A Note on the Fermat Equation

JAN TURK

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Communicated by D. J. Lewis

Received October 9, 1981

Fix one of the base variables x_1, x_2, x_3 in the equation $x_1^{x_4} + x_2^{x_4} = x_1^{x_4}$ subject to $x_1, x_2, x_3, x_4 \in \mathbb{Z}, x_1x_2x_3 \neq 0, x_4 \geqslant 3, \gcd(x_1, x_2, x_3) = 1$. Then the solutions are bounded. There are no solutions (x_1, x_2, x_3, x_4) with $P(x_i) < \varepsilon_0(\log \log |x_i|)^{1/3}$ for some $i \in \{1, 2, 3\}$.

1. Introduction

It was stated by Fermat, without proof, that the equation

$$x_1^{x_4} + x_2^{x_4} = x_3^{x_4} \tag{1}$$

has no solution in integers with $x_4 \ge 3$ and $x_1 x_2 x_3 \ne 0$. In order to investigate the possibility of finitely many solutions it is customary to restrict the variables to

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}, x_1 x_2 x_3 \neq 0, x_4 \geqslant 3, \gcd(x_1, x_2, x_3) = 1.$$
 (2)

One method of looking for integral points (x_1, x_2, x_3, x_4) in four-space satisfying (1) and (2) is to search by (three-dimensional hyper-) planes covering all integral points. In this respect we note the following well-known facts [4]: The plane $x_4 = k$ contains no solutions (that is, points satisfying (1) and (2)) if k enjoys one of various properties. It would follow immediately from the truth of a famous conjecture of Mordell on rational points on curves of genus ≥ 2 that, for every $k (\geq 4)$, the plane $x_4 = k$ contains only finitely many solutions. Stewart [5] (see also [3]) proved the following: for every $k \in \mathbb{Z}$ with |k| > 2 and for $i, j \in \{1, 2, 3\}$ with $i \neq j$, all solutions in the plane $x_i - x_j = k$ have their coordinates bounded (by an effectively computable number depending on k). The cases |k| = 1, 2 are still open. In this note we consider the planes $x_i = k$, where $k \in \mathbb{Z}$ and $i \in \{1, 2, 3\}$. Since there exist no solutions in $x_4 = k$ for $3 \leq k \leq 125.000$ [4]

we also have, by Lemma 1, that $x_i = k$ (i = 1, 2, 3) contains no solutions if P(k) < 125.000. Here P(k) denotes the greatest prime divisor of k if |k| > 1 and $P(\pm 1) = 1$. We prove that for every $k \in \mathbb{Z}$ and $i \in \{1, 2, 3\}$ all solutions in $x_i = k$ have their coordinates bounded (by an e.c. number depending on k). Moreover, if $P(k) < \varepsilon_0(\log \log |k|)^{1/3}$, then $x_i = k$ contains no solutions (i = 1, 2, 3).

2. Proofs

LEMMA 1 (Zsigmondy, Birkhoff and Vandiver). Let $n, x, y \in \mathbb{Z}$ with $n \ge 2$ and x > y > 0. Then

$$P(x^n - y^n) > n$$
 except if $(x, y, n) = (3, 1, 2),$ (3)

$$P(x^n + y^n) > 2n$$
 except if $(x, y, n) = (2, 1, 3)$. (4)

Proof. Simple consequences of their (elementary) results on primitive divisors of numbers of the form $a^n - b^n$. See [2].

LEMMA 2. Let $n, x, y \in \mathbb{Z}$ with $n \ge 3$ and gcd(x, y) = 1. Put $P := P(x^n \pm y^n)$. There exists an e.c. constant C such that

$$\max\{|x|,|y|\} < \exp\exp(Cn^2P). \tag{5}$$

Proof. Let $F \in \mathbb{Z}[X, Y]$ be homogeneous such that F(X, 1) has at least three simple zeros. It is well known (see [1, p. 63, Theorem 1]) that there exists an e.c. number c(F) depending only on F such that for every $x, y \in \mathbb{Z}$ with gcd(x, y) = 1 one has $max\{|x|, |y|\} < exp exp(c(F) \cdot P)$, where P := P(F(x, y)). In the special cases where $F = X^n \pm Y^n$, $n \ge 3$, one can prove that this inequality holds with $c(F) = C \cdot n^2$ for some e.c. constant C. See [6] for details.

Remark. If instead of (5) one uses that $\max\{|x|, |y|\} < \exp\exp(C(n) \cdot P)$ for some unspecified function C(n) (tending to infinity with n), then one obtains in the sequel bounds which tend to infinity in some unspecified manner.

THEOREM. Suppose

$$x_1^{x_4} + x_2^{x_4} = x_3^{x_4} \tag{1}$$

and

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}, x_1 x_2 x_3 \neq 0, x_4 \geqslant 3, \gcd(x_1, x_2, x_3) = 1.$$
 (2)

78 jan turk

There exists an effectively computable constant C such that

$$x_4 < P(x_i)$$
 for $j \in \{1, 2, 3\},$ (6)

$$|x_i^{x_i}| < \exp\exp(C(P(x_i))^3)$$
 for $i, j \in \{1, 2, 3\}.$ (7)

Proof. Let (i,j,k) be some permutation of (1,2,3). We may assume that x_i, x_j, x_k are positive and distinct with $\pm x_j^{x_4} = x_i^{x_4} \pm x_k^{x_4}$. Since $x_4 > 3$ it follows from Lemma 1 that $P(x_j) = P(x_i^{x_4} \pm x_k^{x_4}) > x_4$, which gives (6). From Lemma 2 we obtain, using $x_4 < P(x_j)$, that $\max\{|x_i^{x_4}|, |x_k^{x_4}|\} < \exp\exp\{(C+1)(P(x_j))^3\}$. Since $|x_j^{x_4}| \le |x_i^{x_4}| + |x_k^{x_4}|$ this gives (7).

COROLLARY. Suppose

$$x_1^{x_4} + x_2^{x_4} = x_3^{x_4}, \tag{1}$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}, x_1 x_2 x_3 \neq 0, x_4 \geqslant 3, \gcd(x_1, x_2, x_3) = 1$$
 (2)

and moreover that

$$x_i = k$$

for some $i \in \{1, 2, 3\}$ and $k \in \mathbb{Z}$. Then

$$x_4 < P(k), |x_j^{x_4}| < \exp \exp(C(P(k))^3)$$

for $j = 1, 2, 3$ and $P(k) > C^{-1/3} (\log \log |k|)^{1/3}$.

Remarks. Our results can be extended to equations $a_1 x_1^{x_4} + a_2 x_2^{x_4} = a_3 x_3^{x_4}$, where a_1 , a_2 , a_3 are any given nonzero integers. See [6]. This does not seem to be the case for the results mentioned in the introduction about the planes $x_i - x_j = k$. We are unable to prove anything for solutions of (1) and (2) in an arbitrary plane $b_1 x_1 + b_2 x_2 + b_3 x_3 = k$ $(b_1, b_2, b_3, k$ given integers).

References

- A. BAKER AND D. W. MASSER (Eds.), "Transcendence Theory—Advances and Applications," Academic Press, London/New York, 1977.
- 2. G. D. BIRKHOFF AND H. S. VANDIVER, On the integral divisors of $a^n b^n$, Ann. of Math. (2) 5 (1904), 173–180.
- 3. K. INKERI AND A. J. VAN DER POORTEN, Remarks on Fermat's conjecture, *Acta Arith.* 36 (1980), 107-111.

- 4. P. RIBENBOIM, "13 Lectures on Fermat's Last Theorem," Springer-Verlag, New York/Heidelberg/Berlin, 1979.
- 5. C. L. STEWART, A note on the Fermat equation, Mathematika 24 (1977), 130-132.
- 6. J. Turk, Bounds for the solutions of some diophantine equations and applications, to appear.