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Typical physics data samples often conform to Gaussian distributions with admixtures of more slowly varying backgrounds. 
Under such circumstances the standard deviation is known to be a poor statistical measure of distribution width. As an alternative, the 
performance of Gini's mean difference is compared with the standard deviation and the mean deviation. Variants which sum over 
subsets of all possible pairs are shown to have statistical efficiencies comparable to the mean difference and mean deviation but do not 
require extensive data storage or a priori knowledge of the sample mean. These statistics are reasonable candidates for monitoring the 
distribution width of a real time data stream. 

In a variety of circumstances, the optimal performance of a system depends on minimizing the width of 
a distribution derived from experimental data. Operationally these problems are similar to focusing a 
camera. As an obvious example, charged particle transport systems are normally tuned by monitoring the 
width of the beam image at a focal point and varying the current in the magnetic optics until the spot size 
is smallest. At a slightly greater level of abstraction the opt imum momentum resolution of a spectrometer is 
obtained after a number of calibration constants are varied to minimize the apparent momentum spread of 
a narrow bandwidth test beam. 

Common to both of these examples is the existence of a small but finite admixture of background to an 
otherwise narrow Gaussian distribution. In the case of beam optics there is always a certain level of beam 
halo from slit scattering and other sources which may be quite erratic in time. Reliable tuning of such a 
system requires statistical methods that minimize these effects. Unfortunately the most widely used 
measure of distribution width is the standard deviation which is known to be a very poor statistic [ 1] in the 
usual dirty circumstances with which we must contend. 

For a sample drawn from a normally distributed population the standard deviation is the optimal 
measure of distribution width [2] in the sense that the relative statistical uncertainty is least for this 
particular parameter  for a fixed sample size. However as the population distribution departs from 
normality the large weights associated with observations far from the mean strongly affect the values 
obtained. The sensitivity of the standard deviation is such that if 0.2% of the sample is drawn from a 
population with three times greater width the mean deviation defined by 

d =  1 ) - ~ -  x , - - l ~  
n n xj (1) 

i=1 j 

is a more stable statistic. Needless to say such a small contamination is practically invisible in a sample of 
reasonable size. 

There is quite a large number of alternative techniques which can be employed for better estimates of 
distribution width. For computation most of these require memory storage for every member  of the sample. 
In the case of the mean deviation, because the sample mean is not known in advance, the absolute 
deviations cannot be obtained until after the entire sample has been collected. Similar arguments apply for 
order statistics (such as the semi interquartile range) since the ordering can not be done until all of the 
sample data is available. For monitoring real time data streams this storage requirement is inconvenient if 
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not impossible to satisfy. This paper  will describe a statistical measure of width which can be computed  
with a simplicity comparable  to the standard deviation without the extreme sensitivity to non-Gaussian 
tails. 

The  origin of these measures is named Gini's mean deviation [3] after the Italian statistician although it 
was apparently known to Helmert  [4] and others [5] in the 1870s. It is defined by 

2 
<~< l x i -  xjl,  (2) 

g = n ( n -  1) I ~ .  
1 <~j<i 

where the sum runs over all possible sample pairs. The virtue of the mean difference is its relative 
insensitivity to large deviates. This property is shared by the mean deviation but, unlike the mean 
deviation, the mean difference does not  require prior calculation of the sample mean. An obvious 
disadvantage is the necessity of summing over all ½n(n - 1) sample pairs which greatly inhibits its utility 
for general use. 

For tunately  similar statistics formed from subsets of all possible pairs retain the useful properties given 
above without drastic loss of statistical efficiency. These variants of the mean difference can be computed 
for indefinitely long data streams yet require negligible data storage: 

2 n/2 

go-- n I x 2 ' -  x2 i - l l '  

1 " 
- =~21 - g t -  n 1 x i x;  11 

i= 

n even 

(3) 

] 1 IXi -- Xi II -~- IXi - x ,-21 
g2 = 2 n -  3 i i=3 

g3-- 3n-61[ ~ l x i - x i i = 2  -11-~-~lxi-xi-2l~-~lxi-xi-3l]i=3 i=4 
go requires a summation over n / 2  disjoint sequential pairs, gl, g2, and g3 are averages over all possible 
pairs within sequential groups of two, three and four sample elements and contain n - 1, 2n - 3, and 
3 n -  6 terms respectively. As long as the observations [x;] are statistically independent  the expectat ion 
values of these new statistics are all equal: 

(go)  = ( g l )  = (g2)  = ( g 3 )  = ( g )  (4) 

The computat ion of the variance of g; follows directly from the method of Lomnicki [6,7]: 

(g°2) = nl [2 ( (x /  - x j )  2) + ( n -  2)<Ix; - xjllx k - x,l)] 

1 [ ( n -  1 ) ( ( x ; -  x j )  2) + 2 ( n -  2 ) ( I x ; -  xjllx ; -  xk[ ) 
(n l)  2 

+ (n - 2) (n  - 3 ) ( I x ; -  xjllxk - x;I)] ,  

1 [(2n - 3 ) ( ( x ; -  xj)  2) + 4(3n - 8 ) ( I x ; -  xj[Ix; - xkl ) 
( g ~ ) -  (2n 3) 2 

+ 2 ( 2 n  2 - 13n + 2 2 ) ( I x ; -  x j l l x k  - x;I)], (5) 

2 1 [(3n - 6 ) ( ( x ; -  x j )  z) + 2(15n - 52)(I x, - x j l l x ; -  xk l )  
( g 3 ) -  (3n 6) 2 

+ (9n 2 - 69n + 146)(1x; - xjllx k - x;I)] ,  
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1 
(g2) - n(n-- 1) [ 2 ( ( x i -  x#) 2 ) + 4(n - 2)(Ix,-  XJX,- X,I) + (n - 2)(n - 3)(Ix,-  xjtlx, - x,l)]. 

In each of the above expressions the first and third expectation values are easily obtained from 

( ( X  i -- Xj) 2) = 202, fiX, -- x J x ,  - xzl) = ( g ) 2 .  (6) 

The correlation term can be reduced to the following expression: 

( [x i_  xj i ix,_ x , i )  = ( D 2 ( x ) ) ,  (7) 

where 

D(x) = 2 ( x F ( x ) -  a(x) )  + (x) - x, 

and F(x) and G(x) are related to the differential distribution function, f ( x ) ,  by: 

F(x)= L ? ( x  ) dx, G(x)= L ' x i ( x ) d x .  

The expectation value of g is: 

(g) = (D(x))  = 2(2xF(x) - x ) .  

(8) 

(9) 

(10) 

The variances of gi are easily obtained from the values of ( g f )  given by eq. (5). In the limit of large sample 
size 

lim n var(g0) = 402 - 2 (g )  2, 
t l ~  o a  

lim n var(gj)  = 202 + 2 (D 2 ) - 3 (g )  2, 
n ~ o o  

lim n var(g2) = ½(202 + 6(D 2 ) - 7 (g)2) ,  
t l ~  o ¢  

lim n va r (g3 )=  } (202+  10(D 2) - l l ( g ) Z ) ,  

lim n var(g)  = 4 (D 2 ) - 4 ( g )  2. 
n ~ o Q  

(11) 

The statistical performance of the mean difference can now be quantitatively compared with other 
measures such as the standard deviation and mean deviation. For these purposes we will assume for the 
differential distribution function a sum of two normal distributions with identical mean but different 
width: 

f ( x )  = (1 - ( ) e p ( x ,  ol)+ (q~(x, 02), q~(x, o ) -  1 e_X~/2o:. (12) 
o2~ 

Tukey [1] has used this distribution with 02/01 = 3 to demonstrate the sensitivity of the standard deviation 
to small contaminations. Choosing larger values for the ratio, o2/ol, mimics the effect of a slowly varying 
background underneath a sharp peak. 

With f (x )  given by eq. (12), the definite integrals required to evaluate eq. (l l) can be explicitly 
expressed in terms of elementary functions. These integrals are listed below: 

f xeo(x ,  ~(x, o')-- o) dx, 

L ~ ( x ,  o,)¢(x,  02) dx  = ½, 
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x (x, o,)~,(x, o~) d x  2v/~_l ~'°~ 
f L  x20(x' 5 o,)¢(x, o2)dx=o~ e~(x,o,)e(x, o2)dx, 

- -  O 0  

= - -  t a n -  1 
- - ~  q'l" O 1 

f~ =_ f X 2 1 ~ I 2 ( X ,  O I ) q ~ ( X  , O 2 )  d x  1 o l o  2 + 0 2  ~ 1 ~ 2 ( x ,  O l ) q ~ ( x ,  ° 2  ) d x ,  
- ~x~ 2 2 2 0 2  - oz 

(13) 
f ~  1 2 1 o 2 ) )  • (x, o,),l~(x, 02)q~(x, 02) dx  = ~ 1 + -- tan-  

_ ~  ~ 2 ; ~ 2 +  o2 ~ 

1 1 o?°?+ ,) 4 f_o x2,~(x, ol),~(x, o2),(x, o2) dx= ~ i + o-----~ #o2 
O2 2 + 

E +022 q~(x, Ol)q~(x, 02)CO(x, 02) dx. 
(X) 

The expected value for the mean difference is: 

2 ; [ ( 1 -  ,)2o, +,(1- +o:)  + (14) 

Unlike the mean deviation, the mean difference is not a strictly linear function of the mixing parameter, ~. 
The complete analytic expression for (D  2) is too expansive to be included here. 

To compare the efficiency of various statistics it is convenient to define a dimensionless parameter which 
reflects the relative magnitude of the variance. For any statistic, s: 

~/(s) - l i m . ~ n  var(s)  (15) 

( s )  2 

With this definition, the asymptotic relative efficiency, ARE, of statistic s~ relative to s 2 is given by the 
ratio: 

ARE = ~l(s2)/~(s,). (16) 
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Fig .  1. T h e  a s y m p t o t i c  r e l a t i ve  e f f i c i e n c y  o f  t he  m e a n  d e v i a t i o n  a n d  m e a n  d i f f e r e n c e  as  a f u n c t i o n  o f  t h e  m i x i n g  p a r a m e t e r ,  ~, f o r  

o 2 / o  t = 3. T h e  v a r i o u s  c u r v e s  a r e  p l o t t e d  w i t h  go = - . . ,  g l  . . . . .  , g2  . . . . . .  , g3 . . . . . .  , g =  - - ,  a n d  d . . . .  . 
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Following the steps given above, the ARE was computed for both the mean deviation and mean difference 
relative to the standard deviation. The results are plotted as a function of the mixing parameter, c, in fig. 1 
for Ol/O 2 = 3 and in fig. 2 for o l / o  2 = 10. From these graphs two conclusions can be drawn. First of all, the 
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Fig.  2. T h e  a s y m p t o t i c  re la t ive  e f f i c i e n c y  o f  the  m e a n  d e v i a t i o n  a n d  m e a n  d i f f e r e n c e  as  a f u n c t i o n  o f  the  m i x i n g  p a r a m e t e r ,  c ,  for  

0 2 / ~  l = 10. T h e  v a r i o u s  c u r v e s  are  p l o t t e d  w i t h  go  = . . - ,  g l  . . . . . .  , g2 . . . . . .  , g3 . . . . . .  , g = - - ,  and  d . . . .  . 

behavior of the mean deviation and mean difference are quite similar although the mean deviation is 
generally somewhat better. Secondly, the performance of the mean differences based on restricted subsets 
of  pairs is not drastically worse than the statistic computed from all possible pairs. This result demonstrates 
that the restricted sum variants of  the mean difference are reasonably efficient as statistical measures as 
well as relatively simple to compute. 

The ARE is a measure of the stability of  a given statistic for a well defined distribution. As the mixing 
parameter rises toward unity the statistic becomes heavily weighted towards its value for the broader 
distribution. From a practical point of  view the statistic no longer usefully measures the width of the 
narrower distribution which is generally the one of interest. Furthermore the broader background may be 
subject to large fluctuations in time and so the utility of  the statistical measure becomes nil. A simple way 
of estimating the tolerable level of  background distribution is to calculate the mixing parameter required to 
increase the value of a given statistic by a factor of 2. These results are shown in fig. 3 for the standard 
deviation, mean deviation, and mean difference as a function of o 2 / o  I. Because of their essentially linear 
nature, the mean deviation and mean difference are substantially more tolerant of contamination. 
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Fig .  3. T h e  m i x i n g  p a r a m e t e r ,  ~, r e q u i r e d  to  d o u b l e  the  s t a n d a r d  d e v i a t i o n  (dotted l ine) ,  m e a n  d e v i a t i o n  (dashed l ine) ,  and  m e a n  

d i f f e r e n c e  ( s o l i d  l ine)  as  a f u n c t i o n  o f  0 2 / 0  I. 
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Fig. 4. dT//dc at c = 0 as a function of o 2 / o  I for the standard deviation (dotted line), mean deviation (dashed line), and mean 
difference (solid line), 

Another  way of looking at the effect of small admixtures  of contaminat ion  is to calculate the derivative 
of  */with respect to c. In  order that  a statistic be reasonably  accurately determined,  c d ~ / d ~  must  be  much  
less than the sample size, n. In fig. 4, d* / /dc  at ~ = 0 is plot ted as a function of 02/01 for the same three 
statistics as above. On the scale used, all of the curves for gi lie essentially on top of each other. Again we 
conclude that  the mean  deviation and mean  difference will yield significantly bet ter  results for a l imited 
sample  size. 

In the limit of a pure Gauss ian  distribution, ( g )  is related to the s tandard deviat ion by: 

o = --~-  ( g ) .  (17)  

A useful p roper ty  of  the mean deviation is the relative constancy of the ratio, o / ( g ) ,  for other tightly 
bunched distributions. For  a rectangular  distribution, o / ( g ) =  ½~/3- and for a tr iangular distribution, 
o / ( g )  = ½ 1~/-~O/49. By comparison,  the corresponding ratios for the mean deviat ion are o / ( d )  = ~f4 /3 ,  

3V/~2, and ~/~/2 for the rectangular,  triangular, and normal  distr ibutions respectively. 
In addit ion to eqs. (2) and (3) there are several other  equivalent forms of the mean difference. One of 

these was proposed  by Downton  [8] and Barnett  et al. [9] as an order statistic; the equivalence to Gini ' s  
mean  difference was noticed by David  [5]. Assume that  the sample data  are ordered by value: 

x(])~< . . .  <.... x ( i_b  <~..r(i) <.~. xO+ b <~. . . .  <~ X(n ). 

Then  

2 
( 2 i - n -  1)xu).  (18) 

g = n ( n - -  1) i=] 

F r o m  a computa t iona l  point  of  view this is a more  efficient expression than eq. (2) since, in the limit of 
large n, the number  of ari thmetic operat ions required grows as n log n rather  than n 2. Another  set of 
equivalent representat ions for g is: 

= -  x ~ - - -  ~ m i n ( x , , x j  = -  ~ m a x ( x ~ , x j ) -  Y'~ x, , (19) 
g n l~i<~n El-  1 n n -  1 l<i~<n I <i<~n 1 <~i<~n 

l <~j <i l ~ < j < l  

which follows f rom the identity: 

x + y  m i n ( x , y ) = ½ 1 x _ Y l = m a x ( x , y ) _ X + y  (20) 
2 2 

This form of the mean  difference extends in an obvious fashion to the restricted sum variants  given by  eq. 
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(3). From some purposes it may be more convenient to average the min and max functions as rough 
indicators of the active range of the data. If  the sample data is grouped as in a histogram, then g is most 
easily calculated from the sums or integrals implied by eq. (10) using for f(x) the empirical distribution. 
Note  that for such a discrete distribution the appropriate sums can be obtained in a single pass. 

In conclusion, it has been shown that the mean difference has a number of useful properties which are 
ideal for determining the distribution width of approximately Gaussian experimental data. We have seen 
that, for practical applications, the mean difference is a considerably more reliable statistical measure than 
the standard deviation although not quite as statistically efficient as the mean deviation. For monitoring 
real time data streams in which the sample mean is not immediately available and the sample size is large, 
the restricted sum variants of the mean difference are particularly appropriate. Finally, some of the 
calculations presented here should provide a warning to experimenters who blithely assume the inevitable 
suitability of least-square fitting procedures. 
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