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Fix one of the base variables x1, xl, x, in the equation XT” + x;* = x:” subject to 
x,3 X2> x,3 x1 E Z, x,xzxI # 0, xq > 3, gcd(x,, x2, x2) = 1. Then the solutions are 
bounded. There are no solutions (x, , x2, x3, x4) with P(x,) ( c,(log log 1 xii)“’ for 
some iE (1,2,3}. 

1. INTRODUCTION 

It was stated by Fermat, without proof, that the equation 

x:” + x;” = Xi” (1) 

has no solution in integers with xq > 3 and x,xzx) # 0. In order to 
investigate the possibility of finitely many solutions it is customary to 
restrict the variables to 

x1.x2,x3,x4EL, x,x,x,#O, x4>3, gcd(x1,xz,x3)= 1. (2) 

One method of looking for integral points (x,, x2, xj, x,) in four-space 
satisfying (1) and (2) is to search by (threedimensional hyper-) planes 
covering all integral points. In this respect we note the following well-known 
facts [4]: The plane xq = k contains no solutions (that is, points satisfying 
(1) and (2)) if k enjoys one of various properties. It would follow 
immediately from the truth of a famous conjecture of Mordell on rational 
points on curves of genus >2 that, for every k (>4), the plane xq = k 
contains only finitely many solutions. Stewart [5] (see also 131) proved the 
following: for every k E L with ] k 1 > 2 and for i, j E { 1, 2. 3 } with i fj, all 
solutions in the plane xi - xj = k have their coordinates bounded (by an 
effectively computable number depending on k). The cases 1 kl = 1, 2 are still 
open. In this note we consider the planes xi = k, where k E L and 
i E ( 1, 2, 3). Since there exist no solutions in xJ = k for 3 < k < 125.000 [4 1 
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we also have, by Lemma 1, that xi = k (i = 1,2,3) contains no solutions if 
P(k) < 125.000. Here P(k) denotes the greatest prime divisor of k if (kl > 1 
and P (* 1) = 1. We prove that for every k E Z and i E { 1,2,3} all solutions 
in xi = k have their coordinates bounded (by an e.c. number depending on 
k). Moreover, if P(k) < c,(log log ] kl)“3, then xi = k contains no solutions 
(i= 1,2,3). 

2. PROOFS 

LEMMA 1 (Zsigmondy, Birkhoff and Vandiver). Let n, x, y E Z with 
n>2andx>y>O. Then 

P(x” - y”) > n except if (x, y, n) = (3, 1,2), (3) 

P(x” + y”) > 2n except if (x, y, n) = (2, 1,3). (4) 

Proof. Simple consequences of their (elementary) results on primitive 
divisors of numbers of the form a” - b”. See [ 21. I 

LEMMA 2. Let n, x, y E Z with n > 3 and gcd(x, y) = 1. Put P := 
P(x” f y”). There exists an es. constant C such that 

max(]x], 1 yl} < exp exp(Cn*P). (5) 

ProoJ Let FE Z[X, Y] be homogeneous such that F(X, 1) has at least 
three simple zeros. It is well known (see [ 1, p. 63, Theorem 11) that there 
exists an e.c. number c(F) depending only on F such that for every x, y E z 
with gcd(x, y) = 1 one has max (Ix ( , I y ( } < expexp(c(F) . P), where P := 
P(F(x, y)). In the special cases where F = X” f Y”, n > 3, one can prove that 
this inequality holds with c(F) = C . n* for some e.c. constant C. See [6] for 
details. I 

Remark. If instead of (5) one uses that max { Ix], I yl} < exp exp(C(n) . P) 
for some unspecified function C(n) (tending to infinity with n), then one 
obtains in the sequel bounds which tend to infinity in some unspecified 
manner. 

THEOREM. Suppose 

XT” + x;’ = xJ* (1) 

and 
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There exists an eflectively computable constant C such that 

x4 < P(Xj> for jE {1,2,3}, (6) 

Ix;4l < expexp(C(P(xj))“)) for i,jE { 1, 2, 3). (7) 

ProoJ Let (i,j, k) be some permutation of (1,2.3). We may assume that 
xi, xj, xk are positive and distinct with kx;‘” = xjc4 f xi”. Since x4 > 3 it 
follows from Lemma 1 that P(xj) = P(xjQ f xi4) > x4, which gives (6). From 
Lemma 2 we obtain, using x4 < P(xj), that max { ]xT41, ]xG4 I} < exp exp 
{Cx:P(xj)+logx,} <expexp{(C+ l)(P(xj))‘}. Since, Ix~4]<<x;4/+ix~41 
this gives (7). 1 

COROLLARY. Suppose 

,q + xz” = xx4 
3 2 (1) 

x1,x2,x3,x4~Z, x,x,x,fO, x4>3, gcd(x,,x,,x,)=l (2) 

and moreover that 

xi= k 

for some iE (1,2,3} and kE H. Then 

x4 < P(k), Ixj”“l < exp exp(C(P(k))3) 

for j= 1, 2, 3 and P(k) > C-“3 (log log lkl)“3. 

Remarks. Our results can be extended to equations 
a1x;4 + a2x2 +=a3xi4, where a,, a?, a3 are any given nonzero integers. See 
[6]. This does not seem to be the case for the results mentioned in the 
introduction about the planes xi - xj = k. We are unable to prove anything 
for solutions of (1) and (2) in an arbitrary plane b,x, + b,x, + b,x, = k 
(6,) b,, 6, , k given integers). 
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