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We discuss some problems which arise in a low-energy theory of strong and electroweak 
interactions when the weak scale is induced via supergravity. The main problem concerns the 
origin of quark and lepton masses. If the fermions obtain their masses in the conventional way 
via Yukawa couplings, then the low-energy supergap (mass difference between supersymmetric 
partners) is comparable to the mass of the lightest massive fermion. One solution would require 
that at least the light generations receive their mass indirectly via radiative corrections. Alterna- 
tively it might be that the SU(2) x U(1) breaking is induced radiatively. 

1. Introduction 

We want to indicate some problems which arise in low-energy strong and 
electroweak theories when the weak scale is induced via supergravity. We do not 
know at present  how general these problems may be. Thus it is particularly important  
that we state our basic assumptions. 

We shall consider an S U ( 3 ) ® S U ( 2 ) ® U ( 1 )  gauge theory of strong and elec- 

t roweak interactions with local supersymmetry  (SUSY). We assume the theory has 
two distinct sectors coupled only via supergravity. The first is the super Higgs sector 

of the theory which spontaneously breaks SUSY and gives the gravitino a mass 
m3/2 [1]. The second includes the gauge fields, quarks, leptons and Higgs. SUSY 
breaking effects are induced in the second sector by the first, and are of order  m3/2 

[2, 3]. 
We assume that these effects are the sole driving terms for the weak breaking 

scale v of order Mw [4]. We thus require that the only dimensionful parameters  in 
the low-energy theory be induced by the super Higgs sector. 

We shall use a superspace potential  of the form (we use the notation of Nilles 
et al., ref. [4]): 

W = h ( Z i ) + g ( Y ~ ) ,  (1.1) 

where Zi  are the fields in the super Higgs sector and Y~ include quarks, leptons 
and Higgs. 
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The scalar potential is given by [1] 

W = exp [(IZil: + [Ya 12)/M2][lhi + Z *  W/M2[ 2 

+ Iga + Y* W/M2I 2-  31WI2/M 2] + ½Do;D., (1.2) 

where sums over i, a and ot are understood, and 

M =M~,/48-~= 2.4 x 10 TM GeV,  (1.3) 

Oh Og 
hi OZi' g~ OY~' D,=e~,Y*T"Y~,~ (1.4) 

where T" is a gauge group generator and e, the associated coupling constant. 
Following ref. [4] we assume V is minimized when Zi, hi and h have vacuum 
expectation values 

( Z i ) = b i M ,  ( h i ) = a * m M ,  ( h ) = m M  2 , (1.5) 

where m << M. The low-energy potential VL.E. is obtained by replacing Zi, hi and 
h by their VEVs and keeping only those terms which do not vanish as M -~- oo. The 
result is 

W E E .  = l~,[2+m3/2(A~+h.c.)+m~/2lY,12+~D~D=, (1.6) 

where m3/2 is the gravitino mass given by 

l b 2  m m3/z=exp  (~[ i] ) , (1.7) 

is the rescaled superpotential 

and the constant A is given by 

e x  1 2 , g = p (~lbil)g (1.8) 

A = b/* (ai + b 3 .  (1.9) 

In obtaining this result we have assumed the following. 
(i) The potential V vanishes at the minimum. Hence there is no cosmological 

constant. This requires 

Y~ [a, +bll 2 = 3. (1.10) 
i 

After minimizing VL.E. we shall in general obtain additional contributions to the 
cosmological constant of order rn~/:. This will require additional fine tuning of 
relation (1.10) by small corrections of order m~/2 /M 2. We have 

(ii) used the assumption that g(Y,) contains no dimensionful parameters which 
allows use of the identity 

Y.ff. = 3ft. (1.11) 
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One immediate (and attractive) consequence of the philosophy espoused here is 
apparent from (1.6); all scalars obtain identical masses of O(ms/2). Thus the GIM 
cancellation required to avoid awkward flavor-changing neutral currents is auto- 
matic. 

2. Some simple models 

Let us now consider a simple example in which the weak scale is induced by 
supergravity. Let 

~, = A YISI~H,, (2.1) 

where Y is an SU(2)®U(1) singlet; /~i  and H~ are Higgs doublets and i = 1, 2 is 
an SU(2) index. A is an arbitrary Yukawa coupling which we shall without loss of 
generality take to be real and positive. In an obvious notation we identify the 
Higgs content by 

ffli = ( I-t±~ H + ,/?o:, n;= (~o). 

The low-energy potential VL.E. is given by 

V~.E. = A 2(lB°I21H°I ~ + I rl21~q°: + [ YI2IH+[2 +[YIZIH°I 2) 

+ m ~/:x IA [(e '~ Y F - I ° H  ° + h.c.) + m ~/2 (I YI: + IH°I: + IH°I: + IH+I :) 

+ ~g2 [4IH+IZlHOl2 + ( i H + f _  iHOlZ + IDol=)2] +1 = ~gl (In÷12 + IS°f-ID°l=)  = 
(2.2) 

where we have already used the SU(2) invariance of VLE. to se t / - I -  ~ 0. We then 
immediately see that at the minimum of VL.E., H += 0 and electric charge is 
conserved. 

Let's now define Y = y e ie,,/-I ° =/7 ° e ~° and, H ° = h ° e ~% where y,/~°, h ° are real 
and positive. The global minium of VL.E. depends on A, and is given by: 

for IA[<3, y = / ~ ° = h ° = 0 ,  VL.E.(0) = 0 , (2.3) 

where 

o r fo r  [A[>3 y = / ~ ° = h °  U m3/2 

#y + O o + 0 o + a  = r r ,  (mod 2~r), 

u = ~([AI + x/~A----~- 8) > 1, 

4 
VL.E.(U) m3/2~  2 t~. .2  

------- A2 (U - - l ) u  

(2.4) 
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t ,*H 

/ \ 

i . . . . .  

Fig. 1, A one-loop contribution to the gluino mass. 

We shall henceforth assume that there exists a super Higgs sector h(Zi) for 
which IAI > 3. Note that it was shown in ref. [4] that the condition ]A[ > 3 is in 
general necessary to induce the weak scale. In our simple model it is also a sufficient 
condition. 

The 0 2 component of the superspace potential ~ =AYISPH~ is invariant under 
three global symmetries: 

(i) Y(x, O)~e-i~Y(x, 0 e i~) and similar transformations for/-I, H 

(ii) Y --> e 2 i ° Y  , I-Tgi -> e - i ° I ~  i , H i  --> e - l e H i  , (2.5) 

(iii) y -> y ,  /~i --> ei~/.~;, Hi -> e-ieH~ • 

The symmetry (i) is an R symmetry which may or may not be a symmetry of the 
full superspace potential W. It is also either spontaneously or explicitly broken by 
the super Higgs sector. As a result it is clearly not a symmetry of VL.E.. 

The fact that the cubic terms proportional to A violate R symmetry and supersym- 
metry means that gauginos develop masses in perturbation theory. 

At the one-loop level we estimate (see fig. 1) a gluino mass 

aa~ mE O.15a(m_~O)2GeV, 
~t m 3 / 2  

where mt is the mass of the heaviest quark (assuming mt< m3/2). At the two-loop 
level*, however, we encounter fig. 2, which gives a logarithmically divergent contri- 
bution 

2 
~sQ~ [ \ m t  

~ A  2 k-~-~J m3/zlnA 
• r sin 20w 

/ v H ~ 

Q Q 

Fig. 2. A (divergent) two-loop contribution to the g]uino mass. 

* This effect has been independently observed in a slightly different context by Aulakh and Mohapatra 

[5]. 
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where A is the cut-off. If we put A - M p  then this contribution is not larger than 
the one-loop one; however the presence of the divergence indicates a sensitivity 
to unknown states at higher masses. If we wish our low-energy description to 
correspond to a renormalizable field theory we must include bare mass terms for 
the gauginos and regard their masses as free parameters of the theory. 

We can see that (ii) is a symmetry of VL.E. which is spontaneously broken at the 
weak scale and results in an unwanted Peccei-Quinn axion. Finally (iii) is the local 
U(1) weak hypercharge. 

In order  for our simple model to be phenomenologically acceptable we must 
explicitly break the global symmetry (ii). We thus define an improved ~' given by 

~o'Y +A YtSI'Hi.  (2.6) ffp___l 3 

(ii) is now broken and the axion obtains mass ma of order  

1/2 

We can now repeat  our previous analysis on ~' and the new V' L.E. We find for 
0 < o" << A that the global minimum is at y ~ 0, h ° =/~° = 0. If however ~ / A  ~ 1 then 
there exists a solution for y ~ 0 and 

h ° = "-0 - m3/------~2A (2.8) 
h - -  A' ' 

and the energy in the potential at the minimum is of order 

VL.E.  [min ~--" 4 t - 2  4 ' -m3/2(A ) A , 

where 

1/2 

3. Fermion  masses  

We must now include some Higgs couplings to quarks and leptons in order to 
generate any fermion masses. As a first try let us assume that all quarks and leptons 
receive their mass at the tree level via Higgs Yukawa couplings. We then have 

= ~ o ' Y  + A Y H H i  
1 3 - - i  u a - - b  ii  d - - i  a - b  e - - i  a --b + A a d - / L i E  +AabHiOj  U e +AaMr-I Q i D  (3.1) 

where a, b = 1, 2, 3 are generation indices; A,, Ad and he are Yukawa couplings and 
in an obvious notation Q~/3 (L[I)  and 0 -4/3,/52/a(J~ 2) are respectively the quark 

(lepton) SU(2) doublets and singlets. Their  weak hypercharge is explicitly indicated. 
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We can now immediately write down the low-energy potential (see 1.6). The 
relevant D~ are given by 

D ~  = ½ga(Q*AA~2Q - O*(AA)TO--/~*(AA)T/~), A = 1 ..... 8,  

D~ = ~g2(Q*~3rtQ + L * z I L  + H * r ~ H  - O*(~J)T/-7), I = 1 . . . . .  3 ,  

1 1 "9 

(3.2) 

VL.E. is extremely complicated. However it is not too difficult to convince oneself 
of the following two facts. 

(i) if Au, Xd and Ae << ,V = 1, then there exists a local minimum of VL.E. with VEVs 
given by (2.8) and all other VEVs vanishing. This is the desired solution. 

(ii) However, the global minimum of VL.E. in the same range of parameters Xu, 
Aa and Ae << A'=  1 spontaneously breaks at least electric charge invariance with the 
scalar partners of the lightest quark or lepton pair obtainng a non-vanishing VEV. 

Consider for example a much simplified superspace potential ~ which will make 
the second statement obvious. Let 

~, = ~crY 3 + A Yf fIH + AjTILe,  (3.3) 

where Li = (~). The global minimum of the resultant VL.E. is located at the point 

IO°11 = lel = l e l - -  rn~/~u, (3.4) 
A~ 

where u is defined in eq. (2.4) and all other VEVs vanish. The ground state energy 
is given by 

4 
m 3/2 (U 2 VL.E.(U) = - - ' ~ 2  - 1)u 2 . (3.5) 

This is clearly lower energy than the desired ground state (2.8). 
Note that the D~ terms (eq. 3.2) vanish identically along a line defined by (3.4) 

with an arbitrary scale factor u. Thus they do not stabilize scalar quark and lepton 
VEVs at zero. 

The problem is a direct consequence of the small Yukawa couplings A~, Ad, Ae << 
A'= 1 for the light fermion generations. Can we avoid the problem by choosing a 
different range of parameters i.e. a '  <A~, Ad, Ae? In that case the extremum (2.8) 
would be the global minimum of VL.E, It is easy to see that this range of parameters 
is not phenomenologically viable. Quark and lepton masses are given by the 
expression 

mu(md, me) = Au(Aa, Ae)V , (3.6) 

where v = (/4 °) = (lq°). The gravitino mass is given by 

ma/2 = ,Vv . (3.7) 
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The gravitino is thus one of the lightest fermions in the theory. Note this is not 
necessarily a problem, by itself. It is a problem because the gravitino mass is an 
upper bound for the supergap in the low-energy theory. As such m3/2 < mu, m d  or 
me is experimentally ruled out for all known fermions. We are thus stuck with 
Au, Ad, Ae<< A '=  1. 

Do radiative corrections destablize the undesirable vacuum (3.4)? Let  us consider 
the one-loop corrections to the model defined by 

= ,~ eHL~ • (3.8) 

These are given by the usual expression 

1 m4 m 2 
V1 = ~ Str In ----$, (3.9) 

/z 

where m 2 is the mass matrix and 

S t r=  T, +3  Y, - 2  T, . (3.10) 
scalars vectors fermions 

We would like to evaluate this expression for the vacuum expectation values 
(3.4) and see whether it is small compared to the tree expression (3.5). 

Now m 2 for the scalars, for instance, is given (schematically) by 

m 2 ~ m 2/2 + A m  3/2• e(~ -1" A e2(~ 2.4_ g 2 b  2 , (3.11) 

where ~b stands for (/-t, L, ~). (Group indices suppressed) For  ~b - m 3 / 2 / h e  the last 
term is potentially large. However  we know that if we set m3/2 = Ae = 0 then (3.9) 
will give V1 = 0 for any ck as long as D = 0 (which we ensure by/- t°  = [el = 1~[. Thus 
one can explicitly verify that at field values of ~m3/2/he the gauge coupling 

2m4 -A 2 contributes to V a term of at most g 3/2/ e. A similar argument holds with 
respect to possible Yukawa couplings of H , / - I  to heavy quarks. 

We have not examined in depth the situation in higher orders but believe the 
above conclusion will not be altered. Thus the minimal model considered above is 
clearly unsatisfactory. Let  us now consider some possible ways out. 

We may try to discourage the electron from developing a VEV by adding further 
couplings. Consider for instance 

= l o .  y3  q_ A YI'Y[H + A etTIL~ + A KI(L~, 

w h e r e / (  is a weak doublet  with the same quantum numbers as/-I. Now if we arrange 

Ae<<A'<AK, 

then the vacuum (2.6) is favored again. This, however, causes phenomenological 
problems in that, for instaflce K'exchange in purely leptonic processes is of order 

which by assumption is stronger than standard weak processes. 
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We can get around this problem by introducing a new field K and adding a 
further term 

x k K K H ,  

which gives a large mass to the K fields if Ak >AK. However since, as already 
mentioned, we require A' ~ 1 to produce a phenomenologically acceptable supergap, 
tinkering along these lines probably leads to loss of perturbative calculability. 

Such a large coupling A k could be avoided by coupling K and I( to a new field 
transforming like a ringlet under the weak interactions, and capable of developing 
a vacuum expectation value greater than h °. In the present framework, this would, 
however, be quite artificial, and is best qualified as a need to reintroduce the full 
grand unification framework. 

4. Conclusions 

We have examined a situation where a low-energy supersymmetric SU(2) x U(1) 
lagrangian is softly broken by scalar masses and cubic couplings, originating through 
a coupling to a hidden sector, through supergravity. 

We have shown, that under the assumption that the coefficient of the cubic term, 
IA 1, be ~>3, spontaneous symmetry breakdown of the gauge symmetry would occur. 
The vacuum expectation value is however associated with the superpartner of the 
lightest massive fermion. In the standard model, this would correspond to the 
electron and result in spontaneous breaking of electric charge conservation! Electric 
charge may be preserved at the minimal cost of adding a right-handed neutrino. 
The model would however remain unacceptable, since the "supergap" (mass 
difference between ordinary particles and their supersymmetric partners) would be 
of the order of the neutrino mass! Radiative corrections apparently do not improve 
the situation. 

Compatibility of the model with present experimental knowledge could be 
restored at the cost of introducing new fields, with the purpose of increasing the 
usual fermions' supersymmetric quartic self-couplings. There is however no other 
compelling rationale for this extension inside the low-energy theory. 

Other possibilties exist, such as requiring that the light fermions obtain masses 
from radiative corrections only, thus eliminating the troublesome small couplings 
(A ~, A . . . . .  ). Within the general framework of this paper the most attractive possibil- 
ity seems however to be to take IA] <3* and hope to generate the SU(2)×U(1) 
breaking via radiative corrections. The latter scenario has recently been explored [6]. 

Note added in proof 

In the above we have only been concerned with the issue of an absolute minimum. 
We are aware of the fact that in a cosmological context, a metastable state may 

* The special case ]A I = 3 leads to degenerate vacuua; this possibility has been explored in ref. [7]. 
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have a lifetime sufficiently long so as to be consistent with present day observation. 
This is particularly relevant in view of the large VEVs which characterize the 
absolute minimum and which make it unlikely to be the first to be reached from 
the unbroken state. This dynamical question deserves further study. 
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