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SUMMARY: 15(S)-15-methyl-prostaglandin E and prostaglandin I rapidly and 
reversibly inhibit formyl-methionyl-leuc 1-phenylalanine b induc d ii superoxide 
production by human neutrophils. In contrast, 15(S)-15-methyl-prostaglandin E 
and prostaglandin I 

b 
did not alter the rate or the total amount of superoxid * A 

production by human eutrophils stimulated with either phorbol myristate acetate 
or arachidonic acid. These data suggest that the production of superoxide anion 
by human neutrophils may be mediated by at least two mechanisms, one regulated 
by prostaglandins and intracellular cyclic adenosine monophosphate levels and a 
second independent of prostaglandin modulation. 

Polymorphonuclear leukocytes (PMNs) are a primary cellular component of 

acute inflammatory reactions and have been shown to cause cell and tissue injury 

(reviewed 1). One of the principal products of their activation is the pro- 

duction of superoxide anion (02) which is generated by a membrane-associated 

nicotinamide adenine dinucleotide oxidase of which the cofactor binding site has 

greater affinity for NADPH (2,3). This oxidase system frequently referred to as 

the NADPH oxidase, has been shown to be functionally deficient in patients with 

chronic granulomatous disease (4). 

In recent years prostaglandins of the E series and PGI2 have been shown to 

inhibit acute inflammatory reactions in vivo (5,6) as well as inhibit neutrophil -- 

functional responses to a variety of soluble and particulate stimuli in vitro -- 

(7-10). The- inhibition of neutrophil function by PGs has been associated with 
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ABBREVIATIONS: 

PMN's: Polymorphonuclear leukocytes 
PGs: Prostaglandins 

15-M-PGE :15(S)-15-methyl-prostaglandin E1 
H&S: Hank's balanced salt solution 

CAMP: cyclic adenosine monophosphate superoxide anion 
FMLP:formyl-metionyl-leucyl-phenylalanine phorbol myristate acetate 
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their ability to increase intracellular cyclic adenosine monophosphate levels. 

In an effort to better understand the mechanism(s) by which PGs modulate acute 

inflammatory reactions and activation of the neutrophil NADPH oxidase system we 

have examined the effects of 15M-PGE1 and PGIB on the production of 02 by human 

neutrophils after stimulation with three soluble stimuli; the chemotactic formyl 

peptide formyl-methionyl-leucyl-phenylalanine, phorbol myristate acetate (PMA) 

and arachidonic acid (a cis-polyunsaturated fatty acid). Each of these stimuli 

have been shown to induce superoxide production by human neutrophils (11-13). 

MATERIALS AND METHODS 

Cells: Human peripheral neutrophils were obtained from normal volunteers 
and purified by Ficol-Hypaque gradient centrifugation followed by hypotinic 
lysis. Cell preparations contained greater than 90% neutrophils and cell 
viability was greater than 90% as determined by trypan blue exclusion. All 
reagents were purchased from Sigma Chemical Co. (St. Louis, MO) unless otherwise 
noted. Arachidonic acid was purchased from NY-Chek Prep (Elysian, MN) and 
diluted in ethanol at a concentration of 10 M and stored under nitrogen. 
15-M-PGE and PGI were a generous gift of Dr. John Pike (Upjohn Chemical Co., 
Kal?mazo , ii MI). 5 tack solutions of FMLP were prepared at a concentration of 
10 M in dimethylsulfoxide. 

Assays: Superoxide anion production by human neutrophils was determined by 
measuring the superoxide dismutase inhibitable reduction of ferricytochrome C to 
ferrocytochrome C at 550SnM. Briefly human neutrophils suspended at a concen- 
tration between l-5 x 10 cells/ml in Hanks balanced salt solution, (HBSS), pH 
7.4, containing 0.1 mM ferricytochrome C were preincubated at 37O x 5 min. in 
the presence or absence of the test reagents (prostaglandins, etc.). The 
reactions were initiated by the addition of the specific stimulus at a final 
volume of 0.7 mls and incubated at 37°C x 10 min. The reactions were terminated 
by the addition of 25 pl superoxide dismutase (1 mg/ml) and 275 ul of HBSS. The 
cells were centrifuged and the optical adsorbance of the supernate determined at 
550 nm. The amount of O2 produced was calculated from the difference in adsor- 
bance between samples of cells who received SOD prior to activation by stimulus 
and those receiving SOD after activation. The difference was divided by the 
extinction coefficient for the-change between ferricytochrome C and ferrocyto- 
chrome C to determine nmoles O2 produced per given quantity of cells. The data 
is expressed as mean values from triplicate samples f S.E.M. In those reactions 
in which FMLP was the stimulus the cells were also treated with cytochalasin B 
(5 pg/ml) after preincubation with the specific inhibitor but prior to addition 
of FMLP. In those experiments in which the rate of 0 production was determined 
the reduction of ferricytochrome C was continuous1 b monitored in a Cary 210 
double beam spectrophotometer. 

RESULTS DISCUSSION 

Preincubation of the human neutrophils with either 15-M-PGEl or PG12 

inhibited f Met-Leu-Phe induced 0; production in a dose dependent manner (Table 

1 and 2). At a concentration of 10 pM 15-M-PGEl there was 59.8% inhibition of 

FMLP (10s7M) induced 0; production. In contrast PGF20 showed no signficant 
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Table 1: Inhibition of FMLP induced neutrophil 

0; production by prostaglandins 

0; nmoles/2x106 cells* 
xx 

% Inhibition p value 

Experiment #1 

FMLP (10-7M) 18.9 f 1.4 

+ 15-M-PGEl (4~10-~M) 3.1 + 0.6 83.6 < .Ol 

+ 15-M-PGEl (10-5M) 7.6 f  0.5 59.8 < .Ol 

+ 15-M-PGEl (2.5xlO+M) 11.8 + 0.3 37.6 < .Ol 

+ 15-M-PGEl (6.25~10-~M) 14.6 + 1.2 22.7 < .02 

Experiment #2 

FMLP (10-7M) 

FMLP (10-7M) + 15-M-PGEl 

(10-5M) 

18.8 f 0.5 

13.1 f 0.4 30.3 < .Ol 
*xx 

FMLP (10-7M) +15-M-PGEl 

(10m5M) (washed 4OCx2) 19.3 f  0.3 -2.6 NS 

* 
data represent mean values f standard error of the mean (S.E.M.). 

** 
p values were calculated using students t-test (two-tailed) analysis 

*** 
cells were pre-treated with 15-M-PGE for 5 minutes at 37OC, washed in HESS 
x2 at 4°C. incubated at 37'C x 10 ml .A utes, then stimulated 'with FMLP. 

inhibition of FMLP induced superoxide production by human PMNs. Other agents 

known to increase intracellular cyclic AMP including isoproterenol, theo- 

phylline, and dibuturyl cyclic adenosine monophosphate also inhibit FMLP induced 

02 production (Table 2). The inhibition of FMLP induced 0; production by 

15-M-PGEl was reversible (Table 1). Neutrophils preincubated with 15-M-PGEI 

(1o-5 M) were washed two times in HBSS (4OC) and after a 10 min incubation at 

37O produced 19.3 nmoles 0; . This is similar to control cells that were not 

treated with 15-M-PGEI. This is in contrast to the 30.3% inhibition of 0; 

production observed with cells that were exposed to 15-M-PGEl throughout the 

treatment procedure. In additional experiments we observed that no preincuba- 

tion time was required for the inhibition of FMLP induced 0; production by PGI2 
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Table 2: Effect of prostaglandins, isoproterenol, and dibuturyl 

cyclic AMP on FMLP and PMA induced 0; production 

0; nmole/2x106 cells* 
** 

% Inhibition p value 

Experiment #1 

PMA (20 mg/ml) 22.2 f 1.2 

+ 15-M-PGEl (30 pM) 21.6 + 0.6 

+ Isoproterenol (5xlO6M) 21.6 f 0.5 

+ Isoproterenol + theo- 

phylline (5x10m4M) 21.2 2 1.0 

FMLP (10-7M) 23.6 t 0.6 

+ 15-M-PGEl (30 pM) 6.3 + 0.3 

+ Isoproterenol (5x10m6M) 15.2 k 0.2 

+ Isoproterenol + theo- 

phylline (5x10S4M) 2.8 + 0.9 

Experiment #2 

2.7 

2.7 

4.5 

71.6 < .Ol 

31.5 < .02 

87.3 < .Ol 

PMA (20 ng/mT) 29.3 f 0.4 

+ 15-M-PGEl (30uM) 31.4 t 0.1 -7.1 

+ PG12 (30uM) 32.0 2 0.3 -9.9 

+ DcAMP (10-3M) 29.0 f 0.3 1.0 

FMLP (10-7M) 23.4 k 1.4 

+ 15-M-PGEl (30pM) 6.5 f 0.7 72.0 < .02 

+ PG12 (30uM) 11.6 + 0.6 47.7 < .Dl 

+ DcAMP (10-3M) 6.9 f 0.6 70.5 < .Ol 

* 
Data represent mean values 2 S.E.M. 

XR 
P values were calculated as described in Table 1. 

and 15-M-PGEI. However if 15-M-PGEI or PGI2 were added IO seconds or later 

after FMLP exposure there was no inhibition of 0; production (data not shown). 

In contrast to the inhibitory effect of 15-M-PGEI and PGI2 on FMLP induced 

02 production, neither prostaglandins significantly inhibited PMA (Table 2) or 

arachidonic acid induced 02 (Table 3). This was not a dose related effect since 

there was no alteration in the dose response curves for the production of 0; by 
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Table 3: Effect of 15-M-PGE1 on arachidonic acid induced 0; production 

0; nmoles/4 x lo5 

Arachidonic acid Control 
concentration 

+ 15-M-PGE1 (100pM) 

Experiment #l 

50pM 6.0 + 0.3 6.4 t 0.4 

25pM 2.5 f 0.2 2.2 f 0.4 

12.5pM 1.2 f 0.2 1.1 * 0.2 

1OOpM 10.5 f  0.3 10.7 + 0.2 

50vM 6.0 + 0.3 5.6 k 0.8 

* 
Data represent mean values f S.E.M. 

either PMA or arachidonic acid in the presence of 15-M-PGE1. In addition, 

neither prostaglandin altered the maximum rate of production of 02 by either 

stimulus. 

These observations are consistent with previous reports that have demon- 

strated inhibition of neutrophil chemotaxis (7), aggregation (8), lysosomal 

enzyme release (9), and particulate stimuli induced O- 2 production (10) by 

prostaglandins of the E series and PG12. In addition the data presented here 

suggest that the NADPH oxidase system of neutrophils can be stimulated to 

produce 02 by at least two mechanisms; one regulated by prostaglandins and CAMP 

and the second independent of prostaglandin and CAMP modulation. Since FMLP 

stimulated 0; production was inhibited by PGs at concentrations previously shown 

to increase intracellular cyclic AMP levels (7-lo), the data are in keeping with 

the hypothesis that PG modulation of the biologic response of neutrophils is a 

result of increased intracellular cyclic AMP levels. However one cannot exclude 

the possibilities that PGEs and PG12 may have alternative effects on neutrophil 

cell membranes that may result in the modulation of the activation of the NADPH 

oxidase system by specific stimuli. 

Several reports have indicated that sodium, potassium, and calcium ion 

fluxes as well as changes in transmembrane potential associated with formyl 
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peptide stimulation of neutrophil precede superoxide production and lysosomal 

enzyme release (14-16). Data presented here demonstrates an inability of PGs to 

modulate FMLP induced 0; production when the prostaglandins are added 10 seconds 

or later after FMLP stimulation. This data suggest that prostaglandins modulate 

neutrophil function by altering the early biochemical response following stimu- 

lation possibly by altering the fluxes of monovalent and/or divalent cations 

across the cell membrane. It has been suggested that the inhibition of platelet 

activation by PGI2 is a result of the activation of a calcium-ATPase by cyclic 

AMP with sequestration of calcium in the dense tubular system (17). However, 

the demonstration of similar mechanisms in the neutrophil require additional 

study. 

A specific receptor for phorbol esters on the human neutrophil has been 

described (18-19). A recent report characterized the phorbol diester receptor 

in rat brain as having protein kinase C activity (20). Protein kinase C is a 

calcium activated phospholipid dependent protein kinase which is activated by 

unsaturated diacylglyerol and can also be activated by PMA causing phosphoryl- 

ation of a specific 40,000 dalton protein in the human platelet (21). Although 

a PMA activated protein kinase C in the human neutrophil has not been comparably 

characterized, the data is consistent with the hypothesis that prostaglandins 

modulate neutrophil stimulation at a step prior to activation of a PMA acti- 

vatable step, possibly protein kinase C. However PMA may have other effects on 

the neutrophil cell membrane that would account for the lack of inhibition of 

PMA 02 production by PGs. Since PMA has been shown to alter the fluidity and 

hydration of phospholipid bilayers in vitro (22) it is possible that PMA may 

partition into the neutrophil cell membrane independent of receptor binding and 

alter the biophysical characteristics of the cell membrane resulting in acti- 

vation of the NADPH oxidase system. In conjunction with this hypothesis a 

recent report has demonstrated that arachidonic acid and other cis-polyunsa- 

turated fatty acids will induce superoxide production by human neutrophils in 

the presence of inhibitors of both the cyclooxygenase and lipoxygenase pathways 

(13). Although the mechanism by which arachidonic acid and other cis-polyun- 
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saturated fatty acids stimulate superoxide production is not known our data 

indicate that whatever this mechanism may be it is not modulated by PGEl or 

PGI2. 

In summary, the data presented here indicate that 15-M-PGEl and PGI2 will 

inhibit formyl peptide induced superoxide production by human neutrophils in a 

rapid reversible manner. However the lack of effect of 15-M-PGEl and PGI2 on 

PMA and arachidonic acid induced superoxide production suggest that alternative 

mechanisms are present that will activate the NADPH oxidase system of the human 

neutrophil cell membrane independent of prostaglandin modulation. 
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