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Redefining legislative districts is a task undertaken by the states after each 
census in order to ensure equitable representation. Many criteria have been 
proposed as objectives in forming districts but specific definitions of an optimal 
plan have not been enforced. In attempting to eliminate political concerns from 
the effort, the Michigan Supreme Court defined criteria based on the preservation 
of county and municipality borders. A quadratic programming formulation is 
given for this problem, and a heuristic solution procedure is proposed. 

In Reynolds v. Sims (377 U.S. 533, 583 (1964)), the U.S. Supreme 
Court ruled that the states should define the boundaries of legislative 
districts according to decennial census data in order not to violate the 
“one person, one vote” rule. The state legislatures undertake this re- 
districting activity and generally develop politically partisan plans. Avoiding 
political considerations becomes very difficult because many objectives 
may be used to justify alternative plans. 

The following criteria are usually considered in evaluating redistricting 
plans: 

(1) population equality: the districts are selected so as not to deviate 
beyond some limit from a mean population; 

(2) compactness: the districts have regular shapes, being nearly square 
or nearly circular; 

(3) contiguity: the districts are constructed so that one may travel 
between any two points in a district without leaving the district; 

(4) political boundary integrity: the districts should preserve political 
boundaries as much as possible. 

Contiguity and some standard of population equality are given the heaviest 
weight in redistricting plans. Possible dilution of minority voting strength 
is also considered and can be challenged in court as unconstitutional or 
under the Voting Rights Act even when equipopulous districts have been 
constructed (Engstrom, 1976). 

205 

0049-089X183 $3 .OO 
Copyright 0 1983 by Academic Press. Inc. 

All rights of reproduction in any form reserved. 



206 JOHN R. BIRGE 

On challenges of redistricting plans based on violation of equal population 
(“one person-one vote”), the Supreme Court has considered plans with 
less than a 10% (of the mean district population) deviation from smallest 
to largest population district as essentially having equal population districts. 
In cases where the deviation is greater than 10% the states should show 
some justification for the deviation (Guida, 1982). The court has allowed 
up to a 16.4% deviation given the states’ need to maintain existing political 
unit boundaries (Mahan v. Howell, 410 U.S. 315 (1973)). 

Many optimization methods for redistricting have been considered with 
the goal of creating as nearly equally populous districts as possible. 
Garfinkel and Nemhauser (1970) proposed an algorithm for minimizing 
population deviation by generating all feasible districts. In their procedures, 
they start with population units and combine them into districts that 
satisfy population equality, contiguity, and other criteria. The difficulty 
with their approach, however, is that the number of such feasible districts 
may be extremely large and may make the problem intractable. 

Other methods include Forrest’s (1965) heuristic method of repeatedly 
dividing regions into equipopulous districts until the desired number of 
districts has been achieved. Weaver and Hess (1963) used a warehouse 
location model to create districts by starting with a group of district 
centers, assigning regions to the centers while maintaining populations 
within bounds, and then moving the centers to the population centroids 
of the new districts. When no further improvement is made, the algorithm 
stops. Nagel (1965) considered several criteria in his switching algorithm 
for trading along the borders of existing districts in order to improve a 
weighted objective of any of the criteria of population equality, com- 
pactness, or other political goals. These methods are very sensitive to 
starting conditions and may not lead to nearly optimal solutions. 

The advent of these and other methods was hoped to alleviate the 
problems inherent in partisan choices of districts. The problems are 
generally so complex, because of various conflicting objectives, that 
finding “the optimal” plan is impossible. The speed that computers bring 
to evaluating and constructing plans has indeed made it easier for partisan 
groups to generate plans according to their own desires (Torricelli and 
Porter, 1979). Several suggestions to remedy this situation have been 
made. Stern (1974), for example, proposed to use a strict mathematical 
definition of compactness as the sum of the areas that are within a circle 
circumscribing a district but outside of that district. Adams (1977) suggested 
that redistricting be handled by an independent federal committee and 
that the maintenance of political boundaries be the second most important 
criterion to population equality. 

The State of Michigan Supreme Court (1982) attempted to avoid the 
problems of political interests in redistricting by defining a strict set of 
criteria to be used in developing redistricting plans for the state legislature. 
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The main emphasis of these criteria falls on the integrity of political 
boundaries. The rules in order of importance are: 

(1) to minimize the number of county lines broken, consistent with a 
population deviation of less than 16.4% (91.8 to 108.2% of the mean 
district population); 

(2) to minimize the number of townships used in breaking county lines; 
(3) to minimize the number of city and township lines broken; 
(4) in cities and townships with more than one representative, to achieve 

maximum compactness within a population deviation of 4% among districts 
in that municipality. 

These criteria are consistent with the court’s opinion in Mahan v. 
Howell (1973) that preserving political boundaries is a legitimate concern 
of the states. The criteria define the problem more clearly and make 
fewer partisan choices possible. In the next section, we will formulate 
the problem of minimizing the number of political boundaries broken as 
a quadratic program. In Section 2, a heuristic solution procedure for this 
nonconvex problem is proposed and the results for an implementation 
on the Michigan Senate are presented. 

1. PROBLEM FORMULATION 

Previous methods for political redistricting have not been specifically 
concerned with preserving political boundaries and, therefore, do not 
perform well with this objective. For example, in Michigan, the largest 
political unit that could be used in the Garfinkel and Nemhauser approach 
would be a township or city. There are over 1300 of these units. Garhnkel 
and Nemhauser describe problems with 50 units as “very difficult.” The 
Forrest and Weaver-Hess methods do not consider political boundary 
preservation, and the Nagel algorithm depends strongly on the initial 
solution. 

Our method is to use counties (or other jurisdiction units) as the 
building blocks of districts but to allow those units to be divided. The 
goal is then to find the plan with the fewest number of divided county 
units. A district in our model is represented as a connected directed 
graph of arcs (i, j) where i and j are counties that share a common 
boundary. We then define decision variables: 

yik = q, if a fraction q of county i is in district k; 
Xijk = q, if a fraction q of county i is in district 

k and at least a fraction q of county j adjacent to i is in district k. 

The object of the model is to construct each district k such that there 
is one less positive xiik than there are positive yik’s. That is, if no cycles 
are formed among the arcs, the graph formed by the arcs representing 
positive X;jk connecting nodes representing positive yik is a tree. The tree 
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structure is important because it guarantees connectedness (contiguity) 
(Bondy and Murty, 1976). Checking for cycles is also easier than checking 
for contiguity directly because a count on the number of arcs connecting 
a set of nodes is all that is necessary. If the number of arcs with positive 
xijA is equal to the number of nodes with positive yil, adjacent to those 
arcs, then a cycle occurs. 

The model here differs from most graphical descriptions in its allowing 
for fractional y, and xijk values. To obtain the tree structure with values 

of Xijk and ylk less than one, the arcs must be directed so that the value 
of XiJk is unambiguously the fraction of county i in district li. The tree 
structure then forces the district to have one less node than arc, leaving 
one node without an outward arc. To be consistent in requiring all county 
nodes with positive y, to have some xij~ positive, a self-loop, x,il, is 
allowed for the node which has no other positive outgoing arc. This node 
is called the root of the tree. 

Parameters of the problem are: 

D = the number of districts, 
C = the number of counties, 

pi = the population of county i, 
f, = the highest population allowed in a district, and 

p = the lowest allowable district population. - 

We formulate the problem as a quadratic program: 
n c 

so that 

min C C y,A 1 - yir) 
h=I i=l 

e s $, Pi Yik s Pt k = I, 2, . . ..D. 

i, Yik = 1, i = 1, 2, . . . . c; 

2 i: xiJh = g, Yik - l7 k = 1, 2. . . . . D; 
;= 1 j= I 
i#j 

i xijh = Y;h 3 k = I, 2, . . . . D, i= 1, 2, 
,= I 

. . . , 

(I) 

(1.1) 

(1.2) 

(1.3) 

C; (1.4) 

xljk c yik, i= 1,2 , . . . . C,j= 1,2 ,..., C,k= I,2 . . . . . D; (1.5) 

i Xiih = 1 3 k = I, 2, . . . . D: 

0 s Xijh 4 1, 0 6 y;k s 1, (1.6) 
i=l7 , -I . . . . C,j= 1,2 ,..., C,k= I,2 ,..., D. 



PRESERVING POLITlCAL BOUNDARIES 209 

The constraints are used to obtain feasible districts represented by the 
tree structure. In discussing how feasibility is obtained by the constraints, 
we assume that each district contains at least one entire county. We can 
assure that this will occur if we partition counties with populations above 
p into smaller “counties” with poulations below ~7. The implementation 
of Section 2 does this by eliminating counties which can contain integral 
numbers of districts. 

Constraint (1.1) forces district populations to be within the given limits 
and (1.2) ensures that all counties are assigned to some district. The 
other constraints are used to obtain the tree structure. Constraint (1.3) 
forces the sum of the arc weights in a district to be one less than the 
number of nodes in the district. Constraint (1.4) forces every county in 
district k to have outward pointing arc weights equal to the fraction of 
that county assigned to that district. Constraint (1.5) forces every county 
j with an inward arc ,yijk to have at least as great a fraction yjk assigned 
to district k as does county i, and constraint (1.6) forces every district 
graph to have at most one self-loop. 

We will show that constraints (1.3)-(1.6) lead to a contiguous district 
if that district’s graph of positive Xij~ valued arcs contains no cycles. 
First, we show that only one outward arc xijr. is positive if yjk is positive. 
Assume not then some node has at least two outward arcs with positive 
weights, xiilk and .Q,. Without loss of generality, assume i has exactly 
two such arcs. Since we assume there are no cycles, the paths of arcs 
with positive weights through i, and iz end on distinct nodes j, and j, 
such that no arcs with positive weights point outward fromj, andj? (see 
Fig. 1). In this case, at least one of yj,k and yizk equals one, because yjx 
is increasing for j on the path from i to j, or jz by (1 S) and at least one 
yJk equals one by assumption. In this case xjtilk + xbjzk > 1 which vio- 
lates (1.6). Hence, every county in a district has only one arc with positive 
weight. 

Another consequence of (1.5) is that the root node has the highest 
fractional assignment, which by assumption is one. Therefore, constraints 
(1.3) and (1.4) and the fact that every node with a positive yiL has only 

Y,ksY,, k-Yja k = 1 

FIG. 1. Two outward arcs leads to a contradiction of one self-loop. 
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one positive X;jk force the graph of the district to have as many positive 
arcs as there are positive nodes minus the single root. Hence, if there 
are no cycles, the graph of the district is connected. 

Solving (1) still requires that no cycles are present in order to obtain 
contiguity. In implementing the model, we can prevent cycles by adding 
constraints if a solution produces a graph with a cycle. 

To see how this can be done, first observe that a cycle must be directed. 
If not, then we have two disconnected subgraphs each of which has a 
self-loop (xiik > 0). As we showed above, one of these loops has xiik = 
1 and (1.6) is violated (see Fig. 2). 

A cycle must, therefore, be directed. Because of constraint (1.5), every 
.vjX for j in the cycle must be the same. By our assumption that some 
yix = 1, we have all yjr = 1 on the cycle. If there are m + 1 nodes in 
the cycle, we want the sum of the weights on arcs joining them to be 
less than or equal to m to prevent a cycle. If the cycle is formed of arcs, 
(i, j,), cj,, j,), . . . . c.i, 1 i). for district k, then the constraint for this 
restriction is 

(1.7) 

Whenever a cycle is found, a constraint of type (1.7) is added to (1). 
The problem is solved again and the solution is checked for violations. 
The process is repeated until no violations occur. 

Given a solution without cycles, the objective function is used to force 
the yik variables to 0 or 1, that is, to force a county to be either completely 
assigned to a district or not at all. It was thought that this objective 
would most nearly satisfy the goal of minimizing the number of divided 
counties while still maintaining a simple form. The quadratic term is used 
instead of higher powers because it allows for a global optimization 
procedure described briefly in Section 2. 

FE. 2. An undirected cycle leads to two loops. 
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2. SOLUTION METHOD 

A full formulation of (I) would include as many as six CD variables 
if every county was adjacent to four other counties. A large number of 
constraints may also be present. For the Michigan State Senate, there 
are, for example, 83 counties and 38 districts, yielding possibly 31,540 
variables. 

A heuristic to reduce the size of the program in (1) was developed 
using a hierarchical clustering procedure (see, for example, Johnson, 
1967) and appropriate definitions of the variables. The clustering algorithm 
involves the following: 

Step 1. Assign districts to all counties which can accommodate an 
integral number of districts. 

Step 2. Order all adjacent pairs (i,j) of the remaining counties by 

6ij = IP* - (Pi + Pj) I (2) 

in increasing order of a,, where p * = c pi/D, the mean 
population of a district. i= I 

Step 3. Proceed through the list of pairs and connect all counties 
into a district if 
(a) pi + pj < p, and 
(b) the remaining set of counties is composed of contiguous 

pieces that can each support an integral number of 
districts. 

Step 4. If no new connections were made in Step 3, stop. Else, 
relabel the connected counties as new counties with pop- 
ulations equal to the sum of the populations of the counties 
forming them and return to Step 2. 

This algorithm results in a set of districts composed of an integral 
number of counties and in a set of counties which have not yet been 
placed into districts. The program in (1) can then be applied to the 
separate contiguous pieces of remaining counties. For the State of Michigan 
Senate, this procedure was implemented, yielding 31 districts composed 
of 66 whole counties. 

For the remaining 17 counties and 7 districts in Michigan, a modified 
program (1) was solved. In this implementation, the number of districts 
a county could enter was restricted to reduce the number of variables. 
This can be done by restricting districts to general areas and observing, 
for example, that if a district is generally in the eastern section of the 
state, then no far western counties will be in it. The resulting problem 
in Michigan had 71 constraints and 129 variables (including slack variables). 

Local optima were found using the nonlinear programming code MINOS 
(Murtagh and Saunders, 1977) on the University of Michigan’s Amdahl 
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47O/V8 computer. Several problems were solved in searching for other 
local optima by branching on the fractional variables. After each solution, 
the result was checked for cycles and none were found. In searching for 
other local optima, if a fraction of a county was assigned to a district 
then that county was set at being completely in that district and the 
problem was solved again. In this way, many local optima were investigated. 

In the plan developed for the Michigan Senate, three counties were 
split, including one county split among three districts. Because of the 
presence of two counties with populations slightly above p, it could be 
shown that at least three counties had to be split. Therefore, the minimum 
number of divided counties was exactly three. Other plans, may, however, 
split fewer townships within the counties, but this was not considered 
in the optimization. This plan placed 10 districts in Wayne County. 
Another similar plan in which Wayne County obtained 9 districts was 
also developed. The latter plan also included 3 county line breaks. 

The success of this procedure depends on the specific features of the 
formulation of (1). The clustering heuristic can be used to reduce the 
problem size and other analyses of the specific problem may be able to 
reduce the problem further. (For instance, finding two adjacent counties 
i and j such that p d pi + pj d p and, for all other li adjacent to i and 
j, pi + pk > y and p, + pk > p.) The program (1) can then be solved 
for the remaining counties and districts by finding a local optimum and 
checking for cycles. If a cycle exists, then a constraint (1.7) is added 
and the problem is re-solved until no cycles exist. 

For the Michigan Senate, after investigating several local optima, it 
was possible to show that the best solution found was indeed a global 
optimum. In general, additional constraints called Tui (1964) cuts may 
be added to (1) (Cabot, 1974) and a global optimum may be found by 
ranking the extreme point local optima (Cabot and Francis, 1970; Murty. 
1968). These methods rely on the quadratic form of the objective as is 
present in (1). The procedures may, however, involve a large number 
of solutions of (I), and our experience indicates that investigating local 
optima by varying the initial conditions is sufficient for finding nearly 
optimal districting plans. The extreme point ranking approaches may still 
be very valuable in providing bounds on the global optimal solution value. 

3. CONCLUSION 

A formulation of a problem in redistricting legislatures was presented 
with the objective of minimizing the number of existing political units 
that do not belong to a single district. The full formulation was shown 
to be extremely large as the number of districts and existing polities 
becomes large. A heuristic method was described for reducing the size 
of this problem, and its results on the Michigan Senate were presented. 
This procedure yielded a plan with three split counties. The State Supreme 
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Court, however, accepted a plan in which four counties were split among 
different districts. 

In this case, the Supreme Court had ordered a plan to be developed 
after plans submitted by the two parties were considered too partisan. 
Their opinion led to rules (l)-(4). The court-ordered plan attempted to 
meet these criteria but still allowed for more county splits than were 
necessary. The court heard arguments against this plan, at which time, 
the plan generated by the procedures of Section 3 was presented. The 
court’s opinion stated that the arguments against their plan were not 
sufficient to invalidate it. The reason for this action, despite the earlier 
statement of criteria for districting, appeared to be that the court considered 
itself alone to be nonpartisan and capable of generating such a plan. 
Upcoming elections also forced the court to act quickly and adopt the 
plan they had ordered. The court plan was not overtly partisan but 
favored the Republican party (represented by a majority of the court) 
relative to the former plan. 

Given an early declaration of criteria to maximize the preservation of 
political boundaries, the creation of optimal (at least relative to Rule 1) 
plans should be possible. The procedure given here may be used to 
create these plans and avoid partisan decisions. 
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