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1. INTRODUCTION 

One of the objectives of this paper is to show that the usual homological 
consequences of the existence of big Cohen-Macaulay (henceforth, C-M) 
modules (e.g., the new intersection conjecture of Peskine-Szpiro and Roberts 
and the Evans-Griffith syzygy conjecture) follow from the direct summand 
conjecture when the residual characteristic of the local ring is positive. This 
gives a new and substantially more elementary proof of the standard 
homological conjectures in case the characteristic of the ring itself is 
positive, and reduces the general case of all these conjectures to one rather 
down-to-earth conjecture. Of course, this places the direct summand 
conjecture in a position of central importance, so that it now merits an all- 
out attack. Some partial results on this problem are given in Section 6. (The 
conjecture asserts that a regular Noetherian ring R is a direct summand (as 
an R-module) of every module-finite extension ring S 3 R.) 

The other main objective of this paper is to formulate and develop a 
theory of certain “canonical elements” in the local cohomology of special 
modules of syzygies. (Neither the modules of syzygies nor the induced maps 
between them are canonical, but the identification between the canonical 
elements is independent of the choices.) In particular, a canonical element 
qR E HZ (syz” K) is associated (see Section 3 for details) with each n- 
dimensional local ring (R, m, K) (rings are commutative, associative, with 
identity; “local ring” means Noetherian ring with a unique maximal ideal). 
The conjecture that qR is nonzero for all local rings R turns out to be 
equivalent to the direct summand conjecture: for a given R, an infinite family 
of cases of the latter implies the former. 
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The canonical elements behave very functorially, so that the conjecture 
“qR # 0 for all local R” lends itself to a large number of equivalent 
formulations. In fact, we formulate a condition equivalent to uR f 0 
(“property CE”) in Section 2 without reference to local cohomology, and it 
is this form that we use to prove equivalence with the direct summand 
conjecture and utilize to deduce the usual homological conjectures. It is 
worth noting that qR # 0 whenever R has a big C-M module. (This is the 
essential content of Theorem (3.8).) 

The reader should be aware that, roughly speaking, the conjectures under 
consideration here are known for rings containing a field and in dimension 
< 2, and open otherwise. See [ 14, 18, 25 1. 

To emphasize the very elementary nature of the arguments in the early 
part of the paper, we have avoided all unnecessary machinery, including 
local cohomology. This is slightly awkward occasionally, but seems 
worthwhile. 

In Section 3 we formulate and study the theory of canonical elements. In 
Section 4 we discuss some connections with canonical modules pointed out 
to be author by Joseph Lipman. In Section 6 we return to an investigation of 
the direct summand conjecture. In particular, we give a new proof of it in 
char. p > 0, and in mixed characteristic we show that it reduces to the case 
of a formal power series ring over a complete unrumified discrete valuation 
ring. 

The author is indebted to E. Graham Evans, who suggested a conjecture 
closely related to (3.16) several years ago, and to Joseph Lipman, for many 
valuable conversations concerning the material in this paper. 

2. PROPERTY CE, THE DIRECT SUMMAND CONJECTURE, 
AND THE DEDUCTION OF THE HOMOLOGICAL CONJECTURES 

If x is the sequence x,,..., X, E R and M is an R-module, K*(x; M) denotes 
the (homological) Koszul complex of M with respect to x, ,..., x,. If t is a 
positive integer, xt = x: ,..., ~~.Ifs>t,thereisamapK,(x~;M)-+K,(x’;M) 
which multiplies the free generator indexed by i, .a. i, by (xi, . . . x~,)~-‘. 

We first want to define what it means for a local ring to “have property 
CE” or to “satisfy CE.” (This will later turn out to mean that the canonical 
element qR associated with R is not 0.) 

(2.1) DEFINITION. A local ring (R, *n, K) of dimension n satisfh CE 
(or has property CE) if for every projective resolution 

. . . -+pi-+ ..- -+P,-+P,-,K-,O 
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of the residue class field K and for every system of parameters x, ,..., x, for 
R, if 4 is any map of complexes K,(x; R) + P, which lifts the quotient 
surjection R/(x, ,..., x,) -+ K, then 4,: K,(x; R) + P, is nonzero. 

Of course, since the projective resolution is exact and K,(x; R) is free, 
there do exist such maps 4. We also note that projectives over local rings are 
always free 1231. Moreover: 

(2.2) Remarks. (1) K,(x; R) = R. 

(2) The condition is independent of the resolution, since given two 
resolutions P*, Q, there are maps P, -+ Q,, Q, + P, which lift the identity 
map on K. 

(3) Hence, it is enough to consider a minimal resolution of K. 
(4) One need only assume that the induced map R/(x, ,..., x,) R + K is 

nonzero (for one can multiply by a unit to adjust this otherwise). 
(5) If Q, is a projective resolution 

+ Qj+.. -Q,-0 

of M (i.e., Hj(Q*) = 0, j > 1, while H,(Q*) z M), let syzk(M; Q*) denote 
Coker(Qi+ i --t Qi), i > 0, which we identify with Ker(Qi-, -+ QiP2) if i ) 2. 
(We also abbreviate this to syzk M, syz’(M, Q,), or syz’ M, if the meaning is 
clear from the context.) Then given a map 4: K*(x; R) + P, as in the 
definition of “R satisfies CE,” there is an induced map $* : R + syz”(K; P*) 
(R = K,(x; R)). Evidently, if 4, = 0, then & = 0, while if #* = 0 we may 
choose 4, to be zero. 

Thus, R satisfies CE if and only if for some (equivalently, every) choice of 
P*, for every system of parameters x, ,..., x, and for every choice of 4, the 
induced map 

is nonzero. 
#* : R (or K,(x; R)) -+ syz”(K; P*) 

(6) The choice of $ is unique up to homotopy. It follows easily that & 
can be altered only by a map of R to syz”(K; P*) which extends to R” = 
K,-,(x; R) and R is mapped into R” via r+-+ r(x,, -x2,..., (-l)“+’ x,). It 
follows that 4,(l) can be altered precisely by adding an element of 
(x I,..., x,> SYZYK; Pd. 

Thus, R satisfies CE if and only if for some (equivalently, every) choice of 
P,, for every choice of x, ,..., x,, and for some (equivalently, every) choice 
of 9: K,(x; R) + P, which induces the quotient surjection R/(x, ,..., x,) -+ K, 
the induced map 

is nonzero. 
cj, : K,(x; R) -+ syz” K/(x, ,..., x,J syz” K 
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(7) If 4, is one induced map K&X; R) -+ P,, then the map 
K,(x’; R) + K,(x; R) described earlier yields a choice of IV: K*(x’; R) -+ I’* 
and hence a map K,Jx’; R) -+ P,. This map turns out to be (xi-’ ... xi-i) 4,. 
Combining this observation with (6), we see that R satisfies CE if and only 
if for some (equivalently, every) choice of P,, for every choice of system of 
parameters xi ,..., x,, and for some (equivalently, every) choice of 4, for all 
positive integers t 

,y’-’ . . . 1 xi- I&,( 1) & (xi ,..., xi) syzn K. 

(8) If the condition given in the last sentense of (7) holds for one 
system of parameters x ,,..., x,, then it holds for every system of paremeters. 
To see this note that if y = y, ,..., y, and z = z, ,..,, z, are two systems of 
parameters and (z, ,..., z,) R c (y , ,..., y,) R, say zi = Cj”=, aij yj, 1 ,< i < n, 
then there is a map K,(z; R) -t Ko(y; R) such that the matrix of the induced 
map on Kr’s is A”(a,); hence if we can find an admissible map 0 from 
K,(y; R) to a free resolution of K such that 4, = 0, we can compose with 
K,(z; R) --) K,(y; R) to obtain such a map for z. 

Hence, if 4, # 0 for all choices of d for a family of systems of parameters 
X,f,..., Xnt, t = 1, 2, 3 )...) such that the ideals (xi,,..., x,J are cofinal with th 
powers of m, then d,, # 0 for all systems of parameters and choices of 4. In 
particular, we may choose xii = xi. 

Yet another characterization of satisfying CE that we shall need in the 
sequel is 

(2.3) PROPOSITION. (R, m) satisj?es CE if and only iffor every system of 
parameters x, ,..., x,,, for every free complex F, 

. . . -rFi+ . ..+F.-+O 

with finitely generated Fi, and for every map (: K,(x; R) --t Fe such that 
q&(R) has a nonzero image in H,,(F,) @ K, where K =R/an, the map 
0, : K,(x; R) + F,, is nonzero. 

Proof: =z- The hypothesis implies that we may choose an augmentation 
F, --P K -+ 0 so that we still have a complex and the map R/(x, ,..., x,,) -+ K 
induced by K,(x; R) --) F* is nonzero. But then we may map F* -+ K + 0 to 
projective resolution P, --f K -+ 0 such that the induced map on K is the 
identity and the composition then gives a map K*(x; R) -+ P* which induces 
a nonzero map R/(x,,..., x,) R -+ K. But then if R satisfies CE, we have 
(F,, + P,,) o 4, # 0, whence (, # 0, as required. 

X= is obvious. Q.E.D. 
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(2.4) COROLLARY. Let (R, m)-+” (S, M) be a local homomorphism of 
local rings and x,,..., x, a system of parameters for R such that 
h(x,),..., h(x,) is a system of parameters for S. Suppose that S satisfies CE. 
Then R satisfies CE. 

Proof. Given a counterexample 4: K,(x; R) + F, to the statement of 
Proposition 2.3, apply @ S to obtain a counterexample over S, Q.E.D. 

We next motivate the study of rings which satisfy CE by proving that the 
new intersection conjecture holds for such rings. Later we shall see that 
virtually all the other usual consequences of the existence of big C-M 
modules (other than the existence itself) also follow. 

We first recall the new intersection conjecture of Peskine-Szpiro 1261 and 
Roberts [27], in its simplest form. 

(2.5) Conjecture (new intersection conjecture). Let (R, M) be a local 
ring and let F, be a finite complex offinitely generated free R-modules: 

O+FF,+... -+Fi-+... +F,-+O. 

Call the length of F,, d. Suppose that the homology modules H,(F,) all have 
finite length (i.e., are killed by a power of WZ) and that H*(F*) # 0. Then 
dim R < d. 

This conjecture was proved for local rings of positive prime characteristic 
p > 0 independently in [26, 271, and it is observed in [ 15 ] that it holds 
whenever R has a big C-M module. It is important, since it implies the 
original Peskine-Szpiro intersection conjecture [ 251, Auslander’s zerodivisor 
conjecture [ 1, 21 and an affirmative answer to Bass’ question [3]. See also 
[ 14, 18, 221 for more information. 

We now give a purely elementary proof that if R satisfies CE, then the 
new intersection conjecture holds for R. We then show how to deduce that 
every local ring of positive residual characteristic satisfies CE from the direct 
summand conjecture (which is known [ 131 for rings containing a field). This 
yields a new proof of the homological conjectures in char p > 0; moreover, 
the general case reduces to poving the direct summand conjecture. 

For application to the syzygy problem studied by Evans and Griffith 161, 
we prove a slightly improved version of the new intersection conjecture. First 
note that if H,(F,) = 0, we can shorten the complex by splitting a piece off 
the right-hand end, and so instead of assuming that H,(F,) # 0, one might 
as well assume that H,(F,) # 0. We can then weaken the condition that 
H,(F,) have finite length as follows: 

(2.5”) Conjecture (Improved new intersection conjecture). Let (R, m) be 
a local ring and let F, be a finite complex offinitely generated free modules 

O+F,-+.-.-rF,,-tO 

481/04/2-15 
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such that H,(F*) has finite length for i > 0 and H,(F,) has a (nonzero) 
minimal generator z such that Rz has finite length. Then dim R < d. 

(2.6) THEOREM. Let (R, m) be a local ring which satisfies CE. Then the 
improved new intersection theorem holds for R. 

ProoJ: Let F, be a complex of length d < dim R = n as described in 
(2.5’), and let x = xi ,..., x, be a system of parameters for R. Choose a map 
d,: R + F,, such that the image of 1 in F, maps to the minimal generator z of 
H,(F,) such that R, has finite length. It follows that $,,(l) 6 mFO, i.e., #,,( 1) 
is apart of a free basis for F,. We shall show that for sufficiently large t, Q0 
lifts to a map of complexes 

4: K,(x’; R)+F,. 

In fact, we shall use induction on i to prove that we can define 4 out to stage 
Kr(x’; R) for all i, possibly enlarging t. Let M = Coker(F, + F,). Let K,(t) = 
Kj(x’; R). Since Rz has finite length, we have Ann Rz I (xi ,..., xf,) R for 
large t, so that for sufficiently large t we have a commutative diagram 

K,(t) - R/(x: ,..., xk) 

II 
R 

Working inductively, we suppose that for some i > 0, we have already 
defined &, ,..., 9i as indicated in the diagram 

. ..- F,+, - Fi -...__t F,, A M -0 

T 

. . . -K,;,(t) 
I mi I hl 1 

- K,(t) - .a. - K,(t) - R/(x; ,..., xi) - 0 

so that the diagram commutes. The problem is then to define di+, so as to 
make the leftmost square commute. While we cannot necessarily do this for 
the value oft already selected, we can do it for t + s sufftciently large. To see 
this, let Z = Ker(F, -+ Fi- ,) and B = Im(F,+ i -+ Fi). Since Hi(F.+) = Z/B has 
finite length, we can choose a positive integer c such that (x, ,..., x,)’ Z c B. 
By the Artin-Rees lemma, we can choose a positive integer s such that 
(x 1 ,..., x,)’ Fi n Z c (x, ,..., x,,)’ Z c B. By combining the map of complexes 
to stage i with the map of Koszul complexes, we obtain a diagram 
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- Fi+, 

ai+l 
- F, 

Si 
-...- F, -M-O 

I 4i I 60 I 

Ki(r) - . . . - K,(f) - R/(x’, ,..., x’,) - 0 

I Ui I po= id i 
-K,+,(t+s)~K,(r+s)~~‘.----tKo(r+s)-R/(x:+~ ,...) x:+y-0. 

We can complete the first step of the proof by constructing a map 
Ki+l(r + s)+Fi+l which makes the diagram commute. But it follows from 
the definition of the map ,u of Koszul complexes that puK,(t + s) c 
(x , ,..., xJsi K,(t) whence the image of any free generator Uj of Ki+ ,(t + s) 
under ~i~idi+ i lies in (x, ,..., x,,)’ Fi. Moreover, 6i$ipidi+, ZJj = 
di-i,U- i(didi+ 1 Vi) = 0, whence (oi~ui) di+ , Uj E (x, ,..., x,)’ Fi n Z c B, and 
we can choose f/ E F, + , such that Si+i&= (~i~i)(di+, Uj). If we choose such 
an & for each free generator Uj of Ki, ,(t + s), the map which sends each vi 
to the corresponding& makes the diagram commute. 

Thus, we eventually obtain a map 4: K*(x’; R) + F, for some suitably 
large t. Since F, = 0, 4, = 0, and R cannot satisfy CE. This contradicts the 
assumption. Q.E.D. 

The improved new intersection theorem is proved for local rings R which 
have a big C-M module in [6], although it is not explicitly stated there. The 
next result shows that if every local ring satisfies CE, then the syzygy 
problem of Evans-Griffith can be settled affirmatively. In particular, the 
direct summand conjecture implies an affirmative answer for the syzygy 
problem. 

(2.6’) COROLLARY. Let R be a Cohen-Macaulay domain and let M be a 
non-free kth syzygy with pd M < 00. Suppose that all local rings of 
homomorphic image domains of R satisfy CE. Then M has torsion-free rank 
at least k. 

Proof. Precisely as in [6], we note that we can localize a counterexample 
so as to get a new counterexample such that the new M is locally free on the 
punctured spectrum of the new local ring. Assume that we are in this 
situation. Consider a minimal generator w E M and let I be the order ideal of 
w, i.e., 

I = O,(w) = (f(w): f E Hom,(M, R)}. 

As in [6], we note that if M is a counterexample of smallest rank k, we must 
have ht I < k - 1. Hence, we can choose P 3 I with ht P < k - 1, and we can 
then tensor a minimal ‘free resolution of M, say 

O+F,+ . . . -+F,+M+O 
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with A =R/P. We thus obtain an A-free complex with augmentation M 
(where N denotes N/PN), namely, 

Here,d=pd,M<dimR-k<dimR-(k-l)=dimA.Asin [6],wenote 
that z, the image of w in II?, generates a nonzero submodule of finite length 
(in [6] it is shown even that the image of w in M/Z&I generates a submodule 
of finite length) and since w E M- MM we know that z is a minimal 
generator of ii?. But then d < dim A contradicts the hypothesis that A 
satisfies CE, for we may apply Theorem (2.6). The contradiction shows that 
a counterexample cannot exist. Q.E.D. 

This is virtually the same argument given in [6]; the difference is that 
Evans-Griffith use big C-M modules to establish the improved new inter- 
section theorem (which they do not isolate explicitly) rather than talking 
about property CE. 

We next observe 

(2.7) THEOREM. Zf a local ring (R, m, K) has a big Cohen-Macaulay 
module M, then R satisfies CE. 

ProoJ Recall that M is a (not necessarily finitely generated) R-module 
such that some system of parameters x, ,..., x, is an M-sequence and 
6 , ,..,, x,) M # M (equivalently, e&A4 # M). Then, for all t, xi ,..., xi is an M- 
sequence. Suppose we have a map Q from K*(x’; R) to a minimal projective 
resolution F* of K such that Q,, = id, and 4, = 0. Since K,(x’; M) is acyclic, 
we may lift any map v/~: F, + K(x’; M) to a map IC/: F* -+ K,(x’; M). 
Choose v0 such that v,,(R) ~5 miI4. Then 8= v o 4 is a map K,(x’; R) -+ 
K.Jxt; M) such that B,(R) & ,+&I while 8, = 0. Let Z be the identity map on 
K, (x’; R). Then 8’ = Z @ 8, is another such map with 8; = B,,, whence, since 
K,(x’; R) is free and K.+(x’; M) is acyclic, B and 8’ are homotopic. Thus, 
S:, - 0, = h o d, where h, d are indicated in the diagram 

M 
ill 

0 -K,(x’; M) 

0 - K,(x’; R) A K,(x’; R) 
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If we identify K,(x’; M) with M, BA(K,(x’; R)) is identified with w,,(R), 
while hd(K,(x’; R)) c (x{ ,..., x’)M, which contradicts v,,(R) d n M. Q.E.D. 

We now want to prove 

(2.8) THEOREM. If the direct summand conjecture is true, then every 
local ring satisfies CE. 

Later, we shall make more precise statements which may be useful even if 
the direct summand conjecture fails. 

In proving (2.8), we may assume that R has residual characteristic p > 0; 
in case the residual characteristic is 0, the implication holds in a formal 
sense, since in that case R is known to have a big C-M module. 

We next note that by Corollary (2.4), in order to prove (2.8), it suffices to 
consider the case where R is complete, since we can map R + R; moreover, 
we may kill a prime of maximum coheight, and so reduce to the case where 
R is a complete local domain. We do not need to go quite this far, but 
henceforth we assume the following: 

(1) R is a finite module over a formal power series ring, which we 
take to be A = K[ [x, ,..., x,]] if R contains a field (in which case we may 
take K to be a coefficient field), while A = V[ [x2,..., x,]] if R does not 
contain a field, where V is a discrete valuation ring whose fraction field has 
characteristic 0, whose residue class field K has char p > 0, and is the 
residue class field of R as well, and where x, denotes a generator of the 
maximal ideal of I’. 

(2) R is reduced (has no nonzero nilpotents). 
(3) For every i, xi is not a zerodivisor in R. 

(4) In the case where R has mixed characteristic, we assume also that 
R is a domain. 

Then, if char R = p > 0, let 

R”O=@(R&RL...+RLR& . ..). 

which may be viewed as the result of adjoining all (pe)th roots of elements 
of R. 

If R has mixed characteristic, we define R* to be a ring which satisfies 
the following conditions: 

(0 R m is integral over R. 

(ii) R c R” c 0, where R is an algebraic closure of the fraction field 
of R. 

(iii) R”O contains all (pe)th roots of the elements xi, 1 < i < n. 
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(iv) If (xi”) denotes Uexf@‘Rm, for some consistent choice of (@)th 
roots of xi, then R”/(xim) is perfect, i.e., F is an automorphism. 

(v) For all i > 2, xi, xi is a regular sequence in R O”. 

In fact, we note that in order that S satisfy (i)-(v), where R c S c Q, it 
suffices that 

(a) S be integral over R. 
@I) If 0 E s1 and BP E S, then 0 E S. 
(y) S be integrally closed in its fraction field. 

Note that (@) 3 (iii) and that F is surjective on Rm/(xT). On the other 
hand, if up E (XT), say up = (x,““‘)f?, then u = (xj’p”“)e”P for suitable 
choices. Thus, F is injective mod(xp”). Moreover, (y) * (v), for S is a direct 
limit of normal, module-finite extensions of R, and x, , Xi, i > 2, is a regular 
sequence in each of these. 

Thus, we may choose Rm to be the entire integral closure of R in R, or 
the smallest normal subring of 0 closed under extraction of pth roots. 
(Smaller choices may also be possible.) 

Henceforth, let xie denote a (pe)th root of xi, e = 0, 1,2,.. (thus xi0 = xi); 
assume these have been chosen so that (x~,~+~)P = xie. We shall retain the 
convention that (xi”) denotes Ue> 0 xie R O”. 

(2.9) THEOREM. If char R = p > 0, then R has CE. 
If R is a complete local domain of mixed characteristic, A is as in the list 

of four conditions following the statement of Theorem (2.8), and for every e 
the regular local ring A, = A[xie,..., x,,] is a direct summand of each 
module-finite extension algebra T of A, such .that A, c T c R”O, then R 
satisfies CE. 

Before proceeding to the proof of this theorem we introduce some 
complexes of ideals. Let J, ,..., J, be ideals of a ring S. For each i we have a 
complex 

O+JJS-tO (ai is inclusion) 

which we denote K*(Ji ; S). If J = J, ,..., J,, we write 

K*(J; S) = 6 K&J,; S). 
i=I 

There is a natural inclusion yi : K,(J, ; S) + K,( 1; S) given by 

o+s --F,s +o 

lJ T id 

04 Ji-S-+0 
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which induces a map y: K,(J; S) + K,(l,..., 1; S). We denote by K,(-, J; S) 
the complex which is the image of y. Written out, we have 

+ .a.+ @ Ji,Ji2+@Ji+S+0. 
i,<i, i 

There is a similar complex K*(n; J:S) in which Ji, se- Ji, is replaced by 
Ji, n --- n Ji,. In fact, let A = A i ,..., A,, be subgroups of an Abelian group B, 
and let K*(n; A; B) denote the complex 

O-+A,n . . . nA,-r @ (Ai,n **a nAi,-,) 
i,<...<i,-, 

--t .--+ @ (Ai,nAil)-,@Ai+B-tO, 
i,<i, i 

where the maps are direct sums of inclusion maps with signs chosen as in the 
Koszul complex. If B c B’ and Ai c Ai c B’ for every i, we have an induced 
map K&n; A; B) + K,(n; A’, B’). In particular, K*(n; A; B) may be 
viewed as a subcomplex of K,(q; B,..., B; B), which is the same as the usual 
Koszul complex K*(l,..., 1; B) = K*(l,..., 1; Z) @r B. The following result is 
similar to one in [7]: 

(2.10) LEMMA. Let A ,,..., A,, be subgroups of an Abelian group B, and 
suppose that for all integers q with 2 < q < n, and for every group C which is 
an intersection of a subset of A,, 2,..., A, (including C = B), 

(A,+,nC)n(A,nC+--. +A,nC)= 2 (A,+,nC)n(AinC). 
i=l 

Then K,(n; A; B) is acyclic. 
In particular, if A, ,..., A,, belong to a family of subgroups of B which is 

closed under finite addition and intersection and, such that, within this 
family, intersection distributes over addition, then K,(n; A, B) is acyclic. 

Proof. This is easily checked if n < 2. If n = m + 1, m > 2, then we note 
that the distributivity condition is inherited by the sequence A, ,..., A,,, and 
also by the sequence A, n A,,..., A,nA,. The inclusions A,f7A.C,Ai, 
1 < i < m induce a map of complexes 

K&-x A I,..., A, ; B) 

I 
K,(n;A,nA “,..., A,nA,;A,). 
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By induction on n, we say assume that both rows are acyclic. If we insert the 
augmentations we get an exact total complex. Without the augmentations, 
the total complex is precisely K*(n;A, ,..., A,; B), and so the homology Hi 
vanishes, i > 2. It remains to show that H, = 0. If not, choose a cycle c = 
(a I ,..., a,) E @ Ai, not a boundary, and such that the largest q with a,, I # 0 
is minimum among such cycles. Thus c = (a, ,..., aq+ i, 0 ,..., 0), and 
aI + . ..+a.+,=O, i.e.,-a,+,=a,+...+a,EA,+,n(A,+...+A,)= 
C;=IA4+lnAi; say -a,+,=al, + ... +a;, where a'EA,+,nA,, 1 < 
i < q. Let d E oi,.+ Ai, n Ail be such that the (iI, i,)-component of d is 0 
unless (i,, i2) = (i, q + l), 1 < i < q, in which case it is a,!. Then if d* is the 
image of d in @ Ai, we know that the qth component of d* is *as+ 1 and the 
ith component is 0 for i > q + 1. Then c f d* is a cycle, not a boundary, 
with a 0 in the q + 1 component as well, which contradicts the minimality of 
q. Hence, contrary to our assumption, H, = 0. Q.E.D. 

(2.11) PROPOSITION. Let T be a ring of characteristic p > 0 such that 
the Frobenius F is an automorphism, i.e., T is perfect. Let Y be the set of 
ideals of T which are stable under F-l. Then: 

(1) .P is closed under finite addition, multiplication, and intersection. 

(2) For any x E T, (x”) E Y. 

(3) 0-J’ ,***, J,E.P, then J, . ..J.=J,n . ..nJ.. 
(4) ?fJ l,...,Jr, JEX, then Jn(J, + . ..+J.)=JnJ, +.+. +JnJ,. 

(5) If J = J, ,..., J, E Y, then the natural inclusion K(., J, T) + 
K(n; J; T) is an isomorphism, and both complexes are acyclic. 

Proof Conditions (1) and (2) are clear, while (3) reduces at once, by 
induction, to the case r = 2. But if u E J, n J2 and J,, J, are FL-stable, then 
u’Ip E J, and u’@ E J,, whence u = (u”~)(u”“)~-’ E J,J,. 

Condition (4) is immediate, since by (3), we may replace the intersections 
by products. ‘Condition (3) implies the equality of the two complexes, while 
(4) implies that K,(n; J; 7’) is acyclic, by virtue of Lemma (2.10). Q.E.D. 

(2.12) Remarks. If at least one of J,, J2 c T is flat, say J,, then when 
we apply 0, J, to 0 ++ J, C, T we obtain 0 + J, @ J, CA J,, whence the 
obvious surjection J, @J, + J, J, is an isomorphism. It follows that if all 
but at most one of J, ,..., Jr are flat, then J, @ . . . @Jr + J, . . . J, is an 
isomorphism. Now, if x is a nonzerodivisor in T, (x”) = U, (x’/~‘) is T-flat. 
Hence, we obtain 

(2.13) PROPOSITION. If T is a perfect algebra of charp > 0 and J = 
J , ,..., J,, is a sequence of F-l-stable ideals, at most one of which is notjlat, 
then 

K,(J; T)sI&(.;J; Z-)rK,(c-T;J; T), 
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and each of these is acyclic. In particular, ifx, ,..., x, are nonzero-divisors in 
T, then 

I,>..., cc); T> 

is acyclic, and is a flat resolution of T/((xy),..., (x,“)). 

(2.14) Remarks. If J ,,..., J,, are flat ideals of an algebra T such that 
J q+d?J,+ *** + J4) = J,+,(JI + . ..+J.), l<q<n-l,thenK,(J;T)isa 
flat resolution of T/c Ji. To see this, proceed by induction on n. Assuming, 
inductively, that K,(J , ,..., J, ; 2’) is a flat resolution of T/Zs, where I, = 
J, + ... f J,, we need only show that K*(JI,..., Jqtl; 7’) which is the total 
complex of the double complex K,(J, ,..., J, ; T) @ (0 -+ J,+ 1 -+ T+ 0), is 
acyclic. Since the first (resp. the second) factor is a flat resolution of T/I, 
(resp. of TIJ,, 1), the homology is Torz(TII,, TIJ,, ,). Since J,+ , is flat, 
Tor dim TIJ,, , , < 1, and we need only show that Torr(T/F,, TIJ,,,) =O. 
But this is 1, n J,+ ,/ZqJq+ 1. Q.E.D. 

This gives another proof that K,((xF),..., (x,“); 7’) is acyclic in 
Proposition (2.13). 

Before returning to the proof of Theorem (2.9), we observe 

(2.15) PROPOSITION. Let R be a complete local domain of mixed charac- 
teristic and let A = V[ [x2,..., x,]] and R m be as in Theorem (2.9), where x is 
a regular parameter for V. Let (x~~}~ be a consistent system of (p’)th roots 
for xi, as earlier, and let (xi”) = U, xieR O”. Then 

Kd(xT%.., (x3; R”O) 

is acyclic, and is. a jlat resolution of R “/((XT) + ... + (x,“)). 

Proof. As in Remarks (2.14) we prove by induction on q that 
the complexes K*((xy),..., (x,“); R”) are all acyclic. For q = 1 this is 
clear, while for q = 2, we make use of condition (v) on R co: x, , xi is 
a regular sequence, i 2 2, so that (xy) n (x;“) = (xy)(x;*). It remains to 
show that if 2<q<n--1, then (x,“+,)n((x~)+eae+(x;))=(x;++I) 
((x;“) + ... + (x;)). Let T= R”O/(xF). By condition (iv) on R*, T is 
perfect. Let - denote reduction modulo (xy). Then X2,..., Xn are nonzero- 
divisors in T. Thus, since (ZF+,) and C;=, (XT) are F-‘-stable, we 
have (zC;+ i) n XT=2 (fp) = fti 1 EYE2 (Zy). Let 1, = (x,“+ i) n C;= 1 (xy). 
Working modulo WY ~9~(~qm+l)n7~=2t~~)~~q~tx;o)+tx~l) 
Cj’=, (xi”). But the element of (x;“) required to represent a given element of 
I, will be in (XT++), i.e., in (x;“) n (x,“+i) = (x,“+)(xF), and so J4 c 
(x~+J(xIa) + (x,“,) CTzl (~3 = (x,“+ d EYEI (x7’) =I,, and so 1, = 
tx,“+ I) c9= 1 (49 Q.E.D. 
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(2.16) Remarks. By virtue of (2.13) and (2.15) we now have that 
K,((x;O),..., (x,“); R”O) is acyclic in both the case char R = p and the case of 
mixed characteristic. Notice that in the first case we may view 
R”O/((x;O) + ..e + (x,“)) z K”O. In either case we denote the augmentation by 
L. We have a natural map K + L. 

When xi is a nonzero-divisor in S we have an isomorphism of complexes 

K*(x,; S)+K*((Xi); S) 

via 
o-s -s-o 

Ixi lid 
0 - (Xi) - s - 0 

and so we have an isomorphism of complexes K,(x, ,..., xn; S) + 
&((x,),..., (x,); S> when x1 ,..., x, are nonzero-devisors in S. The free 
generator of S r K,(x; S) maps to x, ... x, in K,((x,),..., (x,); S) = 
(x, .-* x,). This yields a composite map of complexes 

Kdx, ,..., x,, ; R) 

I 
Kdx,,...,~n;R~) 

I K,(x,R”,...,x,R”O;R”O) 

I 
KdK”),..., ($3; Rm) 

such that the free generator in K,(x; R) maps to x, . . . x, E (x;“) . . . (x,“) g 
K,((xr),..., (x:); Rm). Call this composite map ,19. If we compose with the 
usual map K*(x’; R)+ K,(x; R) we obtain a map ,8: K,(x’; R)+ 
K,((xy),..., (x,“); R) such that the free generator of K,(x’; R) maps to 

t-1 . . . 
Xl xi-‘(x, e-*x”)= (x1 *** x,)‘. (tO may also be obtained by tensoring 
the n maps of complexes 

t 
O-R-R-O 

p x’ $ 

O- (xp”)--+ R”O -0 

indicated above.) 
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(2.17) Proof of Theorem (2.9). Let x i,..., x, be the special system of 
parameters already described. If we have a map # from K,(x{ ,...,xk ; R) to a 
minimal free resolution F, of K which is id, in degree 0 but such that 
$, = 0, then since F, is free and K,((xF),..., (x,“); R”O) is acyclic there is a 
map of complexes 

w: F, + K,((xF’),..., (~3 R=‘) 

which lifts the map K 4 L of augmentations. Then 0 = w$ is a map 

&4x’; R) -, K&(x?),..., (A$‘); R”O) 

which induces 

R/(x:),..., x’,) --H K 4 L 

on the augmentations, and such that 8, = 0. But we have another such map 
$?, and since K*(x’; R) is free and K,((xy),..., (x:); R”O) is acyclic, 0 and ,B 
are homotopic. After making obvious identifications, we have the following 
diagram near the nth spot: 

0 -(x;“) **. (x,“)- 

O-R 

where B,=O, tBn(l)=x: . ..xL. and hd=,8,-8,. But then x{ -.-xi= 
dh(l) E (& (xy))(x:v**~ x’,) Rm, whence, for sufficiently large e, 

The symbol A, has already been defined in the mixed characteristic case. 
In char p > 0, let K be a coefficient field, let A = K[ [x, ,..., x,]] c R, and let 
A, =A [xw..., x,,,]. 

In either case, let S be the ring generated over A, by the elements rj. We 
abbreviate y, = xjp. Thus, y, ,..., y, is a regular system of parameters for A,, 
and if we let q = t,,, Eq. (#) becomes 

y': . . . y”, = c rjyyy, *** Y,, rj E S 
j 

or 

q--l . . . Yl Y” q-’ = T rjyj4, rj E S. 
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In charp > 0, we know that the regular ring A, is a direct summand of S 
([ 131; but see Section 6 for a new proof), while in the mixed characteristic 
case, we have assumed that A, is a direct summand of S. In either case we 
may apply an AC-linear retraction S -+ A, to both sides to obtain 

q-1 . . . Y1 Y, q-‘=FajyJ!, ajEA, 

which is well known to be impossible (cf. [ 131). (In fact, yy- ’ e a. yz-’ 
generates the socle in the O-dimensional Gorenstein ring A,/( yy ,..., yz).) 

Q.E.D. 

(2.18) Remarks. This gives a new proof of the homological conjectures 
in char p > 0 as well as a reduction of them to the direct summand 
conjecture in residual char p. The fact that local rings have CE in charp can 
be used to prove this holds in equal characteristic 0, by the same 
“equational” techniques used to prove the existence of big C-M modules; see 
[ 141. However, the direct implication 

(direct summand conjecture) * (all local rings have CE) 

does not seem to work in characteristic 0 (although it is true in a formal 
sense, since both are known). Of course, the homological conjectures we are 
considering are already known in the equicharacteristic case: see 
[ 14, 25-281. 

Later we shall give yet another proof of property CE in charp > 0. 
We next want to show that the conjecture that all local rings have CE 

implies the Eisenbud-Evans-Bruns principal ideal theorem. This theorem 
was first proved for local rings which possess a big C-M module by 
Eisenbud and Evans in [5]. Bruns [4] then gave a more elementary proof 
which handles the general case. Nonetheless, we include here a modification 
of the Eisenbud-Evans proof which utilizes property CE instead of big C-M 
modules, expressly for the purpose of illustrating further how property CE 
can be used to replace possession of a big C-M module in a proof. As in the 
proof of (2.10) we write U,(x) for (f(x): f E Horn&!?, R)}, the order ideal 
(the notation Tr(x) is also used for this by some authors). The result is 

(2.19) THEOREM (Eisenbud-Evans-Bruns). Let (R, m, K) be a local 
ring, E a finitely generated R-module, and let rank E denote 

max,ldim,,,, W) 0 El 

where P runs through all minimal primes of R, and K(P) = RJPR,,. Let 
x E E. Then 

ht O,(x) Q rank E. 
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What we shall prove here is 

(2.20) THEOREM. Let (R, *n, K) be a local ring such that for each 
minimal prime P of R, R/P has CE. Then the Eisenbud-Evans-Bruns prin- 
cipal ideal theorem holds for R. 

ProoJ Exactly as in [5], we may replace R by R/P for a suitable 
minimal prime P and by modifying E we may assume that O,(x) is primary 
to m. Thus, we may assume that R is an integral domain, say, of dimension 
n. Rank E is now the torsion-free rank of E. Write E as Coker(R9 +A RP), 
where A is a q x p matrix. Let (yi,..., y,) E n2(Rp) represent x in E = 
Rp/Im(R9). Since O,(x) is primary to m, we can find n homomorphisms 
4i ,..., #,_E Hom(E, R) such that dl(x) ,..., g”(x) is a system of parameters for 
R. Let #i be the composite map RP + E -+*i R, and suppose B is the n x p 
matrix whose ith row is the transpose of the matrix of Ji. The row space of 
B is then isomorphic to a submodule of Hom(E, R), which has the same 
torsion-free rank as E. Assume this rank is less than n: we then have 
A” B = 0. Let y = [ yi], a p x 1 matrix, and let 2 = [#i(x)], an n x 1 matrix. 
Since yi ,...,_ yp E m , and since BY = 2 (for the ith row of B, transposed, 
represents $J, we have the following commutative diagram, in which the 
rows are the Koszul complexes on y, ,..., y, (with a slightly different augmen- 
tation) and @i(x),..., Q,,(x), respectively: 

. . ..A”RP+ . ..-+AiRp.... +RP~R--rRfm-O 

I tVB 
I 

&B /B /id f 

O+A”R”+ . ..+A”R* + -a. -+ R” -% R - R/($,(x),..., &(x)) - 0 

Since Q1(x),..., $,( x is a system of parameters and A” B = 0, we have ) 
contradicted the assumption that R has CE (cf. Proposition (2.3)). Q.E.D. 

Foxby [8, 91 has forms of the new intersection theorem for flat complexes 
which he deduces from big C-M modules. The author does not know 
whether these follow from the conjecture that every local ring has CE. 

(2.21) Remark. It seems to this writer that the hypothesis needed for 
Theorem 1.1 of [5] is that “R/P has C-M modules for each minimal prime 
P of R”, rather than that “R has C-M modules.” 

3. CANONICAL ELEMENTS IN LOCAL COHOMOLOGY MODULES AND THE 
FUNCTORIALITY OF PROPERTY CE 

Let R be a Noetherian ring and M an R-module. The reader should 
consult part (5) of the Remarks (2.2) for notation involving syz. If P* is a 
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projective resolution of A4 (an acyclic projective left complex together with 
an isomorphism H,(P,) g M), we shall write P,/d, where d is a nonnegative 
integer, for the exact sequence 

Now, any exact sequence k? of arbitrary R-modules 

O+Q+M,-,+.-.+M,,-,M-+O 

determines an element (which we denote by cg or e(8)) in Exti(M, Q). If I is 
an ideal of R and M = R/I, then recalling that the local cohomology H,?( ) 
may be defined by 

H,*(M) = li+ Ext;r(R/P, M) 

that we have a natural transformation of functors 
~:t~(~;I, )- Hf”( ), so that s(8) has an image, which we denote rR or 
~(0, in Hi’(Q). 

(3.1) Remark. If P, is a projective resolution of R/I, and 8’ is any exact 
sequence O+Q-+M,-,+... + M,, -t R/I + 0, then we can fill in a map of 
complexes 

a..--+ 0 - Q -Md-, -+...-+M,-R/I-O 

i T i I Tid (~1 
. . . --+p d+l - pd - Pd--l -.-.-P, -R/I-O 

so we obtain a map 4: syzd P, --t Q. For any module N, Exti(R/I, N) may be 
viewed as 

Hom,(syz,d(Pd, N)/Im(Hom,(P,-, , W) 

and then sg is the class of 4 in Exti(R/Z, Q). 

(3.2) DEFINITION. Let R be a Noetherian ring, Z c R an ideal, and d a 
nonnegative integer. Let P, be a projective resolution of R/I. Let B = P,/d, 
i.e., 

Then we refer to ~(8) as the canonical element in Estg(R/Z, syzd P*), and 
n(8) as the canonical element in Hi(R/Z, syzd P*). 
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The following basic result summarizes some trivial but important facts 
which will be used repeatedly, and justifies the use of the term “canonical 
element.” 

(3.3) PROPOSITION. (a) In the situation of the diagram labelled (#) 

$* : Ext@/I, syzd(P,)) --) Ext;(R/I, Q) 

takes n(P,/d) to n(a), and, hence, 

&: W’(~YZ~(&)) --) %'(Q) 

takes n(F,/d) to n(8). 

(b) If P*, Pi are two projective resolutions of R/I, then any map 4: 
syzd(P,) + syzd(P;) induced by a map of complexes which lifts id,,, takes 
e(P*/d) to c(P;/d) and n(P,/d) to n(P&/d). 

(c) In the situation of (b), there always exist such maps 4: syzd(P,) --t 
syzd(P$) and VI: syzd(P$) + syzd(P,): hence Ann, e(P,/d) = Ann, e(P&/d) 
and Ann, n(P,/D) = Ann, n(P$/d). 

Given the ideal Z, we can construct the elements e(P,/d), n(P,/d) in 
E&@/L s~z~@‘d) and in Hy(syzd(P,)), respectively. Neither P* , nor 
syzd P,, nor the induced maps between the local cohomology modules are 
canonical. But the elements e(P,/d), n(P,/d) are mapped to their coun- 
terparts when we change P*, independent of how the maps of complexes are 
chosen. This justifies the terminology “canonical element” in Extd,(R/Z, 
syzd(P*)) (resp. in Hf(syzd(P*))). 

We shall identify the various e(P,/d) (resp. q(P,/d)) in these 
noncanonical modules obtained from various P, by means of the 
noncanonical maps $* : despite all the choices, the identification is 
“canonical,” by Proposition (3.3). 

We write E: (resp. qf) for the canonical element in Exti(R/Z, syzd(R/Z)) 
(resp. in Hf(syzd(R/I)) ( we are making tacit use of our identifications to 
suppress reference to P*), provided I # R (if Z = R, E and q are 0). In 
practice, d will almost always be height I. When the value of d or I is clear, 
the corresponding super- or subscript is omitted. When (R, m, K) is local 
and dim R = d, we write E or E, (resp. r] or qR) for E: (resp. ?,s!, ). This case 
is the focus of our interest. This notation should not cause confusion: the E,, 
q, notations are used only for proper ideals I. 

We next prove an elementary but very important fact concerning change 
of rings: 

(3.4) THEOREM. Let h: R + S be a homomorphism of Noetherian rings. 
Let I c R, J c S be proper ideals such that h(I) c J and Rad J = Rad IS 



522 MELVIN HOCHSTER 

(where Rad J, the radical of J, consists of all elements nilpotent module J). 
Consider a commutative diagram 

jr o- v- Nd-1 -...-N,-S/J-O 

I I I @d ad-1 
I I 

@Jo a 

B 0-u-M,_,-...-M,-R/Z-O 

where a is induced by h, 2’ (resp. T) is an exact sequence of R-modules 
(resp, S-modules) and the vertical arrows give a map of complexes over R. 

Then #* (ns) = ns, where 4 *: H:(U) -+ Z-&V) g H,d( V) is induced by $. 

Proof: Note first that 

where the subscript indicates over which ring we are regarding V as a 
module. Thus, qk U + R V induces 

4*: H,d(U) -+ H;(y) z H,d(,V). 

Let F,, L, be R-projective resolutions of R/Z, S/J, respectively, and let 
P, be an S-projective resolution of S/J. Then the left-hand commutative 
diagram below lifts to a diagram, not necessarily commutative, of complexes, 
shown on the right. Although the diagram of complexes need not commute, 
the two induced maps syzd(F,)-+ V differ by a restriction of a map 
F d-, + V, since both come from liftings of a: R/Z+ S/J to maps of 
complexes F+ -+ 27 

S/J id S/J L*ld- P*/d 

a 

/ / \ 

Thus, they represent the same element [ of Exti(R/Z, v). Explicitly, in the 
lower diagram below we have [&VI = [@I (where [ ] denotes class in Extg). 
Hence, E F, sg both map to c as shown on the right: 



DIRECT SUMMAND CONJECTURE 523 

It follows that rlF E Z&k’) and va E H:(U) have the same image in 
K% v) = r3.Y 0 Q.E.D. 

(3.5) Remark. We cannot compare sg and sg directly (without 
introducing the auxiliary module Exti(R/Z, v)). The tremendous advantage 
of local cohomology is that the direct limit of the maps Exti(S/.Z’, I’) -+ 
Exti(R/Z’, v) is an isomorphism so that no auxiliary module is necessary. Of 
course, if R = S and Z = .Z a much simpler argument shows that &(eg) = E,~. 

(3.6) COROLLARY. Let R, Z, S, J and a be as in Theorem (3.4). If 
$: syz;(R/Z) -+ syz,d(S/J) is any lifting of a, then &(n,d) = nJd. 

Thus, the canonical element qf behaves in a very functorial way. 
We next give an interpretation of what it means if a:’ # 0. We shall use the 

notation 0, for the natural map Extg(R/Z, M) -+ Z-Z;(M). 

(3.7) THEOREM. Let R be a Noetherian ring, Z a proper ideal, and d a 
nonnegative integer. The following conditions on R, Z, d are equivalent: 

(1) rt;‘f:o. 
(2) For some R-module A4 (not necesarily fmitely generated), 8, # 0. 

(3) For some (equivalently, every) choice of N = syzd(R/Z), BN # 0. 

Proof. By definition, ?,$j = @,(e,“), independent of the choice of 
N = syzd(R/Z). Hence, (1) + (3) with “every” =z- (3) with “some” * (2). It 
remains to show that (2) * (1). Let 6 E Exti(R/Z, M) be such that 8,(J) # 0, 

481/84/2-I6 
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and let P, be a projective resolution of R/I. Then 6 is represented by a map 
@N=syzdP*-A4, and under the induced map I& : Extd(R/I, N) + 
Extd(R/Z, M), @*(aI) = 6. Thus, we have a commutative diagram 

Ext;(R/Z, N) 2 H;(N) 

I 
4, I 4, 

Ext;(R/Z, M) 3 H;(M) 

and 0 # f?,(S) = 19,#,(e,) = &(fZ,(s,)) = &(I]~), which implies that VZ # 0. 
Q.E.D. 

If R is a ring, x, ,..., xd E R, M is an R-module, and x, ,..., xd is a regular 
sequence on M, then it follows easily from the long exact sequence for Ext 
and induction on d that Ext’(R/(x{ ,..,, xi), M) = 0, i < d, while 

Extd(R/(x; ,..., xi), M) iz M/(x{ )...) xi) M. 

If s < t, we have, in fact, a commutative diagram 

Extd(R/(x”), M) 2 M/(xS)M 

I 
Extd(R/(x’), A4) g M/(x’)M 

Thus, one obtains the usual identification H;‘,,(M) z lint, M/(x’)M (cf. 
[ 1 I]), which is valid even when xi ,..., xd is not a regular sequence on M. 
Moreover, we have a commutative diagram 

Extd(R/(x), M) * H;‘,, W) 
211 111 

M/(x, ,..., Xd)M 8’ . 9 WWPf 

where 8’ is the same map as in the direct limit system. It is an easy exercise 
to show that when x ,,..., xd is a regular sequence, each of the maps 
M/(xS)M-* M/(x’)M is injective. Hence, 6, is injective, whence qCX) # 0. We 
have proved 

(3.8) THEOREM. Let x, ,..., xd E R, a Noetherian ring, and suppose there 
exists an R-module M such that x1,..., xd is a regular sequence on M (which 
includes the requirement that (xl ,..., x,,) M # M). Let Z = (xl ,..., x,)R. Then 
Q # 0. (Note that M need not be finitely generated.) 
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Note that in the above discussion we viewed H&(M) as @, Extg 
(R/(x’); M) rather than as liner Extg(Z?/(x)‘, M). This makes no difference 
since the two sequences of ideals (x’), (x)’ both begin with (x), and each is 
cofinal in the other. 

When x ,,..., xd is an R-sequence, we can make a reasonably understan- 
dable calculation of the canonical element: choose the Koszul complex 
K&x; R) as a resolution of R/(x). Thus, syzd R/(x) zz R, and Extd 
(R/(x, ,..., xd), R ) g R/(x 1 ,..., xd) SO that EC,) is the identity in R/(x). Thus, 
r,r(,) is the image of 1 + (x) E R/(x) in H;‘,,(R) z I& R/(x: ,..., x2). This iden- 
tification depends on the choice of x1 ,..., xd. We state this formally. 

(3.9) THEOREM. Let R be a Noetherian ring, let x,,..., xd be an R- 
sequence, and identifv syzd R/(x) = syzd(K*(x; R)) = R. Then the canonical 
element ?,I(., in Hf’,,(syzd R/(x)) may be identiJied with the image of 1 + (x) E 
R/(x) in lhn~, R/(x’) z H;‘,,(syzd R/(x)). 

Now let R be a Noetherian ring, J an ideal of R, x, ,..., xd E J, and suppose 
Rad(x, ,..., xd) = Rad J. Let X ,,...,Xd be indeterminates over Z, the integers, 
let A = Z [X, ,..., X,], and map A --t R such that Xi t-+ xi, 1 < i < d: call this 
map h. Let P, be a projective resolution of R/J over R, with P, = R (for 
simplicity). Then we can map the free A-complex K,(X; A) to the acyclic R- 
complex P, so as to lift h: A --t R, and we obtain a diagram 

O- syzdR/J -.a.- Pi -...+R--+ R/J -0 

@ T I I i h 

O-K,(X;A)-...--rK,(X;A)-...-+A-A/(X)-O 

By Corollary (3.6), we may view q,” as the image of q”(X) under #* : 
H;‘,,(A) --t H,d(syzd R/J) = H;‘,,(syzd R/J). If we identify H;‘,,(A) with l& 
(A/(X’)) and Hf’,,(syzd R/J) with l& (syzd(R/J)/(x’) syzd(R/J), and if we 
identify ncx, as the image of 1 + (X) E A/(X) in liner A/(X’), then we see 

(3.10) THEOREM. With notation as above, let N = syzd R/J. Then r,” 
may be identified with the image of 

d(l) + (x)N E N/(x)N 

in hI N/(x’)N. Hence vJ” # 0 if and only iffor all integers t > 0, 

(x:-l .-a xt;‘) g(l) & (xi,..., xf?)N. 

(3.11) Remark. In the above situation, we may replace K,(X; A) by 
K*(x; R): h is replaced by id,, and 4 is the map from R = K,(x; R) to 
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N= syzd P,. #(lA) is replaced by #(lR). All this is immediate from the fact 
that if Q is an A-module and P is an B-module, Hom,(Q, P) z 
Hom,(R 0 Q, PI, whence Horn, (K, (X; A), P*) (as complexes) 2 
Hom,(K,(x; R), P,) (as complexes). Moreover, we may replace the 
assumption that P, = R, (A -+ P,) = h, by the assumption that R -P P, lifts 
R/(x) -+ R/J. This is worth stating formally: 

(3.12) THEOREM. Let R be a Noetherian ring, J a proper ideal, and 
x, ,..., xd E J such that Rad(x) = Rad J. Map K*(x; R) to P*, a projective 
resolution of R/J, such that R = K,(x; R) --t PO lifts R/(x) -+ R/J. Let Q be the 
induced map of R = K$(x; R) to syzd P, = N. Then nJ” may be identified with 
the image of $( 1) + (x) NE N/(x)N in l& N/(x’)N E H:(N). 

Hence, nJd + 0 I$ and only tffor every integer t > 0, 

(XI a.. xd)‘-’ g(l) & (x; ,..., x;)N. 

(3.13) Remark. Let B be any ring such that A = Z [X, ,..., X,] +h R 
factors A --t B -+‘R, and let y1 ,..., yd be the images of X, ,..., X, in B. Then 
we may lift k to a map K,(y; B) -+ P, and consider I,V: B + syzd P, induced 
by this lifting, where B = K,(y; B). Evidently, u/( 1) f (x)N represents qJ, for 
given any B-module E, and any R-module P, Hom,(E, P)r 
Hom,(R @ &, P), and it follows that the maps from K,(y; B) to P, are the 
same as those from K,(x; R) to P,. 

Before turning our attention to maximal ideals of local rings, we note 
some trivial but useful facts about q, in the general case. 

(3.14) PROPOSITION. Let R be a Noetherian ring and I a proper ideal. 
Let d > 0 be an integer. 

(1) I kills ey and 11;. 

(2) If J c I, Rad J = Rad Z and 111” # 0, then n,” # 0. Equivalently, if 
v,” = 0, then r,$’ = 0. 

(3) If H;(M) # 0 for some R-module M, then there exists a positive 
integer t such that for all J c I’ with Rad J = Rad I, n5 # 0. 

Proof (1) .$ E Extd(R/I, syzd R/I), which is killed by Z, and q, is the 
image of E: under the natural map to H:‘(syzd R/I). 

(2) For every M, the map Exti(R/I, M)-* H;‘(M) factors 
Exti(R/I, M) -+ Ext,d(R/J, M) --t H!(M). Since the powers of Z and the 
powers of J are each cofinal in the other, 

Ext;(R/J, M) + H;(M) z H;(M) 
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is zero for all M implies that 

Ext;(R/I, M) + H:(M) 

is zero for all M. 
(3) If H:(M) # 0, we choose t such that Exti(R/I’, M) --t H,,(M) z 

H,(M) is nonzero, for H,(M) = lir~ Exti(R/I, M). It follows that v,, # 0, and 
the rest follows from part (2). Q.E.D. 

We now focus attention on the local case. Let (R, m, K) be a (Noetherian) 
local ring, with dim R = n. Let x, ,..., x, be a system of parameters. It is 
understood that sR, qR denote E& , @, , i.e., d = n. Since ine = Rad(x, ,..., xJ, 
the theory of Theorems (3.10) and (3.12) may be applied with J= m. We 
have at once 

(3.15) THEOREM. A local ring (R, m, K) has property CE if and only if 
4-R =+ 0. 

Proof. Compare Remarks (2.2)(7) with Theorem (3.12). Q.E.D. 

Note that, knowing this, we can view Theorem (3.8) as a generalization of 
Theorem (2.7). Theorem (2.8) can now be seen to assert that if the direct 
summand conjecture is true, then for every local ring R, qR # 0. 

(3.16) Conjecture (Canonical element conjecture). For every local ring 
R, VR # 0. 

It is easy to see that this is, in fact, equivalent to the direct summand 
conjecture (Theorem (2.8) gives one implication while Corollary (3.22) gives 
the other, which is easier). 

Of course, we know from the existence of big C-M modules that qR # 0 if 
R contains a field, and we have given another proof in Section 2 for the case 
where char R = p > 0. But we can now give a different, very simple proof for 
this case based entirely on the functorial behavior of qR (and, of course, the 
Frobenius). 

(3.17) THEOREM. Let (R, m, K) be a local ring of positive prime charac- 
teristic p > 0. Then qR # 0. 

Proof (By functorial properties of qR). Since HZ (R) # 0 (where 
n = dim R), we can choose t such that v,,# 0, by (3.14). Now apply 
Corollary (3.6) with h = Fp’, Z = WZ, S = R, and J= FP’(m)S c mP’. It 
follows that q,,, maps to qJ. But for large e, Jc +vz~, and qJ # 0. Thus, 
VW f 0. Q.E.D. 
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We next observe 

(3.18) PROPOSITION. Let (R, m) --t (S, +z) be a local homomorphism of 
local rings which takes a system of parameters for R into a system of 
parameters for S. 

(a) Is vs f 0, then vR # 0. 
(b) If S is R-flat and mS = “t, then ns # 0 if and only if nR # 0. 

(c) In particular, nR # 0 o no # 0, where I? is the m-adic completion 
ofR. 

ProoJ Let dim R (= dim S) = n. Then (a) holds simply because, by 
Corollary (3.6), qR maps to vs. 

To prove (b), choose a map of K,(x; R) to P*/n for some projective 
resolution P* of K; the problem is to show that vR # 0 3 qs # 0. Thus, 
assume that for the induced map R -+9 syz” P,, (x, .e. x,)‘-’ o(1) 6?G 
(4 ,***, xi) syz” P,. Now apply OR S. Since S is faithfully flat over R, these 
facts are preserved: snce mS =q P, OR S is a projective resolution of 
S/m S = S/H. (The faitfhful flatness yields syzl(P, OR S) z (syz: P*) OR S.) 

(c) is immediate from (b). Q.E.D. 

(3.19) Remark. It follows that the conjecture that q, # 0 for all local 
rings R reduces to the complete case. Many other reductions are possible: 
one can enlarge the residue class field so that it is algebraically closed, one 
can kill a prime ideal of maximum coheight, one can normalize. Thus if 
r,rR # 0 when R is any complete local (even normal) domain, then rR # 0 for 
all R. In all of the operations mentioned, one maps R -+ S, S local, so that a 
system of parameters for R is still a system of parameters for S. A complete 
local domain is always a finite module over a regular local ring. Hence, the 
following proposition has some interest: 

(3.20) THEOREM. Let (A, y> c (R, m> b e a local inclusion of a regular 
local ring A in a local ring R of dimension n. Let x, ,..., x, be a regular 
system of parameters for A and assume that x,,,.., x, is a system of 
parameters for R. Map K*(x; A) + P, , where P, is a projective resolution of 
R/m so that A = K,(x;A)-+ P, lift A/(x)-+ R/M, and let #:A = 
K,(x; A) -+ N = syz” P, be the map induced by the lifring. 

Then n,, # 0 of and only 17 A --r6 N is pure as a map of A-modules, (i.e., if 
and only iffor all A-modules E, 4 @ id, : E -+ N @ E is injective). 

If R is a finite module over A, then this is equivalent to the assertion that 
A -+@ syz” P, splits, i.e., that 4 is injective and #(A) is a direct summand of 
syz” P, as an A-module. 

Proof: We first note that in [20], Proposition 6.11, p.. 1401, the fact that 
S is an R-module plays no role. Thus A + N is pure if and only if 4, : E -+ 
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N @ E, where E = liner A/(x: ,..., x’,) (= H&(A) = the injective hull of I over 
A), does not kill the image of 1. But this simply says that 

t--1 . . . Xl x’,-‘4(l) e (xi,..., x’,)N, 

all t, and the result follows from Theorem (3.12) and Remark (3.13). 
In case R is a finite module over A, P, may be chosen to consist of 

finitely generated free modules, so that syz” P, is a finite A-module. In this 
case, purity is equivalent to splitting (see, for example, [21, Corollary 5.21). 
If P, is not finite, one may split it into a finite resolution and an exact 
sequence of free modules which may be ignored. Q.E.D. 

(3.21) Remark. Given a specific complete local domain R, it ought to be 
possible to test whether qR is 0 or not: resolve R/W to n = dim R steps, 
represent R as a finite module over a regular ring A with regular system of 
parameters x, ,..., x,, map K*(x; A) to the resolution P, of R/m, and then 
see whether @: A -+ syz” P, splits. One simply needs to understand 4 as a 
map of A-modules. The point is, this seems to be a much more concrete 
question than whether R has a big C-M module, the quantification required 
is not so elaborate. 

(3.22) COROLLARY. Let A be a regular local ring and suppose A c R, 
where R is a local ring module-jinite over A. If qR # 0, then the map A --) R 
splits as a map of A-modules. 

ProoJ: The map A + N, where N = syzN R/M is as in Theorem (3.20) 
splits as a map of a A-modules. Since N is an R-module, there is an induced 
map R = A @,, R -+ N as R-modules, and A-+ N factors A-+ R -# N. If 
w: N + A splits A -+ N, then I@ splits A -+ R. Q.E.D. 

This gives one of several possible proofs that the canonical element 
conjecture implies the direct summand conjecture: a much easier fact than 
the converse, Theorem (2.8), which was one of the main results of Section 2. 

(3.23) Remark. The question of whether qR = 0 can also be translated 
into a problem of solving equations in R such that certain of the variables 
turn out to be a system of parameters. Suppose we seek a local ring R which 
is a counterexample, i.e., such that qR = 0. Then over R there will exist a 
map of free complexes: 

Y” O+R*n-..+..._, R”‘r 

o=r; 
I y : 

o- R __t . . . ---+R(?)L . . . - 
X” 

R(;)a R” --+R 
X2 
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where the bottom row is the Koszul complex of a system of parameters 
x, ,..., x, for R, Yi is an mi X m,-, matrix over R, 1 < i ,< n, and Y; is an 
(7) x m, matrix over R, 0 <i< n (m, = I); moreover, we impose the 
conditions that YA = 0, Yh = [ 11, and that some fixed power of the entries of 
Y, say the tth, is in (x1 ,..., x,)R (so that Y, will have entries in the maximal 
ideal of R). Of course, Xi is a fixed ( r ) X ( ,‘J1) matrix each of whose entries 
is either a certain fx,, or 0: the matrices of K*(x; R). 

Hence, if we view all the matrices Yi, Yi as having unknown entries, and 
the xi as unknown as well, then finding an n-dimensional local ring R with 
s, = 0 is equivalent to finding integers m, ,..., m, (m, = 1) and t such that the 
matrix equations 

(i) Yi+lYi=O, 1 <i(n, 
(ii) YiY; = Y;-,Xi, 1 ,< i,< n, 
(iii) Y; = [ 11, 

(iv> K = 0, Xm,, 
(v) J$ = Cy=, Y~Xi, where 

Yl 
Y,= : I 1 Y ml 

(where Yi, Y[ have the sizes specified above, and the X’s are determined by 
the xi as in the Koszul complex) have a solution (for the entries) in a local 
ring R such that x, ,..., x, have values which are a system of parameters. Of 
course, we can get rid of the matrices, and simply write a system of 
polynomial equations with coefficients in ;Z in x, ,..., x,, the entries of the 
matrices Yi, Yi’, and the coefficients yJT needed in (v). 

Thus, the conjecture qR # 0, all local R, admits reduction from equal 
characteristic 0 to equal characteristic p, by the method of [ 141, and, the 
proofs that l;lR # 0 in char p > 0 given here that do not depend on big C-M 
modules also yield proofs in equal characteristic 0. In fact, by virtue of 
Proposition (3.18)(a) we get slightly more, just as in the big C-M modules 
case. 

(3.24) THEOREM. Let R be a local ring such that no prime integer p is a 
part of a system of parameters. Then vR # 0. 

ProoJ The hypothesis implies that we may choose a prime q c R of 
coheight dim R such that S = R/q is equicharacteristic. Then rF # 0 + 
?R # O* -Q.E.D. 
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4. CANONICAL MODULES AND CANONICAL ELEMENTS 

In this section we shall give an interpretation of “satisfying CE” in terms 
of canonical modules, which was pointed out to the author by Joseph 
Lipman. Later, we shall exploit this point of view in studying the question, 
when can one conclude that R satisfies CE from the fact that R/xR, where x 
is a nonzero-divisor, satisfies CE. See Section 5. 

We first recall some basic facts about canonical modules. Let (R, m; K) 
be local, dim R = n, and let E = E,(K) be an injective hull for K over R: we 
assume that we have a fixed injection K --$ E as well. Let * denote the functor 
Hom,( , E). A finitely generated R-module fl is called a canonical module 
(or dualizing module) for R if S2- z H:(R). If it exists, R is unique up to 
nonunique isomorphism. If R is module-finite over a Gorenstein local ring S, 
where dim S = q, then we may take 0 = Extq-“(R, S), so that R does have a 
canonical module. In particular, every complete local ring has a canonical 
module. 

When R is C-M, local duality gives an isomorphism 

Extk(M, Q)- z H”,-‘(M). 

When R is not necessarily C-M, this still holds for i = 0, i.e., 

Hom,(M, Q j z H”,(M). 

(Consider a presentation R”+R’-+M-+O and use the fact that 
(-) o Hom,( , Q) and Hz are both right exact functors and give the same 
result when applied to R.) The reader is referred to [ 111 for more details. 

Let R# denote the ring Horn,@, 0). Scalar multiplication on R gives an 
obvious ring homomorphism R + R#, so that R# is a module-finite R- 
algebra. Although it is not obvious that R# is commutative, we shall soon 
prove this. Moreover, under mild assumptions, R r R”. In fact 

(4.1) PROPOSITION. Let (R, m) be a local ring of dimension n which is a 
homomorphic image of a Gorenstein ring, so that R has a canonical module 
IR. Then: 

(a) H”,(a) g (R#j. 

(b) The following conditions are equivalent: 
(i) R is S, and for every minimal prime P of R, dim R/P = 

dim R. 

(ii) R + R# is an isomorphism. 

(iii) The map 6: Hz(Q) -+ E which is the composite 

H”,(Q) z (R”)- -+ R- = E 
is an isomorphism. 
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ProoJ (a) is immediate from local duality: Z-Z;(0) g Exti(0,fi)’ = 
Horn@, 0)’ = (R#)-. The equivalence of (b)(ii) and (iii) is clear, since the 
map in (iii), up to composition with isomorphisms, is simply the dual of 
R --t R#, and ” is faithfully exact. It remains to prove the equivalence of (i) 
with (ii) (or (iii)). This will follow from the discussion and Lemma (4.2). 

Let P, ,..., P, be the minimal primes of R such that dim R/P, = dim R, and 
let S=R-UiPi. Thus, yE mnS if and only ify is part of a system of 
parameters for R, i.e., if and only if dim R/yR < dim R. Let Q = 
Ker(R + S-‘R) = {x E R: x is killed by some parameter}. Let R= R/Q. 
There will exist a single parameter y such that yQ = 0, so that, as a module, 
dim Q < n. Q is the largest ideal of R whose dimension is < n. Note that in 
R, every parameter is a nonzerodivisor. (This is equivalent to asserting that 
R is S, and every minimal prime has coheight equal to the dimension.) Then 

(4.2) LEMMA. With the same hypotheses as in (4.1) and the preceding 
discussion : 

(a) HA(R) -t Hz (Z?) is an isomorphism. 

(b) 0, rn,. 
(c) if x E R is a parameter, x is not a zero-divisor on $2,. 

(d) Ker(R -+ Horn,@, n)) = Q. Thus, R + Horn,@, n) is injective if 
and only if R = E. 

(e) There is an injection Horn@, 0) -+ S- ‘R E S - ‘R as rings. 
Hence, Horn,@, LI) is a commutative semilocal ring module-finite over R. 

ProoJ (a) This part is immediate from the exact sequence for local 
cohomology: consider the short exact sequence 0 -+ Q -+ R + R-r 0, and use 
the fact that, since dim Q < dim R, H:(Q) = 0. 

(b) This follows from (a) and the fact that the dual of an R-module 
into the injective hull RR(K) of K over R is the same as its dual into Err(R). 

(c) Let x be a parameter. Then 0 -+ R-+” R-+ R/xx-+ 0 is exact. 
Since R is a homomorphic image of a Gorenstein ring T, so is R, say 
R= T/Z, where Z will have all minimal primes of the same height, say, d. 
Then from the short exact sequence we get 

0 - Extd,(R, 7’) -% Ext;(R, 7’) - Ext$+‘(Z?,,x~ 7’) 

or 
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so that x is not a zerodivisor on &= R, , and &/x0, injects into RF,,,,-. 
This establishes (c), and also shows that R, --t S’a, is injective and, hence, 
that 

Horn,@, J2) --t S-’ Horn,@, 0) 

is injective. But 

23-l Hom,(L$ J2) z Hom+,,(S-‘R, S’G), 

where S- ‘R = S- ‘R is a zero-dimensional semilocal ring, say S- ‘R = 
nfZoAi, where each Ai is Artinian local, and S’L! is the product of the 
canonical modules of the Ai. But then 

S-‘R= S-‘R -+ Horns-,,(S-‘0, S’n) 

is an isomorphism, since this is true for each factor. Thus, Horn,@, 8) 
injects into S-‘R = S-‘R, as claimed in (e). But, since it is module-finite 
over R, it must be semilocal. 

(d) This is immediate from the facts that R is an R-module (so that Q 
is in the kernel) and that the map becomes an isomorphism after localizing 
at S. Q.E.D. 

We now return to the proof of Proposition (4.1). 
We must show (i) o (ii). From either (i) or (ii) it follows that R = R and 

so henceforth we assume this. We next claim that if x, , x2 is part of a system 
of parameters for R, then x,, x2 is a regular sequence on R, and hence on 
R” = Hom,(L$ L?). To see this, note that we already have an embedding 
J-v% Q 4 QR,X,R. Since the image of x2 in R/x,R is part of a system of 
parameters, x2 is a nonzero-divisor on GRIxlR, and hence also on ,O/x,R. 
The calculation of both Q and R” = Horn@, Q) commutes with 
localization, and it follows that both JJ and R# are S,. It is clear now that 
(ii) * (i). 

It remains only to show that if R satisfies (i), then R + R’ is an 
isomorphism. We already know the map is injective and that R *G S - ‘R. 
If ht P < 2, then R, is C-M and R, -+ (Rp)# is an isomorphism. It follows 
that if C = Coker(R -+ RX), then if C # 0, ht Ann C >, 3, and so, since R is 
S,, Ann C contains an R-sequence of length at least 2. Since Ext’,(C, R) is 
first nonzero at the depth of R on Ann C, Ext:(C, R) = 0, which implies 
R’ = R @ C. This is impossible, since RX-, S -‘R is injective and C is killed 
upon localization at S. The only possibility is that C = 0. Q.E.D. 

Next we want to observe that for every module M we have a pairing 

Horn,@, L!) @ Z!Z$ (M) --) E (#) 
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induced by composing the Yoneda pairing 

Horn, (M, Q) 0 H, (M) + Hk (0) 

with the map 6: H;(0) + E. This is a perfect pairing which induces 
functorially the isomorphism 

H$ (M) z Horn, (M, Q)” 

discussed earlier. The key point is that when M = R, (#) becomes 

and we have 

f2@H&(R)gH&(Q)-% E 

111 111 111 
n@n” - (R#j -R- 

(Recall that R# = Horn,@, 0). The standard pairing 0 @ Q- --+ E is the dual 
of R + Horn@, a).) 

Joseph Lipman pointed out to the author that the property vx # 0 is 
equivalent to 8, # 0. 

(4.3) THEOREM. Let (R, + K) be a local ring of dimension n which is a 
homomorphic image of a Gorenstein ring. Let y: R + H& (syz” K) map 1 E R 
to nR. Let - denote Hom,( , E), as above, and let ^ denote m-adic 
completion. Then there is a commutative diagram 

Hom,(syz” K, 0) ---+ Hom,(syz” K, l2)^ g H$(syz” K) Y‘ E 

I 
4 

I 
o^ 

i s 

Exr:(K, a)-----+ Ext;:(K, a)- ‘Hk (L’) 

where ,8(f) = f* (Q, j? is the completion of p, a is induced by local duality, 
and the composite map Exti(K, Q) -+ Hk (0) is 8,. 

Hence, nR # 0 if and only if 13, # 0 if and only if 68, # 0. 
Moreover, since Ext i(K, a) is a K-vector space Im(68,) c K, the unique 

copy of K in E, and ifA, : Exti(K, 0) + K is 68, with its range restricted, 
then nR # 0 if and only ifA, # 0. 

Proof: It is easy to see that we may replace R by R here. Hence, we 
assume R = R^ and consider the diagram 
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HomR(syz” K, Ll) 2 HL(syz” K) A E 

D 
I 1 s 

Ext; (K, l2) en KW) 

We first check that it commutes. Let f E Hom,(syz” K, l2). Then P(f) = 
f&A-j 4dKf>) =f&dl so that @%dW> = WiAJ). On the other 
hand, a is induced by 

HomR(syz” K, 0) @ H” (syz” K) --+ H” (0) * E, 

where f @ 1 t+ 6(&(A)); here, f* is the map $ induces from HA (syz” K) + 
H& (0). Thus Ya(f> = Y- 0 (A ++ 4.M~)) = WiWN = &&A as 
needed. 

Now,&9,#0~0,#0~~,#0(since~,#0~0,#0forsomeM)and 
it will suffice to show that qR # 0 * 68, # 0. Suppose, to the contrary, that 
68, = 0. By the commutativity of the diagram, 7-a = &?J = 0 + y” = 0 
(since a is an isomorphism) =P y = 0 * qR = 0, a contradiction. The last 
statement in the theorem follows immediately. Q.E.D. 

5. COMPARISON OF MR AND MRIxR 

Throughout this section (R, m, K) denotes a local ring of dimension n 
which is a homomorphis image of a Gorenstein local ring S of dimension 9 
and x Em denotes a nonzero-divisor in R. There is little or no loss of 
generality in assuming that R is a homomorphic image of a Gorenstein ring, 
since qR vanishes if and only if-v,- vanishes. We shall let - denote the result 
of applying a,, R/xR. Thus R = R/xR. We want to study the question, 
under what conditions can we conclude that rlR # 0 given that vRlxR # O? 

Let a, = Ex$-“(R, S), while a,= ExtQS-(“- ‘)(R, S), which are dual to 
Hk (R), H&-,-‘(R), respectively. 

(Note that H&-i(K) r Hk-l@).) In certain good cases 52,~ 
.R,/xQn, = fiR, but not in general. In fact, the short exact sequence 

O+R+R+R-+O 

yields 

O-+ aR -+A R, + a,-1 Ext;-“+‘(R, S)& Ext4,-“+‘(R, S). 

Let us write QL = ExtQ,-“+ ‘(R, S): this is dual to the second highest local 
cohomology module ZZ- ‘(R) of R. Summarizing, we have 
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(5.1) LEMMA. l&g n, if and onZy ly x is not a zero-divisor on 0; : 
equivalently, LIE= R, if and only if H:-‘(R) is x-divisible. 

In the general case, let C = Ann, I x. R Then we have short exact sequences 

042,-r,a,d&+o and O+SZ,42,+C+O. 

Let R = R, (so that a=L?/xJ?), a’(M) = Ext#,M), g-‘(M) = 
Ext#, M) and let ER , EK be the injective hulls of K over R, R, respectively. 
We view EF as AnnER x. We then have the commutative diagram 

FIGURE 5.2 FIGURE 5.2 ER 

Here, $‘-+ 8’ is the map of Ext’s for change of rings and 8’+ HA is the 
obvious map. These maps induce all the vertical arrows except SF, 6, which 
were discussed in detail in Section 4. The horizontal arrows are long exact 
sequences arising from 0 -+ B -+X R + d + 0, while the rising arrows come 
from long exact sequences derived from 0 -+ fi-+ Q-f C + 0. 
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The commutativity of this diagram is not quite obvious: one must check 
that Sy = z&a. The point is that the diagram 

is the dual, into E,, of the diagram 

Homdfi, Q,) 
2 I 

Horn,@, J2) +-- R 

Here, one uses the facts that Horn,& , ER) on z-modules is isomorphic with 
HomA , E& and local duality over R and E for the highest local 
cohomology using fa a,, respectively (i.e., Hll, (M) z 
Hom,(Hom,(M, J2), E) while H&‘(N) z HomdHom,-(N, a,), EE) for an 
E-module N). 

(5.3) THEOREM. Let (R, m, K) be a local ring which is a homomorphic 
image of a Gorenstein ring with dim R = n. Let x be a nonrero-divisor in R 
and let R, Q, &?, R,-, and C be as above. Let c: Extk-‘(K, &)+ 
Exti-‘(K, C) be the map ,u,o (or zpJ indicated in Fig. 5.2. Zf c = 0 and 
qr# 0, then qR # 0. 

In particular, if C = 0 and qK# 0, then qR # 0. 

Proof: We refer to Fig. 5.2 throughout the argument.Suppose [=O. Then 
rpu, = 0, so- that Imp3 c Im t, (=Ker r). Now r,rK # 0 implies that the 
composite map cI,qf13 maps onto the copy of K in E,, and hence 16, qp3 
maps onto the copy of K in E,. Choose z E Ext$-‘(K, E) such that 
16, q,u,(z) generates the copy of K in E, . Since Im p3 c Im r, , we can choose 
w E Exti-‘(K, 4) such that r,(w) =p&z). Then zb,-v,t,(w) generates the 
copy of K in E,, and hence, from the commutativity of the diagram, so does 
St!?,#(w), Hence 68, (and 19,) are nonzero and qR # 0. Q.E.D. 
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(5.4) COROLLARY. Let R be a local ring which is a homomorphic image 
of a Gorenstein ring, of mixed characteristic p > 0, such that p is not a zero- 
divisor in R. If p is also not a zero-divisor on 0;) then vR # 0. 

ProoJ By Lemma (5.1) with x = p we have C = 0, and qK# 0 since 
R= R/pR has characteristic p. The result is then immediate from 
Theorem (5.3). 

(5.5) Remarks. (a) The general question of whether qR # 0 for local 
rings of mixed characteristic p reduces to the case where R is a complete 
local domain and hence module-finite over a regular local ring A. In this 
case 0; is simply Extj(R,A). 

(b) If depth R > 0 and depth 0; > 0, then we can choose x E R not a 
zero-divisor such that x is also not a zero-divisor on 0;. Hence, if there is a 
local domain R with qR = 0 and we choose any such domain of smallest 
dimension, Q:, will have depth 0. 

(c) It seems to be difficult to understand the significance of the 
condition that 

4: Extjd- ‘(K, J2,-) --f Ext;- ‘(K, C) 

be zero when C # 0. 

If R, is C-M for all primes P of height < i, let us say that R is C-M, (this 
is weaker than assuming that R is Si). 

(5.6) PROPOSITION. Let i be < n. If R is C-M,, then Ann, C has height 
>i+ 1. Hence, dimC<dimR-(i+ 1). 

Proof: If P were a prime of height < i containing Ann, C, then C, would 
be nonzero even though R, is C-M, a contradiction (the sequence 0 --) fi + 
.R,+ C -+ 0 may be localized to give the corresponding sequence for Rp). 

Q.E.D. 

(5.7) Remark. If R is C-M,, then dim C < n - 3, where n = dim R, and 
this implies 

I-p(C) = H:-‘(c) = 0. 

This yields some simplication in Fig. 1; the map 

a: H&- ‘(ii) -+ IT&- ’ (L&g 

is then an isomorphism. 
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6. THE DIRECT SUMMAND CONJECTURE 

In this section we study the direct summand conjecture in detail. We shall 
show that the conjecture reduces to the unramified case. In fact 

(6.1) THEOREM. If A is a complete local domain, let T, denote the 
integral closure of A in an algebraic closure of its fraction field. Then the 
following statements are equivalent: 

(1) If A is a regular Noetherian ring and R is a module-finite 
extension, then A is a direct summand of R as an A-module. 

(2) If A is a complete unramified regular local ring with algebraically 
closed residue class field and R is a module-finite extension domain of A, 
then A is a direct summand of R. 

(3) If A is a complete unramtjied regular local ring, then A is a direct 
summand of TA . 

(4) If A is a complete unramified regular local ring, then 
Horn, (T, , A) # 0. 

(5) If A is a complete unramified regular local ring with maximal 
ideal m, then Hk(T,) # 0. 

(6) For every local ring R, nR Z 0. 

(7) For every complete local domain R, nR # 0. 

(8) Vx, ,..., x, is a system of parameters for a local ring R, then there 
do not exist integers b > a > 0 and elements y,,..., y, E R such that 

(x, .-* XJ = 5 yixp. 
i=l 

Before proving this theorem we should make several observations. We 
could have added to the list a version (1”) of (1) in which A is local 
((1) * (1”) * (2) is obvious). All of the statements are known to be true in 
the equicharacteristic case and so we could have restricted attention to the 
mixed characteristic case. We could have fixed the residual characteristic p 
and also the dimension n of A (or R), using the local version (1”) in place of 
(1): the statements are equivalent for fixed p, n. This will be clear from the 
proof. In (8), it is easy to see that it sufftces to consider the case where a = t, 
b = t + 1. Moreover, it turns out that it sufftces to consider the case where 
X, = p, the residual characteristic. We refer to (8) in the mixed characteristic 
case with X, = p as (8”). 

Proof of Theorem (6.1). We first note that A -+ R splits if and only if 
Hom,(R, A) --t Hom,(A, A) is onto. This yields the implication (I’) * (I), 
and so (lo) o (1). Moreover, we may apply @A B, where B is a regular ring 
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faithfully flat over A, and it will s&ice to show that B + B @ R splits 
instead of showing that A + R splits. This permits reduction to the case 
where A is complete, with an algebraically closed residue class field. 
Moreover, if we map R further to, say R ‘, and if A -+ R ’ splits, then A to R 
splits. This permits us to kill a minimal prime of R disjoint from A - (0) and 
so reduce to the case where R is a domain. Consider the statement: 

(2O) If A is a complete unramified regular local ring and R is a module- 
Jinite extension of A, then A is a direct summand of R. 

Then we have shown (2) * (2O), while (2’) * (2), obviously. 
Let (39, (4’), and (5”) denote the strengthened versions of (3), (4) and 

(5), respectively, in which the hypothesis is weakened slightly: A is assumed 
to have the form V[ [x,,..., x,] 1, where V is a complete discrete valuation 
ring, but not necessarily unramified (V might be ramified). We shall 
complete the proof by showing that 

(8) * (So) a (2) o (2”) a (5) o (5’) o (49 =a (3”) a (6) =a (8) 

JLf 1 s 
(lo)-= (1) (4) (7) 

from which it is easy to see that all the statements occurring are equivalent 
(note that (8) occurs twice in the top row). It is shown in ]13] that if A is a 
regular local ring with regular system of parameters x,,..., x, and R is a 
module-finite extension, then A G R splits if and only if for every positive 
integer t, 

(x, *a. x,)’ = k yix;+’ 

i=l 

has no solution for the yi in R. We may assume that we are in the mixed 
characteristic case. Now, (8) * (8”) is obvious while (8”) z- (2) and 
(8) z- (lo) follow from the result in [ 131 just mentioned. Statements 
(1) o (1”) and (1) Q (2) * (2”) have already been proved. 

To see that (2”) 3 (5) we view TA as the direct limit of all the module- 
finite extensions R with A c R c TA. The map Hi (A) -+ HZ (TA) arises as 
the direct limit of the maps H& (A) --t HA (R) and since A + R splits for each 
such R, we have that each HA (A) + H; (R) is injective. It follows that 
EZG (A) + G (T,) is injective. Since HZ, (A) f 0, we have that Hi (TA) # 0. 

To prove (5) o (59, let B = V[[xz,..., x,]], where V is a complete, 
possibly ramified, DVR. Then V is module-finite over an unramified 
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complete DVR V,,. Let A = V,[ [x 2 ,..., x,J] c B. Then B is module-finite over 
A, and we may view TB as TA as well. Moreover, mA B is primary to m,, 
whence 

and we are done. 
(4) o (5) and (4”) o (5’) Both are proved by the same argument: let E be 

the injective hull of the residue class field K of A and then note that 

Hk(T,) z Hom,(Hom,(T,, A), E) 

by local duality [ 111 and that Hom,( , E) is a faithfully exact functor on A- 
modules. 

(4”) * (3O) This is one of the most interesting implications. Choose 
4: TA + A with 4 # 0. Let a, ,..., a, be generators if Im 4. Since A is a UFD 
we can find the greatest common divisor a of a, ,..., a,,,. Replacing Q by 
(l/a)#, we see that we may assume that a is a unit, so that Im 4 is not 
contained in a proper principal ideal of A. In particular, it follows that 4 
takes on a value which is not divisible by x, =x, where x generates the 
maximal ideal of I’ (here, A = I’[ (x2 ,..., x,,]]). Let r E TA be such that x does 
not divide 4(r). Replacing 4 once more by the map (t +t 4(rt)) we see that 
we may assume without loss of generality that x does not divide (6(l). 

Let q be an integer > 2. Then A has a unique continuous v-endomorphism 
a,, which maps xi +-P x7, q > 1. This map extends to an automorphism of the 
ring 

A”O = 0, v[ [x;‘~‘,..., xyqe]] 

which sends xye-+ WY’+‘, e E Z. A” is integral over A, so that the algebraic 
closure L of the fraction field of Am may also be thought of as an algebraic 
closure of the fraction field of A. The automorphism of Am extends uniquely 
to its fraction field and then, nonuniquely, to an automorphism of L. 
Restricting it to the integral closure of Am (or, equivalently, A) in L we get 
an automorphism a of TA which extends a, : A -+ A. 

Now, since x does not divide 4(l) we can choose an integer e so large that 

(b(l) CC (x,x:,.... x:)A, 

where Q = qe. Let fi = ae. Let A, = p(A) = V( [xf,..., xf]]. Then A is a free 
A,-module and 4(l) is part of a free basis, by Nakayama’s lemma. Hence, 
there is an A,,-linear map IJK A -+ A,, such that v/@(l)) = 1, and so (I = v 0 4: 
TA -+ A,, is an A,,-linear retraction of TA to A,. Now since A is module-finite 
over A,,, we may identify T, z TAO. Thus, A, is a direct summand, as an A,- 
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module, of TAO. But A,, = V[ (x7 ,..., x:1] TA. It follows that A is a direct 
summand of TA. Thus (4“) 3 (3’), as stated. 

(3”) =+ (6) This was proved, essentially in Section 2: qH # 0 is 
equivalent, by Theorem (3.15), to R having property CE and what we need 
is basically the assertion in the second paragraph of Theorem (2.9) (whose 
proof is completed in (2.17)), together with the observation that the algebras 
T discussed there may all be thought of as lying between A and TA. 

We alredy know (6) e (7); see Proposition (3.18) and Remark (3.19). To 
see that (6) + (8) let x1 ,..., x, be a s.o.p. for R and suppose 

(x, . . . n, XJ = y y,x”, b > a. 
i-l 

Multiplyging by u = (xi .a. ~,)*-~-i and replacing yi by yiu we see that we 
may assume a = b - 1. Consider the standard map of K,(xb; R) + K,(x, R). 
In degrees n, n - 1 we have the diagram 

R 
d=Izk-x,. fx,] 

+ R” 6. 
pu,=. (x, . ..x.y 

I 
‘ll,, 

\ I P,-1 

R --)R” 
d’=[ixf.. &$‘I 

The equation (xi .a. x,)‘-’ = Cf=i yi b xi gives us precisely what we need to 
construct a map h: Kn_,(xb; R)-rK,(x; R) such that hd’ =y,, for we can 
use the yi with suitable signs as the entries of the matrix of h. We are then 
free to replace ,u,_ i by ,u,,-, - h and ,u, by 0, i.e., we can fill in the map of 
Koszul complexes so that the last map R --t R is 0. We can then map 
K,(x; R) to a resolution of K, the residue class field, and composing we get a 
map of K,(x’; R) to the resolution of K such that the map in degree n is 0. 
This means that R does not satisfy CE, i.e., that qR = 0, a contradiction. 
Thus, (6) 3 (8). It now follows that all the statements whose numbers occur 
in the first row of the diagram of implications are equivalent, and now we 
are done, because the only remaining implications (3”) * (3) * (2) are 
obvious (the last because each module-finite extension domain of A lies 
between A and T,). Q.E.D. 

(6.2) Remark. The idea of the proof of the implication (4”) + (3”) also 
gives a new proof of the direct summand conjecture in characteristic p, 
where it is a theorem. By the remarks at the beginning of the proof of (6.1), 
we can assume that A =K[ [x1,..., x,]], where K is an algebraically closed 
(or at least perfect) field, and we can assume that R is a domain, module- 
finite over A. Everything is now simpler than in the proof of (4”) 3 (3”). 
Take any A-linear map #: R 4 A such that 4(l) # 0. Instead of using the --- -- 
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artificially constructed endomorphism a of the enlargement TA of R to carry 
out the proof, we can use the Frobenius endomorphism F of R instead. For a 
suitably large e, 4( 1) will.be part of a free basis for A over Fe(A) and it will 
follow that there is an Fe(A)-linear retraction of R to Fe(A), which we may 
restrict to P(R). Thus Fe(A) is a direct summand of Fe(R) as an Fe(A)- 
module. But R, as an A-algebra, is isomorphic with Fe(R) as an P(A)- 
algebra, and so A is a direct summand of R as an A-module. 

A bit more generally, we have 

(6.3) THEOREM. Let A be a complete local regular ring of the form 
v[ [x2 Y..., x,]], where V is a discrete valuation ring, and let R be a module- 

finite extension domain of A. Let q2,..., q,, be integers > 2. Let R”O be a 
domain integral over R which has a V-endomorphism a whose restriction to 
A is the unique continuous V-endomorphism satisfying a(xi) = xyi, 2 < i < n. 
Suppose also that Horn, (R m, A) # 0 (equivalently, that HkA(R “) # 0). 

Then A is a direct summand of Rm and, hence, of R as an A-module. 

In Remark (6.2) we are using R”O = R and a = F. In the proof of 
(4”) =P (3”) we need Ra3 = T,,, and a was constructed. 

(6.4) Remark. Let A = V[ [x2,..., xn]], let A c R c TA with R module- 
finite over A and let q2,..,, q,, be fixed integers > 2. Let a: A -+ A be the 
unique continuous V-endomorphism of A such that a(x,) = XT’, 2 < i < n. 
Extend a to an endomorphism, which we also call a, of TA as in the proof of 
(4’) =P- (3’) in (6.1). a: TA -+ T, is then actually an automorphism. Then 
there is an obvious “minimal” chaise for R”O, to wit, the subring of TA 
generated by R, a(R), a’(R),..., ak(R),.... The problem is to show that for 
such an R”, Horn, (R O”, A) # 0; or, equivalently, that Hz (R “) # 0. 

(6.5) Remark. It is worth noting that if there is a counterexample to the 
direct summand conjecture (and we can assume mixed characteristic here), 
then there is one in which A is pointed &tale extension of V[x*,..., x,], , 
where V is a complete unramified discrete valuation ring with maximal ideal 
pV and m = (p, x2,..., xJ. The same ideas as in [ 141 (mainly, Artin approx- 
imation, but applied to the equations defining the algebra structure of R as 
well as to the equation n 

(Xl . . . x,)’ = c yp;+ ') 
i=l 

suffice to pass from a counterexample where A = V[ [xz ,..., x,]] to one with 
A as described. Thus, the full difficulty of the problem exists for algebras 
essentially of finite type over a discrete valuation ring. 

(6.6) Remark. There are several results which assert that if A is regular 
and R is the integral closure of A in a finite field extention of the fraction 

481/84/2-18 
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field of A of suflciently small degree in some sense then A ++ R splits. Of 
course, this is only interesting when the degree d of the field extension is not 
invertible in A: if d is invertible, we can use l/d times field trace to get a 
retraction. 

In particular, the case where d = 2 is handled in [ 19 J where it is shown 
that if A satisfies R,, S, and is locally factorial and R is an integral 
extension such that the extension of function fields is quadratic, then A C. R 
splits. Many cases where d = p or p2, where p is the residual characteristic of 
A are done in 1141. 

(6.7) Remark. The direct summand conjecture is equivalent 
conjecture that if x, ,..., x,, y, ,..., y, are elements of a Noetherian ring 
that 

n 

to the 
R such 

(x, .-* x,)1 = c J$+ I 
i=* ’ 

for some positive integer t and (xi ,..., x,)R = I is a proper ideal, then ht I ,< 
n - 1. (Clearly, ht Z < n.) For if there were a counterexample we could 
localize at a minimal prime of I of height n and then x, ,..., x, would map to 
a s.o.p. for the local ring obtained. 

The equation above can be multigraded over H” by giving xi multidegree 
ei = (0, O,..., 0, 1,0 ,..., 0) (the “1” is in the ith spot) and yi multidegree (t, t ,..., 
1, -1, t )...) t)=Cjn=l tej-(t+ I)e,. We shall use this multigrading in 
studying certain local cohomology modules below. 

(6.8) Remark. Let V= L(,,, where p is prime, let t be a positive integer, 
and let 

R = J’[X, ,..., X,,, Y, ,,.., Y,,, Z, v..., Zr]m/(Ff), 

where m = (P, X, ,..., X,, , Y, ,..., Y,, 2, ,..., Z,) and 
n 

I;,=X; . . . X; - ‘i‘ YJ;“. 

,T, 

If i;” is a locally free coherent sheaf on the punctured spectrum W of R and 
M is an R-module which represents LP, we can define an integer 

e(-W = For$(Mv R(W))) - QTo$j- ,(M, R((X))) 

for j large: the Tor’s are independent of the choice of it4 and have finite 
length. B is an additive map from locally free coherent sheaves on W to Z 
and vanishes on the trivial sheaf: see [ 161. The author conjectures that B is 
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identically zero. If this were true, the direct summand conjecture would 
follow. The reader is referred to [ 161 for details. 

It may be possible to reduce the problem to showing that 0 vanishes on 
multigraded bundles in the case where r = 0 (so that there are no Z’s). 
However, there remain some technical problems in carrying this program 
through. 

We conclude this section with an investigation of the local cohomology of 
the ring 

R,,, = Z [X, >..., X,, Y, ,...v YnI/(F,,t), 

where F,,, = (X, *-* XJ - ci”=, YJ:“. Let xi, yi, respectively, denote the 
images of Xi, Y, in the quotient and multigrade the ring R,., by Z” so that 
xi, yi have the same multidegrees described in Remark (6.7). Let 

H = Hn,, = qx, ,..., x,, (R,,,). 

Then H is also multigraded by Z”. If c = (c,,..., c,,) E Z” let H, (or HR,l,c) 
denote the component of H in multidegree c. Our objective is to compute the 
Abelian groups H,,t,c. The reason for our interest is that if all of these 
groups vanish, then the direct summand conjecture in mixed characteristic 
follows. Somewhat weaker statements would be enough. We shall show 
directly from our calculations that H,,,,, = 0 if n Q 2, which gives another 
proof of the direct summand conjecture in dimension < 2. The case where 
n = 3 looks difficult to settle. 

Let u, )...) U,, be new indeterminates. View the polynomial ring .Z [ U] = 
z [U, ,*.a, U,] as an Abelian group. Let I,, be the ideal in Z [ U] generated by 
Cy=, Vi - 1, but thought of as a subgroup. Let G,,,,, denote the subgroup of 
Z [U] spanned by all monomials U;ll s ae Uin such that for seine choice of i, 
l<i<n, 

a,>t Caj -ci. 
( ) i+i 

We refer to the monomials in G;,,,, as “it, c)-unbalanced.” 

(6.9) THEOREM. Hn,r,cr Z[U, ,..., U&(I, + G,,,,,). 

Proof: Hi(R) may be identified with 

where wi=xl a.+ gi ..m x, and the map 



546 MELVIN HOCHSTER 

is, up to sign, the inclusion map. Thus, 

where both the modules in the quotient on the right-hand side are 
multigraded in the obvious way. Let x = x, .a. x,,, and X = Xi a.. X, . Let 
wi=x, . . . & . . . X,,, Ui= YJJWf and ui= yixi/wf. Ui and ui have 
multidegree (O,..., 0) and in Z [X, Y],, up to a unit, (Xi .a* X,)’ - xi YiX:’ ’ 
is 1 -Ci Ui. Now 

where the X’s and U’s are indeterminates and so we have an obvious 
isomorphism 

as an Abelian group, and this identifies 

as Abelian groups. In fact, [R,], = (Z [U]/I,J xf’ ... x2. To complete the 
argument it will sufftce to show that the image of [R,,,], is [R,],, after iden- 
tifying [R,], with Z [ VI/l,, is spanned by the monomials Uyl .a* UEn such 
that 

ai> t C Uj -Ci. 
( ) j+i 

But (R,& is spanned by all monomials 

such that bi and all the aj, 1 ,< j < n, are nonnegative and for each j, 
1 <.i<n, 

bj+t c aj-ai=ci. 
jti 
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For given a,,..., a, there will be at most-one choice for 6r,..., b, such that 
these equations hold, and there will exist such a choice if and only if the 
value of b, forced by the equation with j = i is nonnegative, i.e., if and only if 

‘i- (tb”jBui),O or ai>t(zioj)-Ci, 

and if this is true then xbl ... x~ny~l +.. y”,* maps to Uy’ ... UF. Q.E.D. 

(6.10) COROLLARY. H,,,,, is a divisible Abelian group for all n, t, c. 

Proof. It suffkes to show that each of the generators u;l ... u”,” is a 
multiple of each prime p. Fix p and choose e so large that for every i, 

U;‘(U;l .-. U?) E G,,,,, 

(i.e., such that for all i, pe + ai > t(zizi aj) - ci). Now 

and can be rewritten 

5 up’q . . . Ua,“+(-l)W;1.** Ua,‘+pW 
i=l 

for a certain W, because all the binomial coeffkients in the remaining terms 
are divisible by p. But then Uyl *.. U> = *pW modulo I, + G,,t,c, as 
required. Q.E.D. 

(6.11) COROLLARY. H,,,,, = 0 for n Q 2. 

Proof: For n = 1 we have that 17: - 1 E I, = (U, - 1) for all a, and a > 
t(0) - c, for all sufftciently large a, so that 1 3 U, E Vi z ... E U;l E 0 for 
all sufficiently large a. 

For n = 2 we note that modulo I, = (U, + 17, - 1) every element is in the 
span of the powers of U,. Now U;ll@ will lie in G,,,,, for all sufficiently 
large a,, which shows that HZ,L,c is finitely generated as an Abelian group. 
Since it is also divisible, it must be zero. Q.E.D. 

Partially order Z” so that (cr,..., c,,) < (dl,..., d,) precisely if ci < di> 
1 < i < n. Then 

(6.12) PROPOSITION. Zf n > m, t > s, and d > c there is a subjection 

H n,t.c - Hm.s.d. 
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Proof: If m = n this is clear because G,,,,, c Gn,s,d. It suffices then to 
prove that there is a surjection H,,,,, -H H,,,,, for n > m. This follows from 
the fact that ring homomorphism 

z [U, ,***7 U,] - if [U, ,**., u, 1 
which fixes Z [U, ,..., U,,,] and kills Uj, j > m, maps I,, to I,,, and each 
monomial generator of G,,,,, either to 0 or else to a monomial generator of 
G m,l,c, according as the generator does or does not contain a positive power 
of Uj for some j > m. Q.E.D. 

Define H,(t), I > 0, to be H,,l,CCl), where c(t) = (-t, -t ,..., -t). Thus, if 
G,(t) is the span of all the monomials 

U;ll . . . U”” n 

such that for some i, 1 < i Q n, 

ai>t (1 + ziaj)3 

then g,(t) = Z[U ,,..., U,,]/(I, + G,(t)). Obviously, for any s, c we can 
choose a positive integer t such that t > s and c(t) < c and so 
Proposition (6.12) yields 

(6.13) PROPOSITION. For every positive integer n and for all choices of 
s > 0 and c E Z”, for all su@kiently large t > 0, H,,,., is a homomorphic 
image of H,(t). 

We now want to make the connection between the study of the Abelian 
grows H,,,,, and the direct summand conjecture. First recall that 

R,,, = H [X, ,..., X,,, Y, ,..., Y,,ll(F,,,,), 

where F,,,, = (X, *-*xJt-~i”=, Y,x:+l and so for any commutative ring D, 
D@R,,,rD[X ,,..., X,,, Y ,,..., Y,]/(Fn,,). (All tensor products @ with no 
base ring specified are to be taken over Z.) We then have 

(6.14) PROPOSITION. Let D be a commutative ring. For a fued integer 
n > 1 the following conditions are equivalent: 

(1) H;xl,...J,l (D @ R,,,) = 0 for all t. 

(2) D 0 Hn.ttc = 0 for all t and c. 

(3) D @H,,(t) = 0 for all t. 

(4) The image of the monomial 1 in D @ H,(t) is 0 for all t. 
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If these equivalent conditions hold for a given value of n, then the direct 
summand conjecture is true for all module-finite extensions of a regular ring 
R such that R is a D-algebra and dim R < n. 

Proof. That .(l) and (2) are equivalent is immediate from the right 
exactness of H&, and the calculation for H&,(R,,,) carried out earlier. 
Condition (2) o (3) is clear because first, the H,(t) are a subset of H,,,,, 
second, every H,,,., is a homomorphis image of some H,(t’), and third, 
D @ is right exact. 

(3) ti (4) This is obvious. To see that (4) * (3) fix n, t, and a monomial 
p = ql . . . CJin whose image in D @ H,(t) we want to prove is 0. Choose 
t’ > t( 1 + cj aj). Since the image of 1 is 0 in D @ H,(t’) we can write 

where J runs through a finite set of monomials in G,(t’), every dA E D, and 
P E D[ U, ,..., U,]. Multiply the equation through by p. The key point is that 
each 1~ is in G,(t) (which demonstrates that .IJ maps to 0 in D @ H,(t)). For 
suppose I = Utl a.. U$. We can choose i such that 

as required. 
Now suppose that the equivalent conditions hold but that, we have a coun- 

terexample R 4 S to the direct summand conjecture, where R is regular, S 
is module-finite over R and R is a D-algebra. As in the proof of 
Theorem (6.1) we can assume (a decrease in n is harmless) that R is local 
with regular system of parameters x1,..., x, and the failure of the direct 
summand conjecture then means that for some integer t > 0 there exist 
y, ,..., y, E S such that 

n 
(x, *.a x,)1 = c y,xf+‘. 

i=l 
(#I 
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By localizing at a maximal ideal of S we obtain a local ring (which we still 
denote S) of dimension n with system of parameters X, ,..., X, in which (#) 
holds. We can now define a ring homomorphism from D @ R,,, to S which 
extends the algebra structure map D -+S by mapping Xittxi, Uit+ yi, 
W < i < IZ. Let m be the maximal ideal of S: (x) = (x, ,..., x,)S is @z-primary. 
We know HZ,(S) # 0, but on the other hand 

a contradiction. Q.E.D. 

A number of comments need to be made here. We note that we can give 
an immediate proof of the direct summand conjecture in characteristic p > 0 
from the fact that the groups H,,,,, are divisible, for then 

and we may apply Proposition (6.14). 
Likewise, to establish the direct summand conjecture in mixed charac- 

teristic p, it would suffice to show that 

for all n, f, c. We shall establish a liner result below. 
The proof shows that for fixed n, I, the vanishing of H&,(D @ R,,,) is 

equivalent to the vanishing of D @ Hn,,,c for all c, and that these equivalent 
conditions imply that the equation 

n 
x; . . . x:, = c y+j+* 

i=I 

cannot hold in a Noetherian D-algebra if x, ,,.., x, generate a proper ideal of 
height n. 

We do not know the converse. The direct summand conjecture may be true 
even if the groups H,,,,, fail to vanish. It is worth remarking that we can 
recover the R,,,-module structure on 

easily when it is viewed as ecsLn H,,,,,. Consider the image of a monomial 
qt... Uzn in H,,,,c. The result of multiplying it by xdl :. x$ is the image of 
that same monomial in H,,l,c+d, where d = (d, :..., d,), while the result of 
multiplying it by yfl . . . yin is the image of 

,yl+b, . . . qn+bn 
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in Hn,,,c+,, where f is the multidegree of yip a.. y”,n, i.e., f = (fi ,..., f,) with 

We next remark that because it suffices to prove the “monomial” form of 
the direct summand conjecture (as indicated in statement (8) of 
Theorem (6.1) and statement (8”) in the remarks preceding the proof) in 
mixed characteristic p when the sequence of elements in p, x2 ,..., x,, the 
preceding analysis could have been carried through for R A,, = R,,l/(X, - p) 
instead, and then the vanishing of 

dik* = H&M* ,..., X”,(%) 
for all t would be sufficient to establish the direct summand conjecture for 
the case of mixed characteristic p in dimension < n. By the right exactness of 
TX, 3 we have 

&z.t = H&P -Xl) H,,,. 

Note, however, that p -X, is not a multiform; so that we lose the original 
multigrading in studying $&. 

Let us define the “tilt” of a monomial U;ll ..a tY:n in Z ] U, ,..., U,,] to be 

and then extend the notion to polynomials by defining the “tilt” of a 
polynomial to be the smallest tilt of any monomial which occurs in it with 
nonzero coefficient. Thus, P has tilt >, t if and only if it is in G,,(t). A 
monomial has tilt 2 t if and only if it is (t, c(t))-unbalanced. 

In this terminology we can rephrase part of the conclusion of Proposition 
(6.14) as follows: H&(D @ R,,,) = 0 for all t if and only if in D[U, ,..., U,,] 
1 is congruent to polynomials of arbitrarily great tilt modulo (Cj Uj - 1). 

We conclude with a result which shows that it would be enough if the 
torsion part of H,,, (or Hk,,) vanished. 

(6.15) PROPOSITION. Let x , ,..., x, be elements of a commutative ring R, 
let (x) = (x , ,..., x,J R, let p be a prime integer, and suppose that H;,,(R) has 
no p-torsion and is p-divisible. 

Then there does not exist a homomorphism 4: R -+ S such that S is a local 
ring of residual characteristic p and 4(x,),..., 4(x,) is a system of parameters. 

Proof. Suppose such a (b exists. Then S is a V-algebra, where V = h(,,, 
and we can replace R by V @ R without loss of generality: we still have that 
H:,,(V @ R) = V @ H;,,(R) has no p-torsion, is still p-divisible, and we still 
have a homomorphism V @ R -+ S. Thus, we may assume that R is a V- 
algebra without loss of generality. But then since multiplication by p is an 
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automorphism of H&,(R), H&,(R) is V[ l/p]-module, i.e., a Q-vector space, 
where Q is the field of rational numbers, and it then follows that Hz(S) = 
H&,(S) = H;,,(R) OR S is a Q-vector space as well, where m is the maximal 
ideal of 5’. But if S has residual characteristic p, every element of H” (S) is 
killed by a power ofp. But then H&(S) = 0, a contradiction, Q.E.D. 

(6.16) COROLLARY. If H,,, has no p-torsion for all t, or ifH;,, has nop- 
torsion for ail t, then the direct summand conjecture holds in mixed charac- 
teristic p for dimensions < n. 
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