 0=y o ¢ is a map K,(x";R)—
K. (x'; M) such that 6,(R) & »M while §, = 0. Let I be the identity map on
K, (x'; R). Then §' =1 ® 0, is another such map with 8 = §,, whence, since
K, (x";R) is free and K,(x; M) is acyclic, § and 8’ are homotopic. Thus,
6, — 08, =h o d, where h, d are indicated in the diagram

M

4l
0—K,(x"; M)

Tl

gn 9’!

0 —— K,(x"; R)—2- K, (x'; R)
3! S i3
R L=, Ry
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If we identify K,(x; M) with M, 6,(K,(x’; R)) is identified with y(R),
while hd(K ,(x'; R)) < (x},...,x,) M, which contradicts yo(R)& M. Q.E.D.

We now want to prove

(2.8) THEOREM. If the direct summand conjecture is true, then every
local ring satisfies CE.

Later, we shall make more precise statements which may be useful even if
the direct summand conjecture fails.

In proving (2.8), we may assume that R has residual characteristic p > 0;
in case the residual characteristic is 0, the implication holds in a formal
sense, since in that case R is known to have a big C—M module.

We next note that by Corollary (2.4), in order to prove (2.8), it suffices to
consider the case where R is complete, since we can map R — R; moreover,
we may kill a prime of maximum coheight, and so reduce to the case where
R is a complete local domain. We do not need to go quite this far, but
henceforth we assume the following:

(1} R is a finite module over a formal power series ring, which we
take to be 4 = K[[x,,..., x,]] if R contains a field (in which case we may
take K to be a coefficient field), while 4 = V{[[x,,..., x,]] if R does not
contain a field, where ¥ is a discrete valuation ring whose fraction field has
characteristic 0, whose residue class field X has charp > 0, and is the
residue class field of R as well, and where x, denotes a generator of the
maximal ideal of V.

(2) R is reduced (has no nonzero nilpotents).

(3) For every i, x; is not a zerodivisor in R.

(4) In the case where R has mixed characteristic, we assume also that
R is a domain.

Then, if char R = p > 0, let
szﬁ_n}(RL)Ri.)...—)R_LR._L...),

which may be viewed as the result of adjoining all (p°)th roots of elements
of R. :

If R has mixed characteristic, we define R to be a ring which satisfies
the following conditions:

(i) R* is integral over R.

(i) R < R*® <, where 2 is an algebraic closure of the fraction field
of R.

(iii) R contains all (p©)th roots of the elements x;, 1 <i< n.
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(iv) If (x{°) denotes {J, x;”R>, for some consistent choice of (p°)th
roots of x;, then R*/(x;°) is perfect, i.e., F is an automorphism.

(v) For alli> 2, x,,x; is a regular sequence in R®.

In fact, we note that in order that § satisfy (i}-(v), where Rc S < 4, it
suffices that

(a) S be integral over R.
@) If@cand §°P€ S, then € S.
(y) S be integrally closed in its fraction field.

Note that (f)= (iii) and that F is surjective on R*/(x{°). On the other
hand, if u? € (x*), say u” = (x}”*")6, then u= (x;””"*")8"” for suitable
choices. Thus, F is injective mod(x;°). Moreover, (y) = (v), for § is a direct
limit of normal, module-finite extensions of R, and x,, x;, i > 2, is a regular
sequence in each of these.

Thus, we may choose R™ to be the entire integral closure of R in £, or
the smallest normal subring of £ closed under extraction of pth roots.
(Smaller choices may also be possible.)

Henceforth, let x,, denote a (p®)th root of x;, e=0, 1, 2,.. (thus x;; = x,);
assume these have been chosen so that (x;,,,)p = x;,. We shall retain the
convention that (x{°) denotes (J, o x;, R*.

(2.9) THEOREM. If char R =p > 0, then R has CE.

If R is a complete local domain of mixed characteristic, A is as in the list
of four conditions following the statement of Theorem (2.8), and for every e
the regular local ring A,=A|x; . X,,| is a direct summand of each
module-finite extension algebra T of A, such that A,c TcR®, then R
satisfies CE.

Before proceeding to the proof of this theorem we introduce some
complexes of ideals. Let J,,...,J,, be ideals of a ring S. For each i we have a
complex

0-J,-258-0 (a; is inclusion)

which we denote K, (J;; S). If J =J,,...,J,, we write

K.(J;8S) =& K, (J;; S).
i=1

There is a natural inclusion y;: K,(J;; S)— K,(1; S) given by

05 S—15850

b

0-J,—85-0
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which induces a map y: K, (J; S)— K (1,..., 1; S). We denote by Ky(-,J; S)
the complex which is the image of y. Written out, we have

0=dydym @ Jy ]

X X h [
<o <y

= @ S, @D IS0
i)<iy i
There is a similar complex K (M;J:S) in which J; ---J, is replaced by

JiM---NJ; . Infact, let A=4,,..., 4, be subgroups of an Abelian group B,
and let K *(m A; B) denote the complex

0-4,N---N4,» @ AN-N4; )

<<y

= @ (4,NA4,)> DA~ B0,
i<, i

where the maps are direct sums of inclusion maps with signs chosen as in the
Koszul complex. If B B’ and A, = A} < B’ for every i, we have an induced
map K,.(N; A;B)— K.(M; A’,B’). In particular, K,(M;4;B) may be
viewed as a subcomplex of K, (M B,..., B; B), which is the same as the usual
Koszul complex Ky(l,..., 1; B) = K4(1,..., 1; Z) ®, B. The following result is
similar to one in [7]:

(2.10) LEemMA. Let A,,..., A, be subgroups of an Abelian group B, and
suppose that for all integers q with 2 < q < n, and for every group C which is
an intersection of a subset of A, ;,..., A, (including C = B),

A NONANC+ - +4,NC)=> (4,,,NC)N(A;NC).
i=1

Then K.(M; A; B) is acyclic.

In particular, if A,,...,A, belong to a family of subgroups of B which is
closed under finite addition and intersection and, such that, within this
Jfamily, intersection distributes over addition, then K, (M; A, B) is acyclic.

Progf. This is easily checked if n< 2. If n=m + 1, m > 2, then we note
that the distributivity condition is inherited by the sequence 4,,...,4,, and
also by the sequence 4,MNA,,....,4,,MNA,. The inclusions 4,NA4,—4,,
1 € i< m induce a map of complexes

Ko (M A5 A, B)

T

K (A N4, A, NA,A).
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By induction on n, we say assume that both rows are acyclic. If we insert the
augmentations we get an exact total complex. Without the augmentations,
the total complex is precisely K,(M;4,,....4,; B), and so the homology H,
vanishes, i > 2. It remains to show that H, =0. If not, choose a cycle ¢ =
(a,,...,a,) € @ A;, not a boundary, and such that the largest ¢ with a,  , # 0
is minimum among such cycles. Thus c=(a,,..,a,,,0,..,0), and
a+--+a,,,=0ie, —a, ,=a,+--+aq, €4, , NA,+ - +4,) =
I A, NA; say —a,,,=aj+ - +a,, where a’ €4,, N4, 1<
i<q. Let d€ ®; ;,4;, N4, be such that the (i, i,)-component of d is 0
unless (i,,i,)=(i,q + 1), 1 <i< g, in which case it is a/. Then if d* is the
image of d in @ A4;, we know that the gth component of d* is +a,,, and the
ith component is O for i > g+ 1. Then ¢ T d* is a cycle, not a boundary,
with a 0 in the ¢ + 1 component as well, which contradicts the minimality of
q. Hence, contrary to our assumption, H, = 0. Q.E.D.

(2.11) PropoSITION. Let T be a ring of characteristic p > 0 such that
the Frobenius F is an automorphism, i.e., T is perfect. Let ¥ be the set of
ideals of T which are stable under F~'. Then:

(1) 7 is closed under finite addition, multiplication, and intersection.
(2) Forany x€T, (x*¥)E 7. »

QB) IfJ, ., J,EF thenJ, --- J,=J, N --NJ,.

@4 IfJ,..J,JeEF thendNJ,+ --+J)=JNJ, + - +JNJ,.

5) Iif 1=J,,..J,€F, then the natural inclusion K(-,J,T)-
K(M; 3; T) is an isomorphism, and both complexes are acyclic.

Proof. Conditions (1) and (2) are clear, while (3) reduces at once, by
induction, to the case r=2. But if u € J, N J, and J,,J, are F'-stable, then
u'?€J, and u'”? € J,, whence u = (u'?Yu'"y "' €J,J,.

Condition (4) is immediate, since by (3), we may replace the intersections
by products. Condition (3) implies the equality of the two complexes, while
(4) implies that K, (M; J; T) is acyclic, by virtue of Lemma (2.10). Q.E.D.

(2.12) Remarks. If at least one of J,,J, < T is flat, say J,, then when
we apply ®,J, to 0+—J, T we obtain 0-J, ® J, = J,, whence the
obvious surjection J, ® J, = J,J, is an isomorphism. It follows that if all
but at most one of J,,..,J, are flat, then J,® ---®J,>J, ---J, is an
isomorphism. Now, if x is a nonzerodivisor in T, (x*) = J, (x'**) is T-flat.
Hence, we obtain

(2.13) ProrosiTION. If T is a perfect algebra of charp >0 and J=
Jy s J, IS a sequence of F~'-stable ideals, at most one of which is not flat,
then

K D=K (L D) =K (M35 T),
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and each of these is acyclic. In particular, if x,,..., x, are nonzero-divisors in
T, then

K ((X7)sr (x7): T)
is acyclic, and is a flat resolution of T/((xT)s..., (xXT)).

(2.14) Remarks. If J,,..,J, are flat ideals of an algebra T such that
JooNU 4+ +J)=J U+ + ) 1<g<n— 1, then K, (J; T is a
flat resolution of T/} J,. To see this, proceed by induction on n. Assuming,
inductively, that K,(/,,...,J,; T) is a flat resolution of 7/I,, where I =
Jy+ -+ +J,, we need only show that Ky(/,,...,J, 5 T), which is the total
complex of the double complex Ky(J,... /5 TN®@(O0—J,.,»T—0), is
acyclic. Since the first (resp. the second) factor is a flat resolution of 7/I,
(resp. of T/J,,,), the homology is Tori(T/1,, T/J,,,). Since J,,, is flat,
Tor dim T/J,,, < 1, and we need only show that Tor{(T/I,,T/J,,,)=0.
But this is I, NJ, /I, J,, . Q.E.D.

This gives another proof that K,((x{),....(x7);T) is acyclic in
Proposition (2.13).
Before returning to the proof of Theorem (2.9), we observe

(2.15) PROPOSITION. Let R be a complete local domain of mixed charac-
teristic and let A = V||x,,..., x,|] and R® be as in Theorem (2.9), where x is
a regular parameter for V. Let |x,,}, be a consistent system of ( p°)th roots
Jor x;, as earlier, and let (x°)= ), x;,R®. Then

K (x7)sees (x77); R®)

is acyclic, and is a flat resolution of R*/((x7?) + -+ + (xT)).

Proof. As in Remarks (2.14) we prove by induction on g that
the complexes K*((x{°),..., (x7°); R®) are all acyclic. For g=1 this is
clear, while for ¢ =2, we make use of condition (v) on R®: x,,x; is
a regular sequence, i > 2, so that (x°)MN (x{°) = (x®)}x). It remains to
show that if 2 g<<n—1, then (x3X )N(xP)+ - +(x2))=(x3%)
(xP)+ -+ (xP)). Let T=R*/(x{°). By condition (iv) on R™, T is
perfect. Let ~ denote reduction modulo (x7°). Then %,,..., X, are nonzero-
divisors in 7. Thus, since (¥3,) and X7, (X°) are F~'-stable, we
have (X7 )M 207, (F7°) = Xg4, DI, (X)) Let I=(x2 )Nl ().
Working modulo (%), [, < (F5,) N X0y (FP) = [, C () + (%)

9_, (x{®). But the element of (x{°) required to represent a given element of
I, will be in (x2,), ie, in (x{°)N(x3,)=(x)x7), and so [, <
(2 )6F) + (x2,) D0, 6F) = (x5,) Yoo, () <1, and so I,=

(e ) 22020 () Q.E.D.
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(2.16) Remarks. By virtue of (2.13) and (2.15) we now have that
K ((x)sers (x7); R®) is acyclic in both the case char R = p and the case of
mixed characteristic. Notice that in the first case we may view
RO/((xF)+ -+ + (x7)) = K®. In either case we denote the augmentation by
L. We have a natural map K — L.

When x; is a nonzero-divisor in § we have an isomorphism of complexes
Ki(x;3.8) > Ky ((x)); S)

via
0 5 S Y »0

1x,~ lid

0— (x)—— S ——0

and so we have an isomorphism of complexes K(x,,...,x,;S)—
K. ((x;)es (x,); §) when x,.,x, are nonzero-devisors in S. The free
generator of S=K,(x;S) maps to x,---x, in K, ((x ). (x,); S)=
(x; --» x,). This yields a composite map of complexes

Ki(xys x,3 R)

J

Ky (x5 X, R®)

K*(le"o,..lx,,R‘”;R"o)

J

K*((x?o)""’ (x2); R™)

such that the free generator in K ,(x; R) maps to x, --- x, € (x{°) -+ (x¥°)
K, ((x7)sers (x0); R®). Call this composite map ,6. If we compose with the
usual map Ky(x;R)— Ky(x;R) we obtain a map 6: K.(x';R)—
Ky ((x3)ers (x7); R) such that the free generator of K,(x‘;R) maps to
xi7h e Xt ey e x,) = (%, -++ x,)". (0 may also be obtained by tensoring
the n maps of complexes

xf

0 > R » R » 0

[

00— (x°)&=—— R¥ — 0

indicated above.)
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(2.17) Proof of Theorem (2.9). Let x,,..,x, be the special system of
parameters already described. If we have a map ¢ from K, (x],...x’;R)to a
minimal free resolution F, of K which is id, in degree O but such that
¢, =0, then since F, is free and K, ((x{),..., (x2); R®) is acyclic there is a
map of complexes

Wi Fy = Ky((x7)sres (6773 R)

which lifts the map K <> L of augmentations. Then 8 = y¢ is a map
K(x'3 R) - Ky (7)o, (£77); R)
which induces

R/GE )y X ) K S L

on the augmentations, and such that 8, = 0. But we have another such map
4, and since K, (x’; R) is free and Ky ((x{°),..., (x2); R™) is acyclic, § and ¢
are homotopic. After making obvious identifications, we have the following
diagram near the nth spot:

00— x7) - () —
H,en \
)
Lef - 2xf) n
0 » R + R"—>

where 6,=0, 6,(1)=x%---x%, and hd= 0,—6,. But then xi-.-x\=
dh(1) € (I'T; (x)(x{ 5.y x5) R®, whence, for sufficiently large e,

x! ...x;=2rjx§(xle---xne), rj€R°°. (#)
i

The symbol A4, has already been defined in the mixed characteristic case.
In char p > 0, let K be a coefficient field, let 4 = K[[x,,..., x,]] © R, and let
A, = A[X\ 0 ses Xpel-

In either case, let S be the ring generated over 4, by the elements r;. We
abbreviate y; = x;,. Thus, y,,..., , is a regular system of parameters for 4.,
and if we let ¢ = ¢,., Eq. (#) becomes

y‘l'...yz::ery}'yl...y”’ rjes
j
or

It i =Ny, r,€S.
J
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In char p > 0, we know that the regular ring 4, is a direct summand of S
({13]; but see Section 6 for a new proof), while in the mixed characteristic
case, we have assumed that 4, is a direct summand of S. In either case we
may apply an A ,-linear retraction S — A4, to both sides to obtain

Wt =2y, €A,
J

which is well known to be impossible (cf. [13]). (In fact, yJ~'... pa~!
generates the socle in the 0-dimensional Gorenstein ring 4,/(»{,..., ¥2).)
Q.E.D.

(2.18) Remarks. This gives a new proof of the homological conjectures
in char p>0 as well as a reduction of them to the direct summand
conjecture in residual char p. The fact that local rings have CE in char p can
be used to prove this holds in equal characteristic O, by the same
“equational” techniques used to prove the existence of big C—M modules; see
[14]. However, the direct implication

(direct summand conjecture) = (all local rings have CE)

does not seem to work in characteristic 0 (although it is true in a formal
sense, since both are known). Of course, the homological conjectures we are
considering are already known in the equicharacteristic case: see
[14, 25-28].

Later we shall give yet another proof of property CE in charp > 0.

We next want to show that the conjecture that all local rings have CE
implies the Eisenbud—Evans-Bruns principal ideal theorem. This theorem
was first proved for local rings which possess a big C-M module by
Eisenbud and Evans in [5]. Bruns [4] then gave a more elementary proof
which handles the general case. Nonetheless, we include here a modification
of the Eisenbud-Evans proof which utilizes property CE instead of big C-M
modules, expressly for the purpose of illustrating further how property CE
can be used to replace possession of a big C—M module in a proof. As in the
proof of (2.10) we write O(x) for {f(x): f € Homg(E, R)}, the order ideal
(the notation Tr(x) is also used for this by some authors). The result is

(2.19) THeOREM (Eisenbud—Evans—Bruns). Let (R, »,K) be a local
ring, E a finitely generated R-module, and let rank E denote

max,{dim,,, k(P) ® E}

where P runs through all minimal primes of R, and x(P)=R,/PR,. Let
x€& E. Then
ht Og(x) < rank E.
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What we shall prove here is

(2.20) THEOREM. Let (R, »,K) be a local ring such that for each
minimal prime P of R, R/P has CE. Then the Eisenbud-Evans—-Bruns prin-
cipal ideal theorem holds for R.

Proof. Exactly as in 5], we may replace R by R/P for a suitable
minimal prime P and by modifying £ we may assume that O, (x) is primary
to .. Thus, we may assume that R is an integral domain, say, of dimension
n. Rank E is now the torsion-free rank of E. Write E as Coker(R?>* R”),
where 4 is a ¢ X p matrix. Let (y,,..., y,) € »(R”) represent x in E=
R?/Im(R?). Since Og(x) is primary to #, we can find n homomorphisms
@15 ¢, € Hom(E, R) such that ¢,(x),..., ¢,(x) is a system of parameters for
R. Let ¢, be the composite map R” - E -2 R, and suppose B is the n X p
matrix whose ith row is the transpose of the matrix of ¢,. The row space of
B is then isomorphic to a submodule of Hom(E, R), which has the same
torsion-free rank as E. Assume this rank is less than n: we then have
A"B=0. Let y=[y,], a p X | matrix, and let Z = [¢,(x)], an n X 1 matrix.
Since yl,...,‘ype =, and since BY =Z (for the ith row of B, transposed,
represents ¢;), we have the following commutative diagram, in which the
rows are the Koszul complexes on y,,..., y, (with a slightly different augmen-
tation) and @,(x),..., ?,(x), respectively:

o A"RP 5 .o AR L —+R”—Y—>R—>R/m-—>0

N A

0-+A"R"5 ... 5 A"R" 5 ... 5 R"Z5 R— R/(,(),e.., §,,(x)) — O

Since ¢,(x),..., ¢,(x) is a system of parameters and A” B=0, we have
contradicted the assumption that R has CE (cf. Proposition (2.3)). Q.E.D.

Foxby (8, 9] has forms of the new intersection theorem for flat complexes
which he deduces from big C-M modules. The author does not know
whether these follow from the conjecture that every local ring has CE.

(2.21) Remark. It seems to this writer that the hypothesis needed for
Theorem 1.1 of (5] is that “R/P has C—M modules for each minimal prime
P of R”, rather than that “R has C—M modules.”

3. CanoNicAL ELEMENTS IN LocaL CoHOMOLOGY MODULES AND THE
FUNCTORIALITY OF PROPERTY CE

Let R be a Noetherian ring and M an R-module. The reader should
consult part (5) of the Remarks (2.2) for notation involving syz. If P* is a
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projective resolution of M (an acyclic projective left complex together with
an isomorphism Hy(P,) = M), we shall write P,/d, where d is a nonnegative
integer, for the exact sequence

0 syz9(P*)> P, = -+ =Py, M-D0.
Now, any exact sequence & of arbitrary R-modules
O—»Q—+Md_1—)---—>M0—+M—+O

determines an element (which we denote by &, or ¢(£)) in Exta(M, Q). If I is
an ideal of R and M = R/I, then recalling that the local cohomology H}( )
may be defined by

H¥(M) = lim Ext} (R/I', M)
t
we see that we have a natural transformation of functors

Ext¥(R/I, )—- H¥( ), so that ¢(&) has an image, which we denote #, or
n(&), in H{(Q).

(3.1) Remark. If P, is a projective resolution of R/, and & is any exact
sequence 0> Q—-M, ,— --- > My,— R/I—> 0, then we can fill in a map of
complexes

N | Q_—"Md~1_""'—_"MO‘—"R/I—"O

L T e e

o Py — Pg— Py — - — Py — R/ —0

so we obtain a map ¢: syz? P, - Q. For any module N, Ext%(R/I, N) may be
viewed as

Homy(syzg (P ), N)/Im(Homg(P,_,, N))
and then &, is the class of ¢ in Ext3(R/I, Q).

(3.2) DEFINITION. Let R be a Noetherian ring, / < R an ideal, and d a
nonnegative integer. Let P, be a projective resolution of R/I. Let & = P,/d,
ie.,

0-syz?Py P, ,— - —>P,—>R/[-0.

Then we refer to ¢(&) as the canonical element in Est3(R/I, syz? P,), and
n(%) as the canonical element in H3(R/I, syz? Py).
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The following basic result summarizes some trivial but important facts
which will be used repeatedly, and justifies the use of the term “canonical
element.”

(3.3) PropPOSITION. (a) In the situation of the diagram labelled (#)
9s: ExtE(R/L syz*(P,)) ~ Ext3(R/L, Q)
takes n(Py/d) to n(£), and, hence,

$: Hi(syz*(Fy)) - H{(Q)

takes n(F,/d) to n(&).

(b) If Py, Pi are two projective resolutions of R/I, then any map ¢:
syz?(Py)— syz?(P}) induced by a map of complexes which lifts id,,, takes
&(Py/d) to £(P}/d) and n(Py/d) to n(Pi/d).

(c) In the situation of (b), there always exist such maps ¢: syz*(Py) -
syz?(PL) and vy:syz¢(P}) - syz?(P,): hence Ann, &(P,/d)= Ann, ¢(P}/d)
and Anng n(P,/D) = Ann, n(P/d).

Given the ideal I, we can construct the elements &(P,/d), n(Py/d) in
Extd(R/I, syz?(Py)) and in H%(syz?(Py)), respectively. Neither P,, nor
syz? P,, nor the induced maps between the local cohomology modules are
canonical. But the elements &(P,/d), n(Py/d) are mapped to their coun-
terparts when we change P, , independent of how the maps of complexes are
chosen. This justifies the terminology ‘“canonical element” in ExtZ(R/I,
syz?(Py)) (resp. in Hi(syz(Px))).

We shall identify the various &(Py/d) (resp. n(Py/d)) in these
noncanonical modules obtained from various P, by means of the
noncanonical maps ¢,: despite all the choices, the identification is
“canonical,” by Proposition (3.3).

We write ¢ (resp. 19) for the canonical element in Ext%(R/I, syz*(R/I))
(resp. in H%(syzY(R/I)) (we are making tacit use of our identifications to
suppress reference to P,), provided I#R (if I=R, ¢ and 5 are 0). In
practice, d will almost always be height 1. When the value of d or [ is clear,
the corresponding super- or subscript is omitted. When (R, », K) is local
and dim R = d, we write ¢ or €, (resp. n or 1) for €% (resp. ni ). This case
is the focus of our interest. This notation should not cause confusion: the ¢,,
n, notations are used only for proper ideals 1.

We next prove an elementary but very important fact concerning change
of rings:

(3.4) THEOREM. Let h: R —» S be a homomorphism of Noetherian rings.
Let IR, J= S be proper ideals such that h(I)<J and RadJ =Rad IS
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(where Rad J, the radical of J, consists of all elements nilpotent modulo J).
Consider a commutative diagram

F 0—V—0DN,_ |, — -— N, —S/J—0

I N R P

& 0—U—M, ,— -+ —M,—R/I—0

where a is induced by h, & (resp. #) is an exact sequence of R-modules
(resp. S-modules) and the vertical arrows give a map of complexes over R.
Then ¢, (1) = 1.4, where ¢*: HY(U) - HY(V) =~ HY(V) is induced by §.

Proof. Note first that

HY(sV) = His(sV) = Hi V),

where the subscript indicates over which ring we are regarding V as a
module. Thus, ¢: U— ,V induces

¢*: H{(U) > H{(zV) = Hi(sV).

Let F,, L, be R-projective resolutions of R/I, S/J, respectively, and let
P, be an S-projective resolution of §/J. Then the left-hand commutative
diagram below lifts to a diagram, not necessarily commutative, of complexes,
shown on the right. Although the diagram of complexes need not commute,
the two induced maps syz9(Fy)— V differ by a restriction of a map
F, ,—V, since both come from liftings of a:R/[— S/J to maps of
complexes F — F.

S/ 4 8/ L*/d —— P*/d

N AN
.S/J = Fyu/D

R// /
D N4

/1

F

Thus, they represent the same element { of Ext4(R/I, V). Explicitly, in the
lower diagram below we have [Auv] = [gp] (where [ | denotes class in Ext%).
Hence, ¢, € 5 both map to { as shown on the right:
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syza(S/J) —£— syzg(S/J)

e N
syzg(R/I) / v

\ )

[A] = ¢4 € Ext4(S/J, V) Ext4(R/I,U)D &g = 4]
« N
[Au] € Exté(S/J, V)
N

Ext4(R/I, V)
w
[Auv] = ¢ = [dp]

It follows that 7, € HY(sV) and 7, € HY(U) have the same image in
H{(zV) = Hi(5V). Q.ED.

(3.5) Remark. We cannot compare ¢, and ¢, directly (without
introducing the auxiliary module ExtZ(R/I, V). The tremendous advantage
of local cohomology is that the direct limit of the maps Ext%(S/J!, V)—
Ext2(R/I', V) is an isomorphism so that no auxiliary module is necessary. Of
course, if R = .§ and I =J a much simpler argument shows that ¢.(e;) = ¢ &.

(3.6) CorOLLARY. Let R, I, S, J and a be as in Theorem (3.4). If
¢: syza(R/T) - syz3(S/J) is any lifting of a, then ¢ (n{) =n.
Thus, the canonical element #¢ behaves in a very functorial way.

We next give an interpretation of what it means if #¢ # 0. We shall use the
notation ,, for the natural map Ext3(R/I, M) » H¥(M).

(3.7) THEOREM. Let R be a Noetherian ring, I a proper ideal, and d a
nonnegative integer. The following conditions on R, I, d are equivalent:
(1) n¢+0.
(2) For some R-module M (not necesarily finitely generated), 0,,+ 0.
(3) For some (equivalently, every) choice of N = syz*(R/I), 6, # 0.
Proof. By definition, %Y= 6,(¢f), independent of the choice of

N = syz4(R/I). Hence, (1)= (3) with “every” = (3) with “some” = (2). It
remains to show that (2) = (1). Let § € Ext4(R/I, M) be such that §,,(5) # O,

481/84/2-16
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and let P, be a projective resolution of R/I. Then ¢ is represented by a map
¢: N=syz? P, ~ M, and under the induced map ¢, :Ext‘(R/I,N)—
Ext?(R/I, M), ¢4 (¢,) = 6. Thus, we have a commutative diagram

Extd(R/I, N) —2> HYN)

G
Ext4(R/I, M) —% HY(M)

and 0 # 6,,(0) = 0,,0.(c;) = 0..(0,(€;)) = d(n,), which implies that nI + 0.
Q.E.D.

If R is a ring, x,,...,x; € R, M is an R-module, and x,,..., x; is a regular
sequence on M, then it follows easily from the long exact sequence for Ext
and induction on d that Ext'(R/(x!,..., x4), M) =0, i < d, while

Ext?(R/(x" sy Xy)s M) = M/(x! ..., x5) M.

If 5 < ¢, we have, in fact, a commutative diagram

Ext?(R/(x*), M) = M/(x*)M

|

Ext?(R/(x"), M) = M/(x")M

Thus, one obtains the usual identification H{,(M)= lim, M/(x')M (cf.
[11]), which is valid even when x,,..., x,; is not a regular sequence on M.
Moreover, we have a commutative diagram

Ext?(R/(x), M) —%>  HY (M)
dl i
M/(x) ooy X )M ~25 lim M/ (x')M

where 8’ is the same map as in the direct limit system. It is an easy exercise
to show that when x,,.,x, is a regular sequence, each of the maps
M/(x*)M - M/(x*)M is injective. Hence, 8,, is injective, whence 7, # 0. We
have proved

(3.8) THEOREM. Let x,..., X; € R, a Noetherian ring, and suppose there
exists an R-module M such that x,,..., x, is a regular sequence on M (which
includes the requirement that (x,,...x,) M # M). Let I = (x,,..., xq)R. Then
n, # 0. (Note that M need not be finitely generated.)
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Note that in the above discussion we viewed H{ (M) as lim, Ext4
(R/(x’); M) rather than as lim, Ext4(R/(x)’, M). This makes no difference
since the two sequences of ideals (x‘), (x)* both begin with (x), and each is
cofinal in the other.

When x,,...,x,; is an R-sequence, we can make a reasonably understan-
dable calculation of the canonical element: choose the Koszul complex
K4«(x;R) as a resolution of R/(x). Thus, syz?R/(x)=R, and Ext‘
(R/(X} s X4), R) = R/(X, ..., X,;) SO that €, is the identity in R/(x). Thus,
N 18 the image of 1 + (x) € R/(x) in H{,(R) = lim, R/(x}...., x%). This iden-
tification depends on the choice of x,,..., x,. We state this formally.

(3.9) THEOREM. Let R be a Noetherian ring, let x,,..,x; be an R-
sequence, and identify syz® R/(x) = syz?(K,(x; R)) = R. Then the canonical
element n,,, in HZ (syz? R/(x)) may be identified with the image of 1 + (x) €
R/(x) in lim, R/(x") = HY,(syz* R/(x)).

Now let R be a Noetherian ring, J an ideal of R, x,,..., x, € J, and suppose
Rad(x,,..., x,) = Rad J. Let X,,..., X, be indeterminates over Z, the integers,
let A=7{X,,..., X,], and map 4 - R such that X, x;, 1 i< d: call this
map k. Let P, be a projective resolution of R/J over R, with Py=R (for
simplicity). Then we can map the free 4-complex K, (X; 4) to the acyclic R-
complex P, so as to lift 4: 4 —» R, and we obtain a diagram

; —.+—R— R/J —0

o | o]

0— K/(X;4) — - — K(X;4) — - — 44— A4/(X)—0

0— syz?R/J — ... — P,

By Corollary (3.6), we may view 19 as the image of #%(X) under ¢:
H&\(4) > H(syz? R/J)= H{,(syz? R/J). If we identify H{y (4) with lim,
(4/(X") and H? (syz? R/J) with lim, (syz?(R/J)/(x") syz?(R/J), and if we
identify 7, as the image of 1 + (X) € 4/(X) in lim, 4/(X"), then we see

(3.10) THEOREM. With notation as above, let N =syz? R/J. Then nj
may be identified with the image of
¢(1) + (x)NE N/(x)N
in lim, N/(x")N. Hence n$ + 0 if and only if for all integers t >0,
x0T e xT Y e(1) € (x4, x5)N.

(3.11) Remark. In the above situation, we may replace K.(X;4) by
K4«(x;R): h is replaced by id,, and ¢ is the map from R =K, (x;R) to
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N =syz? P,. ¢(1,) is replaced by ¢(1,). All this is immediate from the fact
that if Q is an A-module and P is an R-module, Hom,(Q,P)=
Hom,(R® Q,P), whence Hom, (K.(X;A4),P,) (as complexes)=
Homg(K,(x; R), P,) (as complexes). Moreover, we may replace the
assumption that P, =R, (4 - P,) = h, by the assumption that R — P, lifts
R/(x)— R/J. This is worth stating formally:

(3.12) THEOREM. Let R be a Noetherian ring, J a proper ideal, and
X1 Xy € J such that Rad(x)=RadJ. Map K.(x;R) to Py, a projective
resolution of R/J, such that R = K(x; R) - P, lifts R/(x) > R/J. Let ¢ be the
induced map of R = K§(x; R) to syz® P, = N. Then n% may be identified with
the image of ¢(1) + (x) N € N/(x)N in lim, N/(x')N € H¥(N).

Hence, n%+ 0 if and only if for every integer t >0,

(xp o x2) 7" B(1) € (x] 00 X N.

(3.13) Remark. Let B be any ring such that 4 =Z7(X,,.., X,|>"R
factors 4 —» B—*R, and let y,,..., y; be the images of X,,..., X, in B. Then
we may lift k to a map K, (y; B) — Py and consider y: B - syz? P, induced
by this lifting, where B = K ,(y; B). Evidently, w(1) + (x) N represents 7,, for
given any B-module E, and any R-module P, Homy(E,P)=
Homg(R ® RE, P), and it follows that the maps from K, (y; B) to P, are the
same as those from K,(x; R) to P,.

Before turning our attention to maximal ideals of local rings, we note
some trivial but useful facts about #, in the general case.

(3.14) PROPOSITION. Let R be a Noetherian ring and I a proper ideal.
Let d > 0 be an integer.

(1) 1 kills €2 and n{.

(2) IfJcI, RadJ=Rad [ and n%+0, then n?+ 0. Equivalently, if
n%=0, then n¢ =0.

(3) If HYM)+# 0 for some R-module M, then there exists a positive
integer t such that for all J < I' with RadJ=Rad I, n, # 0.

Proof. (1) &?€ Ext(R/I, syz? R/I), which is killed by I, and #, is the
image of &7 under the natural map to Hé(syz? R/I).
(2) For every M, the map Exti(R/I,M)- HYM) factors
Ext2(R/I, M) —» Ext3(R/J, M) - H(M). Since the powers of / and the
powers of J are each cofinal in the other,

Extd(R/J, M)~ HI(M) =~ HY(M)
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is zero for all M implies that
Ext4(R/I, M)~ HY(M)

is zero for all M.

(3) If HYy(M)#0, we choose ¢ such that Ext¢(R/I',M)— H,(M)=
H /(M) is nonzero, for H,(M) = lim Ext4(R/I, M). It follows that #, # 0, and
the rest follows from part (2). Q.E.D.

We now focus attention on the local case. Let (R, #, K) be a (Noetherian)
local ring, with dim R =n. Let x,,..,x, be a system of parameters. It is
understood that ¢,, n, denote ¢, , n,,, i.e., d = n. Since » = Rad(x,,..., x,),
the theory of Theorems (3.10) and (3.12) may be applied with J= ». We
have at once

(3.15) THEOREM. A local ring (R, m, K) has property CE if and only if
e # 0.

Progf. Compare Remarks (2.2)(7) with Theorem (3.12). Q.E.D.

Note that, knowing this, we can view Theorem (3.8) as a generalization of
Theorem (2.7). Theorem (2.8) can now be seen to assert that if the direct
summand conjecture is true, then for every local ring R, #, # 0.

(3.16) Conjecture (Canonical element conjecture). For every local ring
R, n, 0.

It is easy to see that this is, in fact, equivalent to the direct summand
conjecture (Theorem (2.8) gives one implication while Corollary (3.22) gives
the other, which is easier).

Of course, we know from the existence of big C—M modules that 5, +# 0 if
R contains a field, and we have given another proof in Section 2 for the case
where char R = p > 0. But we can now give a different, very simple proof for
this case based entirely on the functorial behavior of 7, (and, of course, the
Frobenius).

(3.17) THEOREM. Let (R, m, K) be a local ring of positive prime charac-
teristic p > 0. Then n, #+ 0.

Proof (By functorial properties of #,). Since HJ (R)#0 (where
n=dim R), we can choose ¢ such that #n _,# 0, by (3.14). Now apply
Corollary (3.6) with h=F", I=sm, S=R, and J=F"(m)Sc »”. It
follows that #,, maps to #n,. But for large e, J< »', and 7,# 0. Thus,
N 7 0. Q.E.D.
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We next observe

(3.18) PrOPOSITION. Let (R, »2)— (S, ») be a local homomorphism of
local rings which takes a system of parameters for R into a system of
parameters for S.

(a) Ifng+0, then 1, 0.

(b) If S is R-flat and #.S = », then ng + 0 if and only if n, # 0.

(c) In particular, g # 0 <> ng # 0, where R is the m-adic completion
of R.

Proof. Let dimR (=dim S)=n. Then (a) holds simply because, by
Corollary (3.6), 7z maps to 7.

To prove (b), choose a map of K,(x;R) to P*/n for some projective
resolution P* of K; the problem is to show that #, +# 0= n¢# 0. Thus,
assume that for the induced map R -?syz" Py, (x,---x,) '¢(1)€&
(% 5oy x5) syz™ P,. Now apply ®p S. Since S is faithfully flat over R, these
facts are preserved: snce #S =, P, ®, S is a projective resolution of
S/m S = S/n. (The faitfhful flatness yields syz3(Py ®; S) = (syz} Px) ®, S.)

(c) is immediate from (b). Q.E.D.

(3.19) Remark. It follows that the conjecture that 5, # 0 for all local
rings R reduces to the complete case. Many other reductions are possible:
one can enlarge the residue class field so that it is algebraically closed, one
can kill a prime ideal of maximum coheight, one can normalize. Thus if
ne # 0 when R is any complete local (even normal) domain, then 7, + O for
all R. In all of the operations mentioned, one maps R — S, S local, so that a
system of parameters for R is still a system of parameters for S. A complete
local domain is always a finite module over a regular local ring. Hence, the
following proposition has some interest:

(3.20) THEOREM. Let (4, g) < (R, =) be a local inclusion of a regular
local ring A in a local ring R of dimension n. Let x,,..,x, be a regular
system of parameters for A and assume that x,,.,Xx, is a system of
parameters for R. Map K ,(x; A)— Py, where P, is a projective resolution of
R/m so that A=Kyx;4)-> P, lifts A/(x)>R/m, and let ¢:4=
K, (x; A)> N =syz" P, be the map induced by the lifting.

Then ng #0 if and only if A —® N is pure as a map of A-modules, (i.e., if
and only if for all A-modules E, ¢ ® id;: E -~ N ® E is injective).

If R is a finite module over A, then this is equivalent to the assertion that
A —? syz" P, splits, i.e., that ¢ is injective and ¢(A) is a direct summand of
syz”" P, as an A-module.

Proof. We first note that in [20], Proposition 6.11, p.. 140], the fact that
S is an R-module plays no role. Thus 4 - N is pure if and only if ¢,: E —»
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N ® E, where E = lim, A/(x,..., x3) (= H{y(A) = the injective hull of I over
A), does not kill the image of 1. But this simply says that

xi7h e x, 7 9(1) € (x] e XN,

all ¢, and the result follows from Theorem (3.12) and Remark (3.13).

In case R is a finite module over A, P, may be chosen to consist of
finitely generated free modules, so that syz" P, is a finite A-module. In this
case, purity is equivalent to splitting (see, for example, [21, Corollary 5.2}]).
If P, is not finite, one may split it into a finite resolution and an exact
sequence of free modules which may be ignored. Q.E.D.

(3.21) Remark. Given a specific complete local domain R, it ought to be
possible to test whether n, is O or not: resolve R/» to n=dimR steps,
represent R as a finite module over a regular ring A with regular system of
parameters X,,..., X,, map K(x; ) to the resolution P, of R/», and then
see whether ¢: 4 — syz” P, splits. One simply needs to understand ¢ as a
map of A-modules. The point is, this seems to be a much more concrete
question than whether R has a big C-M module, the quantification required
is not so elaborate.

(3.22) CorOLLARY. Let A be a regular local ring and suppose A < R,
where R is a local ring module-finite over A. If n, # 0, then the map A - R
splits as a map of A-modules.

Proof. The map A —» N, where N =syz" R/m is as in Theorem (3.20),
splits as a map of a A-modules. Since N is an R-module, there is an induced
map R=4®,R—- N as R-modules, and 4 >N factors 4 »R-*N. If
w: N — A splits A > N, then yf splits A - R. Q.E.D.

This gives one of several possible proofs that the canonical element
conjecture implies the direct summand conjecture: a much easier fact than
the converse, Theorem (2.8), which was one of the main results of Section 2.

(3.23) Remark. The question of whether 1, =0 can also be translated
into a problem of solving equations in R such that certain of the variables
turn out to be a system of parameters. Suppose we seck a local ring R which
is a counterexample, i.e., such that n, =0. Then over R there will exist a
map of free complexes:

Y; Y Y
0 S R™M -, ... y R™M i, ...y Rm 2, ,pm__1, R

L}:Y,’, Iyi’ L”z Iy’l Iid:y(’)

0 R o, R X, (), ge
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where the bottom row is the Koszul complex of a system of parameters
Xy X, for R, Y; is an m; X m;_, matrix over R, 1 i< n, and Y/ is an
(%)X m; matrix over R, 0i<n (my=1); moreover, we impose the
conditions that Y/, =0, ¥; = [1], and that some fixed power of the entries of
Y, say the #th, is in (x,,..., x,)R (so that ¥ will have entries in the maximal
ideal of R). Of course, X, is a fixed (7) X (;”,) matrix each of whose entries

is either a certain +x,, or 0: the matrices of K (x; R).

Hence, if we view all the matrices Y;, ¥/ as having unknown entries, and
the x; as unknown as well, then finding an »n-dimensional local ring R with
Nz = 0 is equivalent to finding integers m,,..., m, (m, = 1) and ¢ such that the
matrix equations

(1) Yi+1Yi=Os 1<ign,
(i) Y, Y/=Y_ X, 1<i<n,
(i) Y;=[1],
(iv) Y,=0

t
(v) yi=21-1¥jix; where

1Xmy,?

Y1
Y, =1 :

Ym,
(where Y;, Y have the sizes specified above, and the X’s are determined by
the x; as in the Koszul complex) have a solution (for the entries) in a local
ring R such that x,,..., x, have values which are a system of parameters. Of
course, we can get rid of the matrices, and simply write a system of
polynomial equations with coefficients in Z in x,,..., x,, the entries of the
matrices Y;, Y/, and the coefficients y/ needed in (v).

Thus, the conjecture n; # 0, all local R, admits reduction from equal
characteristic 0 to equal characteristic p, by the method of [14], and, the
proofs that 7, # 0 in char p > 0 given here that do not depend on big C-M
modules also yield proofs in equal characteristic 0. In fact, by virtue of

Proposition (3.18)(a) we get slightly more, just as in the big C—M modules
case.

(3.24) THEOREM. Let R be a local ring such that no prime integer p is a
part of a system of parameters. Then n, # 0.

Proaf. The hypothesis implies that we may choose a prime g <R of
coheight dim R such that S=R/q is equicharacteristic. Then #;+# 0=
Nz # 0. Q.E.D.
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4. CANONICAL MODULES AND CANONICAL ELEMENTS

In this section we shall give an interpretation of “satisfying CE” in terms
of canonical modules, which was pointed out to the author by Joseph
Lipman. Later, we shall exploit this point of view in studying the question,
when can one conclude that R satisfies CE from the fact that R/xR, where x
is a nonzero-divisor, satisfies CE. See Section 5.

We first recall some basic facts about canonical modules. Let (R, »; K)
be local, dim R = n, and let E = E (K) be an injective hull for K over R: we
assume that we have a fixed injection K — E as well. Let ~ denote the functor
Homg( , E). A finitely generated R-module @ is called a canonical module
(or dualizing module) for R if 2 = H"(R). If it exists, 2 is unique up to
nonunique isomorphism. If R is module-finite over a Gorenstein local ring S,
where dim S = g, then we may take 2 = Ext?""(R, §S), so that R does have a
~ canonical module. In particular, every complete local ring has a canonical
module.

When R is C-M, local duality gives an isomorphism

Exti(M, Q) = H" {(M).
When R is not necessarily C~M, this still holds for i =0, i.e.,
Hom,(M, 2) = H"(M).

(Consider a presentation R*—>R"->M—>0 and use the fact that
() o Homg( ,£2) and H, are both right exact functors and give the same
result when applied to R.) The reader is referred to [11] for more details.

Let R* denote the ring Hom,(£2, £2). Scalar multiplication on £ gives an
obvious ring homomorphism R — R*, so that R* is a module-finite R-
algebra. Although it is not obvious that R* is commutative, we shall soon
prove this. Moreover, under mild assumptions, R = R*, In fact

(4.1) PropoSITION. Let (R, ) be a local ring of dimension n which is a
homomorphic image of a Gorenstein ring, so that R has a canonical module
Q. Then:

(@) Hy@)=(R*).
(b) The following conditions are equivalent:
(i) R is S, and for every minimal prime P of R, dim R/P =
dim R.
(ii) R - R¥*is an isomorphism.
(iii) The map d: Hy ()~ E which is the composite
H'(Q)= (R*) >R =E
is an isomorphism.
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Proof. (a) is immediate from local duality: H7"(R2)= Ext}(2,02) =
Hom(, 2) = (R*)". The equivalence of (b)(ii) and (iii) is clear, since the
map in (iii), up to composition with isomorphisms, is simply the dual of
R - R* and  is faithfully exact. It remains to prove the equivalence of (i)
with (ii) (or (iii)). This will follow from the discussion and Lemma (4.2).

Let P,...., P, be the minimal primes of R such that dim R/P; = dim R, and
let S=R—(J;P,. Thus, y€ » NS if and only if y is part of a system of
parameters for R, ie, if and only if dimR/yR <dimR. Let Q=
Ker(R— S~ 'R)= {x ER: x is killed by some parameter}. Let R = R/Q.
There will exist a single parameter y such that yQ = 0, so that, as a module,
dim Q < n. Q is the largest ideal of R whose dimension is < n. Note that in
R, every parameter is a nonzerodivisor. (This is equivalent to asserting that
R is S, and every minimal prime has coheight equal to the dimension.) Then

(4.2) LEMMA. With the same hypotheses as in (4.1) and the preceding
discussion:

(a) HL(R)- HL(R) is an isomorphism.

(b) £2,=0%

(c) If xE€ R is a parameter, x is not a zero-divisor on §2,.

(d) Ker(R > Homg(£2, 2)) = Q. Thus, R - Hom (R, Q) is injective if
and only if R=R.

(¢) There is an injection Homg(2,2)—» S 'R=S"'R as rings.
Hence, Hom,(R2, 2) is a commutative semilocal ring module-finite over R.

Proof. (a) This part is immediate from the exact sequence for local
cohomology: consider the short exact sequence 0 - Q@ —» R —» R — 0, and use
the fact that, since dim Q < dim R, H}(Q)=0.

(b) This follows from (a) and the fact that the dual of an R-module
into the injective hull E,(K) of K over R is the same as its dual into E{(K).

(c) Let x be a parameter. Then 0> R »*R— R/xR -0 is exact.

Since R is a homomorphic image of a Gorenstein ring 7, so is R, say
R = T/I, where I will have all minimal primes of the same height, say, d.
Then from the short exact sequence we get

0 — Ext4(R, T) - Ext4(R, T) — Ext%*'(R/xR, T)
or

0— Qg Qg — D)z
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o that x is not a zerodivisor on Qg = 2,, and Nz/xNy injects into Qg 5.
This establishes (c), and also shows that £2, — S ™', is injective and, hence,
that

Hom, (2, 2) - S~ ' Hom,(Q2, 2)
is injective. But

S—! Hom, (€2, 2) = Homg_(S~'2, §~'0),

where S"'R=S"'R is a zero-dimensional semilocal ring, say S~ 'R =
*_oA;, where each A4, is Artinian local, and S~'Q is the product of the
canonical modules of the 4;. But then

STIR=S8"'R- Homg_(S7'2,57'2)

is an isomorphism, since this is true for each factor. Thus, Hom,(f2, 2)
injects into S™'R = SR, as claimed in (e). But, since it is module-finite
over R, it must be semilocal.

(d) This is immediate from the facts that £ is an R-module (so that Q
is in the kernel) and that the map becomes an isomorphism after localizing
at S. Q.E.D.

We now return to the proof of Proposition (4.1).

We must show (i) < (ii). From either (i) or (ii) it follows that R = R and
so henceforth we assume this. We next claim that if x,, x, is part of a system
of parameters for R, then x,, x, is a regular sequence on {2, and hence on
R* = Hom,(2, 2). To see this, note that we already have an embedding
Q/x, Q> Qg g Since the image of x, in R/x,R is part of a system of
parameters, x, is a nonzero-divisor on £, ., and hence also on Q/x, Q.
The calculation of both £ and R*=Hom,(f2,2) commutes with
localization, and it follows that both 2 and R* are §,. It is clear now that
(ii) = (i).

It remains only to show that if R satisfies (i), then R— R* is an
isomorphism. We already know the map is injective and that R*< S~ 'R.
If ht P < 2, then R, is C-M and R, - (R,)* is an isomorphism. It follows
that if C = Coker(R - R¥), then if C# 0, ht Ann C > 3, and so, since R is
S,, Ann C contains an R-sequence of length at least 2. Since Ext;(C,R) is
first nonzero at the depth of R on AnnC, Exty(C, R) =0, which implies
R*=R ® C. This is impossible, since R*— S 'R is injective and C is killed
upon localization at S. The only possibility is that C = 0. Q.E.D.

Next we want to observe that for every module M we have a pairing

Hom (M, 2)® H,,, (M)~ E #)
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induced by composing the Yoneda pairing
Hom(M, 2) ® H,, (M) - H,.(12)

with the map &: HJ(2)— E. This is a perfect pairing which induces
functorially the isomorphism

HZ, (M) = Hom,(M, 2)

discussed earlier. The key point is that when M = R, (#) becomes

2@ HL(R) —— HL(Q)—>E

and we have

Q® HL(R)~HL(Q2)—— E
1% ll ll
NRI — (R* —R

(Recall that R* = Hom,(£2, ). The standard pairing 2 ® 2 - E is the dual
of R - Hom(%2, 2).)

Joseph Lipman pointed out to the author that the property #, #0 is
equivalent to 8, # 0.

(4.3) THEOREM. Let (R, m, K) be a local ring of dimension n which is a
homomorphic image of a Gorenstein ring. Let y: R - H,,(syz" K) map 1 € R
to ng. Let ~ denote Homg( ,E), as above, and let ~ denote wm-adic
completion. Then there is a commutative diagram

Hom,(syz" K, £2) —— Hom,(syz" K, 2)" = HE, (syz" K) L, E

I I I

Exr®(K, 2)—— Ext’(K, 2)" — HJ, (2)

where B(f) = fx(€r), B is the completion of B, a is induced by local duality,
and the composite map Extz(K, Q2)— Hj,(2) is 0.

Hence, 1, # 0 if and only if 8, # 0 if and only if 66, + 0.

Moreover, since Ext 3(K, 12) is a K-vector space Im(36,) = K, the unique
copy of K in E, and if Ap: Ext3(K, 2)~ K is 60, with its range restricted,
then 1, + 0 if and only if A, # 0.

Proof. 1t }s easy to see that we may replace R by R here. Hence, we
assume R = R and consider the diagram
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Hom,(syz" K, 2) & H (syz" K) 2~ E

| I

Ext!(K, Q)—————2 HL(Q)
We first check that it commutes. Let £ € Homg(syz" K, 2). Then 8(f) =

Si(er) = 0(B(f)) = fi(nz), so that (66,B)(f)=d(S«(ng)). On the other
hand, « is induced by

Hom,(syz" K, 2) ® H" (syz" K) — H" () > E,

where /' ® A1 8(f«(4)); here, f; is the map f induces from H,, (syz" K) -
HL(@). Thus ya(f)=7 o (A 6(fx(d) = (/x((1)) = &fx(me), as
needed.

Now, 66, + 0= 0, + 0= n, + 0 (since 1, # 0 <> 4, + 0 for some M) and
it will suffice to show that 7, % 0 = 86, # 0. Suppose, to the contrary, that
66, =0. By the commutativity of the diagram, y a=66,8=0=>y =0
(since a is an isomorphism)=>y=0=5, =0, a contradiction. The last
statement in the theorem follows immediately. Q.E.D.

5. COMPARISON OF My AND My, ,

Throughout this section (R, m, K) denotes a local ring of dimension n
which is a homomorphis image of a Gorenstein local ring S of dimension g
and x € » denotes a nonzero-divisor in R. There is little or no loss of
generality in assuming that R is a homomorphic image of a Gorenstein ring,
since #, vanishes if and only if 775 vanishes. We shall let ~ denote the result
of applying ®; R/xR. Thus R=R/xR. We want to study the question,
under what conditions can we conclude that 7, # 0 given that n,,,, # 0?

Let 2, =Ext{ (R, S), while Q7= Ext{~“"~"(R, S), which are dual to
HI,(R), H '(R), respectively.

(Note that HI!Z(R)=HX '(R).) In certain good cases g
Q./x02, = 24, but not in general. In fact, the short exact sequence

0-R5R-R-0
yields
0 0y =5 Oy — Qg Exti " (R, §) - Extd "+ (R, §).

Let us write 2} = Ext""**(R, S): this is dual to the second highest local
cohomology module HL '(R) of R. Summarizing, we have
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(5.1) LEMMA. Qp= 0, if and only if x is not a zero-divisor on {2:
equivalently, Qz = 2, if and only if HL '(R) is x-divisible.
In the general case, let C = Ann a, % Then we have short exact sequences

002, 02,-02,-0 and 0-02,-02;>C—0.

Let =0, (so that Q=0/xQ), &'M)=Exti(K,M), EM)=
Exti{K, M) and let E,, Eg be the injective hulls of X over R, R, respectively.
We view Ex as Anng_x. We then have the commutative diagram

el
/
u
-n- 4
e ey
N
n-1
2 & (c)
Lk} T
—n—l(m

R
-n-2 u T
() 2 1 n-1
& / vy 4, ()
L1

n-1 X=0 n é,n(m x=0, g“(m

el X0 L o e TN

n-1 x n-1
H,, (2) ——» Ho Q)—p—> H_, Q)

FIGURE 5.2

Here, £' - &' is the map of Ext’s for change of rings and &' — HJ, is the
obvious map. These maps induce all the vertical arrows except dg, d, which
were discussed in detail in Section 4. The horizontal arrows are long exact
sequences arising from 0— 2 —* Q2 - 2 — 0, while the rising arrows come
from long exact sequences derived from 0 » 2 —» Qz— C 0.
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The commutativity of this diagram is not quite obvious: one must check
that &y = 18, a. The point is that the diagram

HL'(@Qp) = B

H,(Q) — E;
Sp

is the dual, into E,, of the diagram

Homy(Rg, 25) —— R

S

Homg(2, 2,)

N

Hom,(2,2) «—— R

Here, one uses the facts that Homg( , E;) on R-modules is isomorphic with
Homg( ,Ez) and local duality over R and R for the highest local
cohomology using 2, O, respectively (ie., H, (M)~
Hom,(Hom,(M, 2), E) while HY '(N)= Homg(Homg(N, 2;), E7) for an
R-module N).

(5.3) THEOREM. Let (R, s, K) be a local ring which is a homomorphic
image of a Gorenstein ring with dim R = n. Let x be a nonzero-divisor in R
and let R, 0, 2, Qp, and C be as above. Let {:Exti (K, Qg)-
Exti (K, C) be the map u,0 (or tw,) indicated in Fig. 5.2. If {=0 and
g+ 0, then 1y +0.

In particular, if C=0 and ng+ 0, then 1, # 0.

Proof. We refer to Fig. 5.2 throughout the argument.Suppose {=0. Then
tw; =0, so that Img;cImzt, (=Kerr). Now 5z # O implies that the
composite map d,Hu, maps onto the copy of K in Eg, and hence 10, nu,
maps onto the copy of K in E,. Choose z €& Exti '(K,R) such that
10, Nit4(2) generates the copy of K in E,. Since Im u, < Im 7,, we can choose
w € Ext}~}(K, 2) such that t,(w)=p,(z). Then 16zv,7,(w) generates the
copy of K in E,, and hence, from the commutativity of the diagram, so does
86, 6(w). Hence 860, (and 6,,) are nonzero and 7, # 0. Q.E.D.
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(5.4) COROLLARY. Let R be a local ring which is a homomorphic image
of a Gorenstein ring, of mixed characteristic p > 0, such that p is not a zero-
divisor in R. If p is also not a zero-divisor on 2}, then n, # 0.

_ Proof. By Lemma (5.1) with x=p we have C=0, and 7z # 0 since
R =R/pR has characteristic p. The result is then immediate from
Theorem (5.3).

(5.5) Remarks. (a) The general question of whether 7, #0 for local
rings of mixed characteristic p reduces to the case where R is a complete
local domain and hence module-finite over a regular local ring 4. In this
case £} is simply Ext!(R, 4).

(b) If depth R > 0 and depth £} > 0, then we can choose x € R not a
zero-divisor such that x is also not a zero-divisor on £2;. Hence, if there is a
local domain R with 5, =0 and we choose any such domain of smallest
dimension, £2; will have depth 0. -

(c) It seems to be difficult to understand the significance of the
condition that

¢ Exti (K, 2g) — Ext'~ (K, C)

be zero when C +# 0.

If R, is C—M for all primes P of height </, let us say that R is C-M, (this
is weaker than assuming that R is S,).

(5.6) PROPOSITION. Let i be < n. If R is C-M;, then Ann,, C has height
2 i+ 1. Hence, dim C < dim R — (i + 1).

Proof. If P were a prime of height < i containing Ann, C, then C, would
be nonzero even though R, is C-M, a contradiction (the sequence 0 — £ —
Lr— C— 0 may be localized to give the corresponding sequence for R,).

Q.E.D.

(5.7) Remark. If R is C-M,, then dim C < n — 3, where n = dim R, and
this implies

H 3 (C)=H,~(C)=0.

This yields some simplication in Fig. 1; the map
o Hi7'(Q) ~» Hi 7 '(2p)

is then an isomorphism.



DIRECT SUMMAND CONJECTURE 539
6. THE DIRECT SUMMAND CONJECTURE

In this section we study the direct summand conjecture in detail. We shall
show that the conjecture reduces to the unramified case. In fact

(6.1) THEOREM. If A is a complete local domain, let T, denote the
integral closure of A in an algebraic closure of its fraction field. Then the
Sollowing statements are equivalent:

(1) If A4 is a regular Noetherian ring and R is a module-finite
extension, then A is a direct summand of R as an A-module.

(2) 1If A is a complete unramified regular local ring with algebraically
closed residue class field and R is a module-finite extension domain of A,
then A is a direct summand of R.

(3) If A is a complete unramified regular local ring, then A is a direct
summand of T,.

(4) If A is a complete unramified regular local ring, then
Hom (T,,A)+ 0.

(5) If A is a complete unramified regular local ring with maximal
ideal s, then H,, (T,)+# 0.

(6) For every local ring R, 1, # 0.
(7) For every complete local domain R, ng # 0.

(8) If x,,..., x, is a system of parameters for a local ring R, then there
do not exist integers b > a >0 and elements y,...., y, € R such that
n
(xy - x,) = Z yix?.

i=1

Before proving this theorem we should make several observations. We
could have added to the list a version (1°) of (1) in which 4 is local
((1)= (1°) = (2) is obvious). All of the statements are known to be true in
the equicharacteristic case and so we could have restricted attention to the
mixed characteristic case. We could have fixed the residual characteristic p
and also the dimension n of 4 (or R), using the local version (1°) in place of
(1): the statements are equivalent for fixed p, n. This will be clear from the
proof. In (8), it is easy to see that it suffices to consider the case where a = ¢,
b=1t+ 1. Moreover, it turns out that it suffices to consider the case where
x, = p, the residual characteristic. We refer to (8) in the mixed characteristic
case with x, = p as (8°).

Proof of Theorem (6.1). We first note that A — R splits if and only if
Hom,(R, 4) —» Hom (4, A) is onto. This yields the implication (1°)= (1),
and so (1°) <> (1). Moreover, we may apply ®, B, where B is a regular ring
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faithfully flat over 4, and it will suffice to show that B— B® R splits
instead of showing that 4 — R splits. This permits reduction to the case
where 4 is complete, with an algebraically closed residue class field.
Moreover, if we map R further to, say R’, and if 4 - R’ splits, then 4 to R
splits. This permits us to kill a minimal prime of R disjoint from 4 — {0} and
so reduce to the case where R is a domain. Consider the statement:

(2°) If A is a complete unramified regular local ring and R is a module-
Sfinite extension of A, then A is a direct summand of R.

Then we have shown (2) = (2°), while (2°) = (2), obviously.

Let (3°), (4°), and (5°) denote the strengthened versions of (3), (4) and
(5), respectively, in which the hypothesis is weakened slightly: 4 is assumed
to have the form V{|x,..., x,]], where ¥ is a complete discrete valuation
ring, but not necessarily unramified (V' might be ramified). We shall
complete the proof by showing that

3

S~

(B)=(8)=2)= (2°)=> (5) = (59) = (4°)=> (3°) = (6)=> (8)

Il /7 1 [

(19 (1) “4) (7

from which it is easy to see that all the statements occurring are equivalent
(note that (8) occurs twice in the top row). It is shown in [13] that if 4 is a
regular local ring with regular system of parameters x,,..,x, and R is a
module-finite extension, then 4 & R splits if and only if for every positive
integer ¢,

n
(xp o x,) = Z yix;+l
i=1

has no solution for the y, in R. We may assume that we are in the mixed
characteristic case. Now, (8)=(8°) is obvious while (8°)= (2) and
(8)= (1°) follow from the result in [13] just mentioned. Statements
(1)« (1°) and (1) = (2) = (2°) have already been proved.

To see that (2°)= (5) we view T, as the direct limit of all the module-
finite extensions R with A cR < T,. The map H,,(4)- H}.(T,) arises as
the direct limit of the maps H,, (4) —» H,, (R) and since A — R splits for each
such R, we have that each H,, (4)- H, (R) is injective. It follows that
H,,(A) - Hi (T,) is injective. Since Hj(4) % 0, we have that H(T,)#0.

To prove (5)<> (5°), let B =V]|[x,,..,x,]], where V is a complete,
possibly ramified, DVR. Then ¥V is module-finite over an wunramified
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complete DVR V. Let 4 = V[|x,,..., x,]] € B. Then B is module-finite over
A, and we may view T, as T, as well. Moreover, m,B is primary to m,,
whence

H, (Ty) = HY, (T;) = H' (T,)

and we are done.
(4) < (5) and (4°) < (5°) Both are proved by the same argument: let E be
the injective hull of the residue class field K of 4 and then note that

H,(T,)=Hom, (Hom(T,,A4), E)

by local duality [11] and that Hom ,( , E) is a faithfully exact functor on 4-
modules.

(4°)= (3°) This is one of the most interesting implications. Choose
¢: T,— A with ¢+ 0. Let a,,..., a,, be generators if Im ¢. Since 4 is a UFD
we can find the greatest common divisor a of a,,..,a,. Replacing ¢ by
(1/a)¢, we see that we may assume that @ is a unit, so that Im ¢ is not
contained in a proper principal ideal of A. In particular, it follows that ¢
takes on a value which is not divisible by x, =x, where x generates the
maximal ideal of V (here, 4 = V[[x,,..., x,1]). Let r € T, be such that x does
not divide ¢(r). Replacing ¢ once more by the map (¢+— ¢(rt)) we see that
we may assume without loss of generality that x does not divide ¢(1).

Let g be an integer > 2. Then 4 has a unique continuous V-endomorphism
a, which maps x; - x?, ¢ > 1. This map extends to an automorphism of the
ring

A% =, v[[x) e %"

which sends x? —» w¥", e € Z. A is integral over 4, so that the algebraic

closure L of the fraction field of 4 may also be thought of as an algebraic
closure of the fraction field of A. The automorphism of 4® extends uniquely
to its fraction field and then, nonuniquely, to an automorphism of L.
Restricting it to the integral closure of A (or, equivalently, A) in L we get
an automorphism a of T, which extends a,: 4 — 4.

Now, since x does not divide ¢(1) we can choose an integer e so large that

#(1) € (x, x5,..., x2)4,

where Q =¢°. Let f=a®. Let 4,=B(4)=V|[[x%,...,x2]]. Then A is a free
A,module and ¢(1) is part of a free basis, by Nakayama’s lemma. Hence,
there is an A -linear map y: 4 —» 4, such that w(¢(1))= 1, and so o =y o ¢:
T,— A, is an Alinear retraction of T, to 4,. Now since A is module-finite
over A,, we may identify T, = T, . Thus, 4, is a direct summand, as an 4,-
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module, of T, . But 4,= V[[x§...,x%]| = 4. It follows that 4 is a direct
summand of T,. Thus (4°) = (3°), as stated.

(3°)=(6) This was proved, essentially in Section 2: #5,+#0 s
equivalent, by Theorem (3.15), to R having property CE and what we need
is basically the assertion in the second paragraph of Theorem (2.9) (whose
proof is completed in (2.17)), together with the observation that the algebras
T discussed there may all be thought of as lying between 4 and T ,.

We alredy know (6) < (7); see Proposition (3.18) and Remark (3.19). To
see that (6) = (8) let x,,..., x, be a s.0.p. for R and suppose

n
(x)' =Nyt b>a

i=1

Multiplyging by u = (x, --- x,)° %' and replacing y, by y,u we see that we
may assume a = b — 1. Consider the standard map of K (x%; R)— K. (x, R).
In degrees n, n — 1 we have the diagram

d=[x - £x,]

R R"
-~ ~
b1 >~
:un:'(xl'“xn) IA \\\ IAM,,/I
R—m—— — SR"
d'=[txb. . £x0)
The equation (x, --- x,)° "' =3"_, y,x? gives us precisely what we need to

construct a map A: K, ,(x’; R)— K,(x; R) such that Ad’ =u,, for we can
use the y; with suitable signs as the entries of the matrix of 4. We are then
free to replace u,_, by u,_, —h and g, by 0, i.e., we can fill in the map of
Koszul complexes so that the last map R— R is 0. We can then map
K., (x; R) to a resolution of K, the residue class field, and composing we get a
map of K, (x'; R) to the resolution of K such that the map in degree » is 0.
This means that R does not satisfy CE, i.., that 5, =0, a contradiction.
Thus, (6) = (8). It now follows that all the statements whose numbers occur
in the first row of the diagram of implications are equivalent, and now we
are done, because the only remaining implications (3°)= (3)=(2) are
obvious (the last because each module-finite extension domain of A lies
between 4 and T,). Q.E.D.

(6.2) Remark. The idea of the proof of the implication (4°)= (3°) also
gives a new proof of the direct summand conjecture in characteristic p,
where it is a theorem. By the remarks at the beginning of the proof of (6.1),
we can assume that 4 = K[[x,,..., x,,]], where K is an algebraically closed
(or at least perfect) field, and we can assume that R is a domain, module-
finite over A. Everything is now simpler than in the proof of (4°) = (3°).
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artificially constructed endomorphism a of the enlargement T, of R to carry
out the proof, we can use the Frobenius endomorphism F of R instead. For a
suitably large e, ¢(1) will-be part of a free basis for 4 over F¢(4) and it will
follow that there is an F°(A)-linear retraction of R to F°(4), which we may
restrict to F(R). Thus F¢(4) is a direct summand of F°(R) as an F°(4)-
module. But R, as an A-algebra, is isomorphic with F*(R) as an F¢(4)-
algebra, and so A4 is a direct summand of R as an 4-module.

A bit more generally, we have

(6.3) THEOREM. Let A be a complete local regular ring of the form
V{[%y5es X, 1]s where V is a discrete valuation ring, and let R be a module-
finite extension domain of A. Let q,,...,q, be integers >2. Let R® be a
domain integral over R which has a V-endomorphism a whose restriction to
A is the unique continuous V-endomorphism satisfying a(x;) = x¥, 2 i n.
Suppose also that Hom (R, A) # O (equivalently, that H;, (R*)+ 0).

Then A is a direct summand of R and, hence, of R as an A-module.

In Remark (6.2) we are using R® =R and a=F. In the proof of
(4°) = (3°) we need R® =T, and a was constructed.

(6.4) Remark. Let A=V[[x;,.,x,]], le¢t AcRcT, with R module-
finite over 4 and let g,,.., g, be fixed integers > 2. Let a: 4 - A be the
unique continuous V-endomorphism of A such that a(x;))=x%, 2ig<n
Extend a to an endomorphism, which we also call @, of T, as in the proof of
(4°)=(3°) in (6.1). a: T,—~ T, is then actually an automorphism. Then
there is an obvious “minimal” choise for R®, to wit, the subring of T,
generated by R, a(R), a*(R),..., a*(R),.... The problem is to show that for
such an R®, Hom ,(R®, 4) # 0; or, equivalently, that H},(R*)+ 0.

(6.5) Remark. 1t is worth noting that if there is a counterexample to the
direct summand conjecture (and we can assume mixed characteristic here),
then there is one in which 4 is pointed étale extension of V{x;,..,x,],.,
where V is a complete unramified discrete valuation ring with maximal ideal
pV and m = (p, X,,..., X,). The same ideas as in [14] (mainly, Artin approx-
imation, but applied to the equations defining the algebra structure of R as
well as to the equation

n
x ) = Yyt
n [ R 4
i=1

suffice to pass from a counterexample where 4 = V[[x,,..., X,]] to one with
A as described. Thus, the full difficulty of the problem exists for algebras
essentially of finite type over a discrete valuation ring.

(6.6) Remark. There are several results which assert that if A is regular
and R is the integral closure of 4 in a finite field extention of the fraction

481/84/2-18
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field of A of sufficiently small degree in some sense then 4 © R splits. Of
course, this is only interesting when the degree d of the field extension is not
invertible in A4: if d is invertible, we can use 1/d times field trace to get a
retraction.

In particular, the case where d =2 is handled in [19] where it is shown
that if 4 satisfies R,, S; and is locally factorial and R is an integral
extension such that the extension of function fields is quadratic, then 4 <> R
splits. Many cases where d = p or p’, where p is the residual characteristic of
A are done in [14].

(6.7) Remark. The direct summand conjecture is equivalent to the
conjecture that if x,,..., x,,, ¥, ,..., ¥, are elements of a Noetherian ring R such
that

n
(xy - x,) = Z yi‘x:+]

i=1
for some positive integer ¢ and (x,,..., x,,)R =1 is a proper ideal, then ht 7 <
n— 1. (Clearly, ht I n.) For if there were a counterexample we could
localize at a minimal prime of I of height » and then x,,..., x,, would map to
a s.0.p. for the local ring obtained.

The equation above can be multigraded over Z" by giving x; multidegree
e;=(0,0,..,0,1,0,.,0) (the “1” is in the ith spot) and y; multidegree (1, ¢,...,
L=1t.,t)=3] ,te;—(t+1)e;. We shall use this multigrading in
studying certain local cohomology modules below.

(6.8) Remark. Let V=12, , where p is prime, let ¢ be a positive integer,
and let

R=VX ' X, Y s Yo, Z s Z, ) [ (F))s

where m= (p, X ,... X, ¥,,.. Y, Z,,.., Z,) and

Lo

n
Fo=X, .. X =N y,xi*!,
i=1

If ¥ is a locally free coherent sheaf on the punctured spectrum W of R and
M is an R-module which represents %, we can define an integer

0(<) = i(Tor3,(M, R((X))) — {(Tor3;_ (M, R((X)))
for j large: the Tor’s are independent of the choice of M and have finite

length. @ is an additive map from locally free coherent sheaves on W to Z
and vanishes on the trivial sheaf: see [16]. The author conjectures that & is
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identically zero. If this were true, the direct summand conjecture would
follow. The reader is referred to {16] for details.

It may be possible to reduce the problem to showing that 8 vanishes on
multigraded bundles in the case where r=0 (so that there are no Z).
However, there remain some technical problems in carrying this program
through.

We conclude this section with an investigation of the local cohomology of
the ring

R, =Z{X s, X, Yoo Y )/ (Fy 1)

where F, ,= (X, --- X)) = 3"_, Y, X'*! Let x,, y;, respectively, denote the
images of X;, Y; in the quotient and multigrade the ring R, , by Z" so that
X;, y; have the same multidegrees described in Remark (6.7). Let

..... xR 0)-

Then H is also multigraded by Z”. If ¢ = (cy,...,c,) € 2" let H, (or Hy , )
denote the component of H in multidegree c. Our objective is to compute the
Abelian groups H, ,.. The reason for our interest is that if all of these
groups vanish, then the direct summand conjecture in mixed characteristic
follows. Somewhat weaker statements would be enough. We shall show
directly from our calculations that H, , .= 0 if n <2, which gives another
proof of the direct summand conjecture in dimension 2. The case where
n =3 looks difficult to settle.

Let Uy,.., U, be new indeterminates. View the polynomial ring Z|U] =
Z{U,,..., U,] as an Abelian group. Let I, be the ideal in Z[U] generated by
2.7=1 U;— 1, but thought of as a subgroup. Let G, , . denote the subgroup of
Z[U] spanned by all monomials U{'..- U% such that for some choice of i,

1<ign,
a; >t (Z aj)—ci.

Jj#i

H=H,,=H,

We refer to the monomials in G, , . as “(¢, ¢)-unbalanced.”

(6.9) THEOREM. H, , =Z[U,,...,U,}/I,+ G, )

n.t,c =

Proof. Hy(R) may be identified with

Coker (®?=1Rwi'*Rx,-~-x,.>’

where w;=x, --- X, --+ x,, and the map

Ry~ Ry s,
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is, up to sign, the inclusion map. Thus,
n
H{y(R)=R,,. .., / > Im(R,,),
i=1

where both the modules in the quotient on the right-hand side are
multigraded in the obvious way. Let x=x,---x,, and X=X, --- X,. Let
W=X XX, U=YX/W and u,=yx/w!. U, and u; have
multidegree (0,...,0) and in Z[X, Y], up to a unit, (X, --- X,) =2 ; Y, X;*!
is 1 =3, U;. Now

Z\X, Yly=Z[X,Uly,

where the X’s and U’s are indeterminates and so we have an obvious
isomorphism

R, = (Z[U]/(I —>,-: U,.)) [X],
= (Z[U)/L)[X]x
= @ Z[U|/I,

ceZn
as an Abelian group, and this identifies
[Ril.= 2{U)/1,
as Abelian groups. In fact, [R,]|.=(Z[U]/I,)x{ --- xi». To complete the
argument it will suffice to show that the image of [R,, | is [R,]., after iden-

tifying [R,]. with Z[U}/I,, is spanned by the monomials Uf!-.- U%" such
that

J#i
But [R,, ], is spanned by all monomials

b b, 1,a a
xll...xnnyll... "n

such that b; and all the a;, 1< j< n, are nonnegative and for each j,
1<jgn,

b+t aj—a;=c,.

FEZ)
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For given a,,..., a, there will be at most one choice for b,,..., b, such that
these equations hold, and there will exist such a choice if and only if the
value of b, forced by the equation with j =i is nonnegative, i.e., if and only if

c,.—(tZaj—a,-)>0 or a,->t(2aj)—ci,
J#i j#i

and if this is true then x®' ... x3p%t... % maps to US* ... Uln. Q.E.D.

(6.10) CorOLLARY. H, , . is a divisible Abelian group for all n,t, c.

Proof. 1t suffices to show that each of the generators u{'-.-u% is a
multiple of each prime p. Fix p and choose e so large that for every i,

U‘i,e((J‘lzl e U‘rzx") € Gn,t‘c

(i.e., such that for all i, p® +a; > 1(3;,;a;) — c;). Now

h pe
((Z U,.>—1) Usr--- Uy€l,
i=1
and can be rewritten
n
S UPUS - U+ (1) Ut Us + pW
i=1

for a certain W, because all the binomial coefficients in the remaining terms
are divisible by p. But then U{'..- U%»= +pW modulo I, +G,, ., as
required. Q.E.D.

(6.11) CoroLLARY. H,,. =0 for n<2.

Proof. For n=1 we have that U{—1€,=(U,— 1) for all q, and a >
t(0) — ¢, for all sufficiently large a, so that 1 =U,=Uj=-.. =U{=0 for
all sufficiently large a.

For n =2 we note that modulo I, = (U, + U, — 1) every element is in the
span of the powers of U,. Now US'US will lie in G, , . for all sufficiently
large a,, which shows that H, , . is finitely generated as an Abelian group.
Since it is also divisible, it must be zero. Q.E.D.

Partially order Z" so that (c,,...,c,) < (d,,...d,) precisely if ¢, <d;,
1 €ig n Then

(6.12) ProPOSITION. Ifn>m, t> 5, and d > c there is a surjection

H —

n,t,c m,s,d*
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Progf. If m=n this is clear because G, . <G, . ;. It suffices then to
prove that there is a surjection H, , .+ H for n > m. This follows from
the fact that ring homomorphism

m,t,c

Z|U, ooy U, > Z|U, s U,y

which fixes Z[U,,.., U,] and kills U;, j>m, maps I, to I, and each
monomial generator of G, , . either to O or else to a monomial generator of
G,..» according as the generator does or does not contain a positive power
of U, for some j > m. Q.E.D.

Define H,(t), t 20, to be H,, ., where c(t) = (—t, —t,..., —t). Thus, if
G, (1) is the span of all the monomials

U‘lll ves U‘:’n

such that for some i, 1 <ign,

a>t (l + Z aj),

J#i

then H,(t)=Z|U,,.,U,)/d,+ G,(t)). Obviously, for any s, ¢ we can
choose a positive integer ¢ such that t>s and c(t)<c and so
Proposition (6.12) yields

{(6.13) PROPOSITION. For every positive integer n and for all choices of
§ 20 and c€ Z", for all sufficiently large t >0, H, ;. is a homomorphic
image of H,(2).

We now want to make the connection between the study of the Abelian

groups H, , . and the direct summand conjecture. First recall that

R,,=Z{X s X0, Yoo Y 1/(F o)

where F, ,= (X, --- X,)' — 27, Y, X;* ! and so for any commutative ring D,
D®R,,~2D\X,,..X,, Y., Y, }/(F,.) (All tensor products ® with no
base ring specified are to be taken over Z.) We then have

(6.14) PROPOSITION. Let D be a commutative ring. For a fixed integer
n > 1 the following conditions are equivalent:
(1) H?X,,...,X,,)(D®Rn,r)=0f0r all t.
2) D®H,, =0 for all t and c.
(3) D®H,(t)=0 for all t.
(4) The image of the monomial 1 in D ® H,(t) is O for all t.



DIRECT SUMMAND CONJECTURE 549

If these equivalent conditions hold for a given value of n, then the direct
summand conjecture is true for all module-finite extensions of a regular ring
R such that R is a D-algebra and dim R < n.

Proof. That (1) and (2) are equivalent is immediate from the right
exactness of HJy, and the calculation for H{,,(R,,) carried out earlier.
Condition (2) <> (3) is clear because first, the H (t) are a subset of H, , .
second, every H,, . is a homomorphis image of some H,(t'), and third,
D ® is right exact.

(3)=>(4) This is obvious. To see that (4) = (3) fix n, ¢, and a monomial
u=Ufr ... Us whose image in D ® H,(f) we want to prove is 0. Choose
t' 2 t(1 4+ ;a;). Since the image of 1 is 0 in D ® H,(t') we can write

1= dyi+(P) (S_‘U,.—l),

where A runs through a finite set of monomials in G,(t'), every d, € D, and
Pe€ D|U,,..., U,]. Multiply the equation through by u. The key point is that
each Au is in G ,(f) (which demonstrates that 4 maps to 0 in D ® H,(¢)). For
suppose A = U® ... U’ We can choose i such that

bi>t <1+ > bj>

J#i

> (t;aj) (1 +) b,~)

J=i

>t+t(z b,-)+t2a,.

J#i i

t (1 + (a,.+b,-)>

Jj#i

sa+531 (14X @+5))
J#i
as required.

Now suppose that the equivalent conditions hold but that, we have a coun-
terexample R < S to the direct summand conjecture, where R is regular, S
is module-finite over R and R is a D-algebra. As in the proof of
Theorem (6.1) we can assume (a decrease in n is harmless) that R is local
with regular system of parameters x,,.,x, and the failure of the direct
summand conjecture then means that for some integer ¢> 0 there exist
PYyses ¥, € S such that

G x) = Yy, *)
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By localizing at a maximal ideal of S we obtain a local ring (which we still
denote S) of dimension n with system of parameters x,,..., x, in which (#)
holds. We can now define a ring homomorphism from D ® R,, , to S which
extends the algebra structure map D — S by mapping X;— x;, Y.i— p;,
W i < n. Let » be the maximal ideal of S: (x) = (x,,..., x,)S is »-primary.
We know Hj;, (S) # 0, but on the other hand

HE(S)= H(S) = H(S) = H'\ (DO R, )® S=0® S =0,

a contradiction. Q.E.D.

A number of comments need to be made here. We note that we can give
an immediate proof of the direct summand conjecture in characteristic p > 0
from the fact that the groups H are divisible, for then

n,t,¢
(Z/pZ) ® Hn,t,t = O

and we may apply Proposition (6.14).
Likewise, to establish the direct summand conjecture in mixed charac-
teristic p, it would suffice to show that

Z(p) ® Hn.t,c = O

for all n, t, c. We shall establish a finer result below.

The proof shows that for fixed n, ¢, the vanishing of H{,,(D® R, ) is
equivalent to the vanishing of D ® H, , . for all ¢, and that these equivalent
conditions imply that the equation

x'; ...x;:

D=

t+1
YiX;
i

i

cannot hold in a Noetherian D-algebra if x,...., x,, generate a proper ideal of
height n. ‘

We do not know the converse. The direct summand conjecture may be true
even if the groups H, , . fail to vanish. It is worth remarking that we can
recover the R, ~module structure on

H= H?X)(Rn,t) = G;) Hn,l,c
cZn

easily when it is viewed as @,z H,,, .. Consider the image of a monomial
Ugt-- U in H, , .. The result of multiplying it by x':. x is the image of
that same monomial in H,, ., ., where d =(d,..., d,), while the result of

multiplying it by y%' --- ybx is the image of

Usrttbu... [Jantby
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in H,, .., where f is the multidegree of yj' --- y’, i.e., f = (f},.... f,,) With
Si=tZ.i8) — by

We next remark that because it suffices to prove the “monomial” form of
the direct summand conjecture (as indicated in statement (8) of
Theorem (6.1) and statement (8°) in the remarks preceding the proof) in
mixed characteristic p when the sequence of elements in p, x,,..., x,, the
preceding analysis could have been carried through for R; =R, /(X, — p)
instead, and then the vanishing of

pHrlr,tzH:'p,xz ..... x,,)(erl.t)

for all ¢+ would be sufficient to establish the direct summand conjecture for
the case of mixed characteristic p in dimension < n. By the right exactness of
H{y,, we have

pHr’t.tan.t/(p—'Xl)Hn,t'

Note, however, that p — X, is not a multiform; so that we lose the original
multigrading in studying A, ,.
Let us define the “tilt” of a monomial U§: --- U4 in Z|U,,..., U,] to be

a,-/(l+2aj): 1<ign

max
I/ J#i

and then extend the notion to polynomials by defining the “tilt” of a
polynomial to be the smallest tilt of any monomial which occurs in it with
nonzero coefficient. Thus, P has tilt >¢ if and only if it is in G,(¢). 4
monomial has tilt > ¢ if and only if it is (¢, c(¢))-unbalanced.

In this terminology we can rephrase part of the conclusion of Proposition
(6.14) as follows: H{y,(D® R, )= 0 for all ¢ if and only if in D{U,,.., U,]
1 is congruent to polynomials of arbitrarily great tilt modulo (3; U, — 1).

We conclude with a result which shows that it would be enough if the
torsion part of H, , (or H, ,) vanished.

(6.15) PropPoOSITION. Let x,,..., x, be elements of a commutative ring R,
let (x) = (x,,.., X,)R, let p be a prime integer, and suppose that H{ (R) has
no p-torsion and is p-divisible.

Then there does not exist a homomorphism ¢: R — S such that S is a local

ring of residual characteristic p and ¢(x,)s..., $(x,) is a system of parameters.

Proof. Suppose such a ¢ exists. Then § is a V-algebra, where V=27,
and we can replace R by V' ® R without loss of generality: we still have that
H{,(V ® R)=V ® H{,,(R) has no p-torsion, is still p-divisible, and we still
have a homomorphism ¥ ® R — S. Thus, we may assume that R is a V-
algebra without loss of generality. But then since multiplication by p is an
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automorphism of H{,,(R), H{,,(R) is V[1/p]-module, i.e., a Q-vector space,
where Q is the field of rational numbers, and it then follows that HZ, (S) =
H\(S)=H{,(R)®; S is a Q-vector space as well, where » is the maximal
ideal of S. But if S has residual characteristic p, every element of H" (S) is
killed by a power of p. But then H%,(S) = 0, a contradiction. Q.E.D.

(6.16) CorOLLARY. If H, , has no p-torsion for all t, or if H}, , has no p-
torsion for all t, then the direct summand conjecture holds in mixed charac-
teristic p for dimensions < n.
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