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The generalized mixing matrix of quarks is computed based on a composite model of 
quarks and leptons. Among potentials between constituent particles examined V(r) = Ar’ 
(As > 0) and A In r (A > 0), it is shown that potentials with exponent 0 5 s 5 3 or In r are 
consistent with current experimental data for the mixing matrix elements. 

I. INTRODUCTION 

The quarks and leptons are grouped in families and generations. An important but 
difficult question is how many generations exist in nature and what is their mass 
spectrum. Apparently the mass of the quarks increases at least exponentially as a 
function of the generation number, while the increment for lepton masses with respect 
to the generation number is less drastic. 

There has been a suggestion [ 11 that quarks and leptons are composite systems 
made of more fundamental objects and the generations are their excited states. If that 
is the case, we can eliminate some of the mysteries of generations. The number of 
generations may be infinite, but practically only a finite number will be observed if 
the mass increases exponentially with the radial quantum number. Then, some 
questions which should be considered are (a) what are the properties of the 
constituent objects and of their interactions, (b) how can the mass spectrum of the 
generations be understood, and (c) is it possible to compute the quark mixing matrix 
from the bound state wave functions? Clearly questions (b) and (c) are related to 
question (a). 

In order to avoid the difficulty of spin 3 bound states without introducing large 
spin dependent forces, we assume that the constituents are spin 0 and spin f particles, 
as is sugested in [ 11. Obviously, question (b), the problem of a rapidly increasing 
mass spectrum, is the most difftcult one. This is because the mass spectrum of the 
excited states increases at most as n* for a local potential model where n is the radial 
quantum number. (This is realized for a rigid wall potential.) Also the excited states 
with orbital angular momentum should have very large energy, so that one will not 
observe them at low energy. On the other hand, question (c) was formulated in [ 11, 
which gives a hint as to how to calculate the quark mixing matrix which is a 
generalization of the K-M matrix [ 21. Although the final answer should 
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simultaneously solve all three questions stated above, one may wonder whether one 
can solve question (c) without confronting the difficulty of (b). 

In this article, we suggest such a model and calculate the mixing matrix 
(Section II). Section III is devoted to a comparison with experiment and discussions. 

II. THE MODEL AND CALCULATION OF THE MIXING MATRIX 

Following the suggestion of [ 11, we assume that the quarks of charge 2e/3 (-e/3) 
are the nS,,, excited states of the U(D) and B particles, where U, D is an isodoublet 
of spin 4 and B is an isosinglet of spin 0. (The spin assignment could be vice versa, 
i.e., spin of U, D and B could be 0 and 4, respectively.) For the leptons, U(D) is 
replaced by N(E). 

The potential between the U, D and B particles is assumed to be 

v= V,(E) + V(r), (1) 

where V,(E) is energy and orbital angular momentum dependent but coordinate 
independent and V(r) is a local potential which is responsible for making bound 
states. The arbitrary constant V,(E) is added to adjust the observed mass spectrum of 
the generations and explain the nonappearance of the orbital angular momentum 
states. The local potential V(r) will be chosen to be (A) a rigid wall potential, (B) the 
Coulomb potential, (C) a harmonic oscillator potential for analytic computations and 
(D) the power potential V(r) =A?, A > 0, s > 0, and a logarithmic potential 
V(r) =A In Y for computer calculations. We will see that comparison with the 
experimental data seems to give some insight into the nature of the potential of the 
constituent particles. 

Despite the energy dependence of the potential the choice of the form (1) leads to 
the orthogonality of wave functions v = U,/(I) Y,,(0, 4). i.e., from the Schrodinger 
equation 

1(1+ 1) 
- - ~ r2 u,,(r) + (V@,,) + V(r)) u,,(u) = E,,,u,,(r), (2) 

it follows that 

[‘x’ u,,(r) u,,,(r) dr = 6,,, ,. 
‘0 

A. kigid Wall Potential 

We are interested only in the S-wave excited stated. The potential is 

v= V&q, r<ro, 

= to. r>ro. 
(4) 
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The normalized solution of the Schrodinger equation (m is the reduced mass) 

$ + 2m(E - V)u = 0, 

is 
2 2 . n7tr 

u,=-sink,r=-sin----, 
r0 r o 10 

r< rol 

24, = 0, r>r,, 
where 

k, = 2m(E, - V,(E)) = F. 

(5) 

(6) 

(7) 

It is obvious that the solution (u,(r)} is an orthonormal set. An example of V,(E) 
which gives the mass spectrum of the generations is 

2m(E - Vo(E)) = 2m.u In 

where ,U and E, are appropriate constants with the dimension of mass. Then we 
obtain 

E, = EoefldzWu, (9) 

which gives masses which are a geometrical series. Solving V,(E) in Eq. (8) we have 

V,(E)=E-p (In it))‘. (10) 

If the mass spectrum is not a geometrical series, it is easy to adjust V,(E) to accom- 
modate the real situation. 

The parameters M, ro, ,D, and E, could be slightly different for the (UB), = U, and 
(DB), = d, bound states, because of violation of isospin invariance (the parameters 
for the latter are denoted by the primed quantities). This then leads to 
nonorthogonality between the (u, } and (d, } wave functions and their overlap 
integrals give the mixing matrix [ 11. 

Assuming that r. < r-6, the matrix element of the mixing matrix U = (a,,} can be 
calculated as 

(7) sin (%I dr 

1 1 sin(n7r - /7rro/r~) sin(n7r + h-o/r~) 

= -~ (Wro> - W-3) - ((n/r,) + (l/r~)) 7r rot-h 

= (-,),.12p ,“;‘y;j* , (11) 
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where 

z = ro/rh. (12) 

The matrix U is an orthogonal matrix which follows from the orthonormality of 
the set (u,) and {d,}, i.e., 

y7 2n& sin lrr.2 2n’& sin 17t.z _ 6 

rl = 
n2-12z2 7c ,r2-[Zz2- nn” 

and (13) 

qy 2nJ.i sin l?rz 2n& sin 1’712 

,Zl 71 nZ-12z2 7i n2 _ f’ZZ2 = 6w. 

We have neglected small CP violating phases. The physical meaning of the matrix 
elements (a,,) is exhibited by showing the weak doublets 

ll c 

u,,d+a,,s+u,,b+a,,b’+ **., az,d+u*2S+uz,b+a,,b’+~‘., 
(14) 

t t’ 

a,,d+a,,s+u,,b+a,,b’+..~, u,,d+u,~s+u,,b+u,,b’+~~~. 

We shall fix the parameter z using the experimental value of the Cabiddo angle 

U 
24 sin 27tz 

= - 12 = = 
7c 1 

-4z2 sin 8, 0.2 19. 

which gives 

z E r,,/r;I = 0.867. 

Then all the matrix elements of U are determined and given by 

(16) 

0.969 0.219 -0.0977 0.0555 ... , 

U= -0.148 0.885 0.407 -0.147 “. , 

0.0875 -0.220 0.756 0.585 ... , (17) 
-0.063 1 0.135 -0.244 0.594 *.a . 

These results should be compared to a phenomenological determination of the mixing 
matrix 

la,,1 =0.9737 f 0.0025, lU121 = 0.219 f (0.002; 0.01 l), 

(a,,\ =0.06 i 0.06, (18a>l3l 

0.192 < luz,l < 0.34, \uz21 = 0.8 k 0.2. la,,l > 0.01, (18b)l41 
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and more recently 

la,*/ - < 0.2. 
Iad 

It is clear that we have to use a phenomenological analysis without using the K-M 
angles parametrization, since our matrix U is infinite dimensional. 

We may add that we have a few more alternative solutions for the U matrix. The 
value z = 0.15 satisfies Eq. (15), but it gives a,, = 0.123. Also UT gives possible 
solutions. Writing aAl = (-l)“+‘aln, the condition aiz(z) = 0.219 leads to z = 0.765 
or 0.443, which in turn gives a I, = 0.903 or 0.5 19. These three solutions do not give 
acceptable values of a,, or ai 1 and therefore are discarded. 

B. The Coulomb Potential 

For an alternative potential, we use the Coulomb potential. The nS wave functions 
are 

R ,O = 2a”’ exp(-ar), 

R,, = -2($a)““( 1 - far) exp(- {ar), 

R,, = 2(fa)““( 1 - $ar + &a*r*) exp(- iar), 

R,, = - :(a)“‘*(1 - iar + $a*,* - &a’r’) exp(- bar), 

(19) 

where R,, = u,/r. For the set (d,/r), a should be replaced by a’. The matrix 
elements of U are easily calculated, 

aic atI/ = J u,(r) d,(r) dr. 
0 

(20) 

Using 
z = a/a’, (21) 

we obtain 

8z312 
a - II- (1 +z)33 

a 
8 z 3’2 (1 -z)(3z- 1) 

13 = 
-- 0 3 3 (l/3 + z)’ ’ 

1 
z3’2 a -_- 

I4 - 2 (z + l/4)6 
[2(z + 1/4)3 - 9/2(z + l/4)* + 3(z + l/4) - 5/8j, 

a - 1623’2 (62 - (1 + z)*), 
** - (1 + z)” 
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2 1 
a 

23 
- -- (z/6)““(1 - z)(-4 + 362 - 

9 (l/3 + z/2)6 
2z*). 

8 
a - 

24 - (z t l/2)7 

312 

[(z + l/2)4 - 3(z t 3/2)(z t 1/2)3 t 6(1 t 3z)(z + 1/2)2 

- + (1 t 12z)(z t l/2) + Hz], 

8z3’* 
a - 

33 - (1 + z)’ 
[160z*-5(1 +z)~ t 8(1 +z* -4z)(l tz)‘], 

a -- 
34 - 

l it)';? [(+$(2zt9,4)(+tfj4 
(z/3 t l/4)8 

t(;z'+6zt+j(+-tf)i 

and 

32z3’2 a - 
44 - (1 f z)’ 

[-2(1 t z)’ t 3(2 t 2z2 t 9z)(l t z)” 

- 5( 1 t z3 t 18z( 1 t z))( 1 t z)” + 9O(z( 1 + z’) + 4z’)( 1 t z)> 

- 420z2( 1 t z)’ t 560~~ 1. 

TO determine the rest of the a,,‘s we make use of the following relationship: 

a,,(z) = a,,@ ’ 1. (23) 

The parameter z is determined by the Cabibbo angle. as before, giving 

z = 0.720. (24) 

We obtain the numerical values of the U matrix 

0.961 0.218 -0.0785 0.0454 ... . 

-0.141 0.884 0.402 -0.112 ... 
U= 

, 

0.0683 -0.234 0.764 0.570 
(25) 

... , 

-0.0426 0.126 -0.28 1 0.608 ... . 

An alternative solution is obtained by an unlikely value z = 0.0035, but was 
discarded since it leads to an unacceptable value for a,, (= 0.451). Comparing 
matrices (17) and (25) we notice a striking similarity despite the large difference 
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between the potentials used. One might think that qualitative features of the U matrix 
may be insensitive to the detailed form of the potential V(r). We will show that this is 
not the case. The next example, a harmonic oscillator potential, gives a markedly 
different prediction for the mixing matrix. 

C. Harmonic Oscillator Potential 

For a harmonic oscillator potential 

V(r) = qf r*, 

we list the radial wave functions R,,(r) for the first four S-states. 

R 1o(r) = (4k3/fi) epp’lr, 

R,,(r) = -(8k3/3fi) esp2’*(3/2 - p’), 

4 
R,,(r) = (242!k3/5!!fi) e-pz’z +;p*+$ , 

1 

R,,(r) = -(2’3!k3/7!!fi) epp2’* 
where 

$.- 7 

(26) 

(27) 

k = \/mu, 

and (28) 

p = kr. 

Denoting the parameter for the down quark by k’, we can compute the mixing matrix 
by the overlep integrals as before. The results are 

a , , = (sin t9)3’2, 

a,, = m (sin Q312 cos 0, 

a,3 = dXQT6 (sin S)3’2 cos2 0, 

a,4 = dm (sin 6)3’2 cos3 8, 

azz = (sin f9)3’2(l - 1 *cos* B), 

a23 = J5 (sin 8)3’2 cos B( 1 - $0~’ B), 

a24 = \/210/4 (sin 0)3’2 cos’ 0( 1 - 5 cos’ e), 

a 33 = (sin ~3)~“( 1 - 7 cos* 0 + ?$ cos’ B), 

a34 = + (sin Q3j2 cos e( 1 - ; cos2 B + ++ cos4 e), 

a 44 = (sin ey( 1 - 3 COS* 8 + y ~0s~ # - % COP B), 

(29) 
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where the parameterization 

k e 22 1 -z? 
z=-=tan--, z lfz = sin 8, ___ +z2 = k’ 2 1 cos 8, 

has been used. The matrix element a,, is obtained by interchanging the parameter 
k o k’, or equivalently 0 + n - 0 in a,, . From Eq. (29). it follows then that the U 
matrix satisfies the symmetry property 

a,,(e) = aln(71- e) = (- 1 )n+ b,,(e). (31) 

i.e., the off-diagonal elements a,, are symmetric (skew symmetric) if n + I is even 
(odd). This is markedly different from the results for potentials considered in the 
previous subsections. 

The determination of the parameter 8 by the Cabibbo angle (a,,) leads to 

sin 0 = 0.983, 

or (32) 

z=tanr=0.831. 

TABLE I 

The Mixing Matrix” U= (aii) for Power Potentials V(r) = Ar’ (As < 0) and Logarithmic Potential V(r) = 

s 

-1 0.961 -0.0785 0.0454 -0.141 0.884 0.402 -0. I 
0 0.9142 -0.0425 0.024 1 -0.183 0.900 0.392 --0.0 

(Logarithmic) 

.I 

.6 

.8 

.9 

1 

2 

3 

4 

5 

IO 

20 

30 

50 

100 

Rigid Wall 

0.9746 -0.0376 0.0213 -0.186 0.900 0.392 -0.0 

0.9756 -0.0129 0.0096 1 -0.197 0.900 0.388 0.0 

0.9157 -0.00349 0.007 15 -0.201 0.899 0.387 0.0 

0.9757 0.00111 0.00613 -0.202 0.899 0.386 0.0 

0.9757 0.00560 0.00564 -0.204 0.898 0.385 0.0 

0.9746 0.0450 0.00892 -0.219 0.892 0.376 0. I 
0.9726 0.0744 0.0227 -0.232 0.885 0.367 0.1 

0.9700 0.0959 0.0395 -0.243 0.876 0.359 0. I 

0.967 0.1 I I 0.0556 -0.253 0.867 0.352 0.2 

0.953 0.141 0.102 -0.296 0.822 0.324 0.2 

0.932 0.143 0.113 -0.349 0.757 0.290 0.2 

0.921 0.140 0.108 -0.375 0.723 0.274 0.1 

0.912 0.136 0.103 -0.395 0.696 0.261 0. I 

0.910 0.135 0.100 -0.404 0.689 0.258 0.1 

0.969 -0.0977 0.0555 -0.148 0.885 0.407 -0.1 

‘I a,, = sin 0, = 0.219 is an input. 
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and the .!J matrix 

0.9746 0.219 0.0450 0.00892 ... , 

-0.2 19 0.892 0.376 0.113 ..‘, 
U= 

0.0450 -0.376 0.753 0.495 ... , 

-0.00892 0.113 -0.495 0.571 ... . 

D. Power Potentials with an Arbitrary Exponent 

For a power potential 

V(r) = Ar” (As > O), 

(33) 

(34) 

and a logarithmic potential 

V(r) = A In r (A > 0). (35) 

computer calculations are performed to obtain the mixing matrix elements. The 
results are given in Table I. 

331 a,, a33 

)683 -0.234 0.164 

,890 -0.30 1 0.776 

aI4 a41 a,, a,, 11 a,,la,, 

0.570 -0.0426 0.126 -0.28 1 0.608 --O.lY5 

0.547 -0.054 1 0.156 -0.376 0.610 -0.108 

)885 -0.306 0.775 0.545 -0.05 15 0.155 -0.384 0.609 -0.0959 

,790 -0.329 0.771 0.533 -0.042 1 0.150 -0.419 0.601 -0.0333 

)747 -0.337 0.769 0.528 -0.0367 0.146 -0.432 0.597 -0.00902 

,726 -0.340 0.768 0.525 -0.0337 0.144 -0.438 0.595 0.00288 

I70 1 -0.344 0.767 0.522 -0.0314 0.142 -0.444 0.593 0.0145 

1450 -0.376 0.753 0.595 -0.00892 0.113 -0.495 0.571 0.119 

1210 -0.402 0.738 0.468 0.00451 0.083 1 -0.534 0.546 0.203 

1005 12 -0.424 0.720 0.445 0.0105 0.0569 -0.568 0.518 0.267 

,165 -0.445 0.701 0.424 0.0120 0.035 1 -0.596 0.489 0.316 
1657 -0.523 0.613 0.342 -0.000557 -0.028 1 -0.699 0.361 0.436 

1949 -0.611 0.499 0.255 -0.0156 -0.0594 -0.794 0.213 0.494 

02 -0.650 0.443 0.217 -0.0177 -0.0597 -0.830 0.150 0.511 

05 -0.679 0.40 1 0.191 -0.0166 -0.0532 -0.85 1 0.106 0.522 

06 -0.696 0.390 0.183 -0.0156 0.0497 -0.870 0.0938 0.524 

1875 -0.220 0.756 0.585 -0.063 1 0.135 -0.244 0.594 -0.240 
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FIG. 1. Sketch of the s dependence of the matrix element a,,,. where s is the exponent of the potential 
C’(r)=Ar’. The two horizontal lines represent experiment bounds. (a) la,,l. (b) I~l,,l. (c) Ia,, i, 

(d)ld. (e)la,,l. and (0 l~liIll~,,l. 
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III. COMPARISON WITH EXPERIMENT AND DISCUSSION 

In order to compare the results of the previous section with experimental values of 
the mixing matrix (18), we show a sketch of a,,, (n ,< 2, f < 3) and the ratio 

amplitude(b --) u) 
amplitude(b --f c) ’ 

as a function of the power of potential V(r) =A+ (Fig. 1). It is quite clear that the 
prediction of the power potential is consistent, with an exponent 0 5 s 5 3, with the 
accurate value of 1 a,, ] and the upperbound of the ratio j a, 3 i/i az3 ]. In other words, the 
harmonic oscillator potential, a linear potential, and a logarithmic potential are 
acceptable while a Coulomb potential and a rigid wall potential are in conflict with 
experimental data, as is seen in Fig. 1. Notice that the potentials which are mentioned 
above as successful are also phenomenologically acceptable potentials for 
quarkonium [6-91. A further comparison of experimental data and our prediction 
might shed some light on the nature of the potential among constituent particles in 
the composite model. 

Needless to say, the important questions of explaining the generation spectra and 
absence of orbital angular momentum states are left open for further investigations. 

A similar work was done independently by Terazawa and Akama ] IO, 111, who 
calculated the mixing matrix for the relative Dirac particle with the Coulomb 
potential and the rigid wall potential. The results obtained are remarkably close to 
our results for these potentials. In other words, the relativistic corrections of this kind 
for the mixing matrix are relatively small. They did not study the potential depen- 
dence of the mixing matrix, as is done in this article, since the relativistic equation 
(the Dirac or the Klein-Gordon equation) with the minimum interaction given by 
power potentials does not have bound state solutions. 

APPENDIX: GENERATION MASS SPECTRA 

The mass ratios between the generations are given by 

As is seen above, the quark masses increase as a geometrical series or even stronger, 
while the lepton masses are not quite a geometrical series. As was pointed out earlier, 
it is easy to adjust V,(E) to this situation, However, the disparity between leptons 
and quarks is striking and should be seriously considered. 

595/149/Z-4 
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Assuming that the quark masses increase geometrically, we may predict the mass 
of the top quark 1, t’, 

(A.3) 

and 

mi mb’=m= 135 GeV, etc. 
.T 

Again the disperity among the masses of the (u,} and (d,) series looks peculiar. The 
number of top and bottom quarks below lOI GeV may be estimated by 

m, 5 

i i 

“I 

= lo’J, 
mu 

(A-4) 

and 

giving 

and 

n, r 6, 

(A.5) 

n,z 10 

[n,(nb) is the number of t, t’,... (b, !I’,...)]. In any event, the mass spectrum of the 
generation is an entirely open question. 

There has been discussed a stringent constraint on the mass spectrum of leptons 
and quarks due to the value of the p parameter @ = m,./m, cos O,,., where m,,,, m,, 
and 8, are the masses of the W-boson, the Z”-boson, and the weak interaction angle 
respectively) [ 121. This will be useful information for constructing a more 
sophisticated composite model. 
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