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Fix one of the base variables x,, x,, x; in the equation x7* + x3* = x3* subject to
Xis Xgs X35 X4 € L, X, X,%, %0, x, 23, ged(x,, x,,x;) = 1. Then the solutions are
bounded. There are no solutions (x,.x,,x;,x,) with P(x;) < ¢,(log log | x;|)"/* for
some i € {1, 2, 3}.

1. INTRODUCTION

It was stated by Fermat, without proof, that the equation
Xf 4 X = (1)

has no solution in integers with x, >3 and x,x,x;#0. In order to
investigate the possibility of finitely many solutions it is customary to
restrict the variables to

X13 X0, X3, X, €2, X X,x,%0, x, 23, ged(x,,x,,x;)=1. (2)

One method of looking for integral points (x,,x,,x;,x,) in four-space
satisfying (1) and (2) is to search by (three—dimensional hyper—) planes
covering all integral points. In this respect we note the following well-known
facts {4]: The plane x, =k contains no solutions (that is, points satisfying
(1) and (2)) if k enjoys one of various properties. It would follow
immediately from the truth of a famous conjecture of Mordell on rational
points on curves of genus >2 that, for every k (>4), the plane x,=k
contains only finitely many solutions. Stewart [5]| (see also [3]) proved the
following: for every k € Z with |k| > 2 and for i, j € {1, 2,3} with i #, all
solutions in the plane x; —x; =k have their coordinates bounded (by an
effectively computable number depending on k). The cases |k| = 1, 2 are still
open. In this note we consider the planes x;=k, where k€ Z and
i€ {1, 2, 3]. Since there exist no solutions in x, = k for 3 <k < 125.000 |4]
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we also have, by Lemma 1, that x;, =k (i =1, 2, 3) contains no solutions if
P(k) < 125.000. Here P(k) denotes the greatest prime divisor of k if |k| > 1
and P (+1)= 1. We prove that for every k € Z and i € {1, 2, 3} all solutions
in x; =k have their coordinates bounded (by an e.c. number depending on
k). Moreover, if P(k) < ¢,(log log |k|)'/?, then x; =k contains no solutions
(i=1273)

2. PROOFS

LemMmaA | (Zsigmondy, Birkhoff and Vandiver). Let n, x, yE€ 7 with
n>2andx>y>0. Then

P(xn__yn)>n exceptif (x’ysn):(3’ 1’2)’ (3)
P(x"+y") > 2n exceptif (x,y,n)=(2,1,3). “)

Proof. Simple consequences of their (elementary) results on primitive
divisors of numbers of the form a" — b". See [2]. 1§

LEMMA 2. Let n, x, yEZ with n>3 and ged(x,y)=1. Put P:=
P(x" + y"). There exists an e.c. constant C such that

max {|x|,| y|} < exp exp(Cn’P). (5)

Proof. Let FE Z[X, Y] be homogeneous such that F(X, 1) has at least
three simple zeros. It is well known (see |1, p. 63, Theorem 1]) that there
exists an e.c. number ¢(F) depending only on F such that for every x, y€ Z
with gecd(x,y)=1 one has max{|x|, | y|} < expexp(c(F) - P), where P :=
P(F(x, y)). In the special cases where F = X" + Y", n > 3, one can prove that
this inequality holds with ¢(F) = C - n* for some e.c. constant C. See [6] for
details. #

Remark. If instead of (5) one uses that max{|x|, | y|} < exp exp(C(n) - P)
for some unspecified function C(n) (tending to infinity with n), then one
obtains in the sequel bounds which tend to infinity in some unspecified
manner.

THEOREM. Suppose
XJ+ X3 = xje (M
and

X1, X0, X3, X, €2, XX, %30, x, 23, ged(x,,x,,x;)=1. (2)
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There exists an effectively computable constant C such that
x, < P(x;) Jor j€{1,2,3}, (6)
|x7¢| < expexp(C(P(x;))"))  for i j€{1,2,3}. (7)
Proof. Let (i, j, k) be some permutation of (1, 2, 3). We may assume that
X;» X;, X, are positive and distinct with +x7*=x7*+ x;*. Since x,> 3 it
follows from Lemma 1 that P(x;) = P(x{* + xi*) > x,, which gives (6). From
Lemma 2 we obtain, using x, < P(x;), that max({|x;¢|, |x7*|} < exp exp

{Cx} P(x;) + log x,} < expexp{(C + 1)(P(x,;))’}. Since |x}|<|x7*] + [x5
this gives (7). 1§

COROLLARY. Suppose

X144 x34 = x34, (1)
XXy X3, X €L, XXy x37#0, x,23, ged(x,,x;,x;)=1 (2)
and moreover that
x; =k

for some i€ {1,2,3} and k€ Z. Then

x4 < P(k), |x}*| < exp exp(C(P(k))*)
Jor j=1,2,3 and P(k) > C~'” (log log |k|)'/*.

Remarks. Our results can be extended to  equations
a,x1*+ a,x3*=a,x3*, where a,, a,, a, are any given nonzero integers. See
[6]. This does not seem to be the case for the results mentioned in the
introduction about the planes x; — x; = k. We are unable to prove anything
for solutions of (1) and (2) in an arbitrary plane b, x, + b,x, + byx; =k
(b, b,, by, k given integers).
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