
Behavior Specification in a Software Design System*

Jack C. Wileden
University of ~ussachusetts

John t-l. Sayler
University of Michigan

William E. Riddle
software design & analysis, inc.

Alan R. Segal
NBZ, zL?c.

Allan M. Stavely
New Mexico Z~tit~te of caning and Tec~no~o~

A technique for software system behavior specification
appropriate for use in designing systems with concur-
rency is presented. The technique is based upon a gen-
eralized ability to define events, or significant occur-
rences in a software system, and then indicate whatever
constraints the designer might wish to see imposed upon
the ordering or simultaneity of those events. Constructs
implementing this technique in the DREAM software de-
sign system are presented and illustrated. The relation-
ship of this technique to other behavior specification tech-
niques is also discussed.

INTRODUCTION

Any piece of computer software, coded in some pro-
gramming language, implicitly specifies the behavior
which it will produce when run on a given computing
system with a given set of input data. Such a pragram-
defined behavior specification, whiie definitive and the-
oretically sufficient, is inadequate for most practical

*This work was supported by a grant from Sycor, Inc.

Address correspondence to Professor Jack C. Wileden. Com-
puter and Information Science Department, University of Massa-
ckusetts, Amherst, MA 01003.

problems in software design and analysis, so alternative
approaches to software behavior specification have been
sought. For example, in their work on formal methods
for program verification, Floyd 121, Manna [4], and
others have employed relations between expressions in
the predicate calculus, called input-output relations, as

specifications for a program’s intended behavior.
Specifying the behavior of a software system is an

especially significant and difficult chore when that be-
havior involves either conceptually or actually concur-
rent operation. Riddle’s event expressions [6], Camp
bell and Habermann’s path expressions [11, Greifs
problem specification language [3], and Shaw’s flow
expressions [151 all represent efforts to define behavior
specification schemes for concu~ent software systems.
Appropriately tailored, such a specification scheme
could prove very valuable to designers of complex, con-
current software systems, by providing a mechanism for
describing the intended behavior of a proposed software
system design long before it is actually implemented. A
description of this sort might then be used in guiding a
subsequent coding effort, in assessing the resulting soft-
ware or, perhaps most importantly, in analyzing the
proposed design itself for suitability and correctness.

Program-defined behavior specifications are partic-
ularly %-suited for use in designing software systems.

The Journal of Systems and Software 3.123-135 (1983)
@ Elsevier Science Publishing Co., Inc., 1983

123
0164-1212/83,‘$3.00

124 J. C. Wileden et al.

A software system designer generally wishes to specify
the behavior of the system being designed as a prescrip-
tion for the eventual program code, a function for
which program-defined behavior specification is clearly
insufficient. Moreover, a behavioral specification tech-
nique useful in designing software should ideally permit
a rigorous and formal statement of intended system be-
havior which can function both as a comprehensible de-
scription of the software system’s possible activity and
as a basis for some analysis of the design as it is being
developed. Its roles in both description and analysis de-
mand a technique capable of projection, or the focusing
of the description upon certain aspects of the system’s
behavior. Without such focusing, a system’s description
tends to be a monolithic description expressing every
facet of total system behavior. Projection provides the
ability to highlight the interesting behavior, at any level
of detail and for any number of definitions of “interest-
ing,” from out of the overwhelming and often largely
irrelevant detail of total system behavior. This ability to
highlight various particular aspects of system behavior
is essential to both understandable descriptions and
tractable analysis, and is not readily available in a pro-
gram-defined specification.

A behavioral specification’s dual roles in description
and analysis also require a technique which yields re-
dundant specifications, providing a description of the
system’s behavior which is orthogonal’ to that given by
the procedural specification of the program text. This
redundancy and orthogonality are especially significant
to analysis, since they make possible the comparison of
two dissimilar specifications of system behavior. It is
clearly impossible for a program-defined behavior spec-
ification to possess such redundancy and orthogonality.

This paper presents a set of constructs for behavior
specification developed specifically for use by software
system designers, particularly those creating systems
with concurrently operating subparts. As befits a design
tool, the constructs are descriptive rather than prescrip-
tive in nature, i.e., they serve to indicate the designer’s
intentions for system behavior but do not in any way
enforce those intentions as programming language con-
structs (e.g., path expressions) might. Our behavioral
specification technique is based upon a generalized abil-
ity to define events, or significant occurrences in a soft-
ware system, and then indicate whatever constraints
the designer might wish to see imposed upon the order-
ing or simultaneity of those events. This technique pro-

‘An orthogonal description is one forming associations among
the elements of the system which may be completely different from
those found in the system’s implementation. An orthogonal descrip-
tion may, therefore, express a logical rather than a physical system
organization.

vides the designer with a formal medium for the rigor-
ous statement of modular specifications for various
levels of system behavior. Its constructs facilitate pro-
jection and allow the designer to provide redundant and
orthogonal specifications of interesting aspects of sys-
tem behavior. Thus these constructs are useful in both
the description and analysis phases of the software sys-
tem design effort.

The constructs discussed here are part of the design
language developed for the Design Realization, Evalu-
ation and Modelling (DREAM) system [7, 10, 11, 12,
181. DREAM is a tool for the design of large scale soft-
ware systems, providing the designer with bookkeeping
and analysis aid. A description in the DREAM Design
Notation (DDN) consists of a collection of (nested) de-
scription fragments, called textual units. DREAM pro-
vides facilities which allow the user (or users, in the
case of a design being carried out by a design team) to
modify the information in a data base on a textual unit
basis.

The focus of this paper is upon the DDN constructs
for software system behavior specification; other as-
pects of DDN are discussed in [8,9, 131. Certain parts
of DDN which are not primarily for behavior specifi-
cation are treated minimally here, with references in-
dicating where more complete discussions may be
found. Also, we focus here upon the use of the con-
structs. Some justifications for the constructs are given
in this paper, while others lie within the DREAM sys-
tem’s general philosophy which is discussed in [121 and

]I41.

TYPES OF EVENTS IN DREAM

The notion of an event, i.e., a significant occurrence in
a software system, is central to behavior specification in
DREAM. We distinguish two broad types of events in
DREAM, which we call endogenous and exogenous
events, and also differentiate between primitive and
complex events.

With respect to a DREAM description of a software
system design, an endogenous event is one which arises
from some activity of the system as it is currently de-
scribed. Thus, the execution of some procedure or a
change of state in some data structure described in the
present DDN description of the software system being
designed could represent an endogenous event. We call
events such as these, which arise as the result of a single
(arbitrarily lengthy or complicated) activity within the
system, primitive endogenous events.

Not all occurrences which are significant to a soft-
ware system may be represented in terms of some ac-
tivity of the system as it is described at a particular
point in the evolution of its design. An exogenous event

Software Design System 125

is one which arises as the result of some activity outside
the scope of the system’s current description but which
is relevant to or impinges upon the system as presently
described. Thus the execution of some procedure or a
change of state in some data structure envisioned for,
but not yet described in the DDN description of, the
software system being designed could correspond to a
primitive exogenous event. Normally an exogenous
event of this nature would eventually be supplanted by
an endogenous event as further elaboration of the de-
sign led to the development of a DDN description for
the envisioned component. Alternatively, a primitive
exogenous event may arise as the result of an activity
completely beyond the scope of the system being de-
signed. Examples of such inherently exogenous events
include a procedure execution or data structure state
change in some existing piece of software which will in-
teract with that being designed or the recording of some
physical event (e.g., change in patient pulse rate or
entry of information from an interactive terminal) by a
sensor or monitor device. An exogenous event of this
nature will remain exogenous in the completed design
of the software system, allowing for the description of
occurrences relevant but external to the system.

A designer might also wish to regard some sequence
of events as itself constituting a significant occurrence.
Thus DREAM allows for the definition of complex
events, which are events consisting of a sequence of
other events. The constituent events in a complex event
may be either endogenous or exogenous events and may
themselves be either primitive or complex events.2 Al-
though the distinction is seldom significant, we may call
a complex event endogenous if all its constituent events
are endogenous and exogenous if all its constituent
events are exogenous.

PRIMITIVE ENDOGENOUS EVENT SPECIFICATION
IN DREAM

In DREAM, a software system is considered to be de-
composable into objects, which are themselves decom-
posable into subobjects, etc. [S]. Each object is an in-
stance of some general class of objects and has the
attributes specified in the class definition for that class.
These attributes are each specified by a textual unit.
Primitive endogenous events may be defined in
DREAM by attaching labels, called event identifiers,
to various parts of textual units within a class definition,

In DDN, a data object is described by a monitor
class textual unit [131. Additional textual units may be

nested within the monitor class definition, describing
the data objects of the class in terms of state variables
(which define a state space), state subsets (which divide
the state space into not necessarily disjoint subsets),
and state transitions (which describe the effect of an
operation in terms of the state changes it causes). Any
operations which may be performed upon data objects
of the class are defined as procedures by textual units
also nested within the monitor class. Event identifiers
may be attached to state transitions, procedures, or pro-
cedure statements in order to designate the correspond-
ing activity as an event.

As a simple example of primitive endogenous event
specification in a monitor class, consider the DDN frag-
ment shown in Figure 1. Within the procedure get firs?,
an execution of which is itself a primitive endog&ous
event (since procedure names are automatically primi-
tive event identifiers), two transitions have been la-
beled. The transition associated with the event identifier
~~~~1 corresponds to the event resulting from an at- 
tempt to retrieve an item from an empty list, as indi- 
cated by the appearance of the state subset empty on 
the left-hand side of the transition arrow. The event 
identifier delete corresponds to the event resulting from 
a successful retrieval of an item from the list. Similarly, 
the event identifier insert on the transition within the 
put-last procedure corresponds to the event resulting 
from the addition of an item to the list. 

In the procedure put-and-get of the Figure 1 ex- 
ample, both transitions and statements have been la- 
beled. The two transitions represent the two possible 
cases of performing the put and get operation on an 
initially nonempty or on an initially empty list, respec- 
tively. The labeled statements in the procedure body 
permit the designation of either of the two constituent 
steps in the put and get operation as an event.’ 

The active components of a software system are rep- 
resented in DREAM subsystem classes, which are 
viewed as describing collections of potentially concur- 
rent, asynchronous, sequential processes. Subsystem 
classes have no states and hence no transitions. Rather, 
their activity is described in terms of control processes, 
which have both models and bodies to describe their 
behavior. The distinction between models and bodies is 
not relevant to the present paper; a detailed discussion 
of subsystem classes may be found in [9,10]. For our 
present purposes, it suffices to note that in DDN both 

‘Event definitions may not, however, be recursive, i.e., no com- 
plex event may contain itself as a constituent event. 

‘DDN syntax requires that a procedure be applied to an instance 
of the class in which it is declared. The reserved word ME simply 
allows a procedure to invoke other procedures defined within the 
same class, thereby causing them to operate upon the same instance 
as the invoking procedure. 



126 J. C. Wileden et al. 

[ready-list]: MONITOR CLASS: 
DOC~NTATION; 
A data structure shared by the schedulers for 
the various processors in a multiprocessor system. 
Composed of the task control blocks (tcb's) for 
all active tasks in the system. 
END DOCUMENTATION; 

STATE SUBSETS; 
full, empty, other 
END STATE SUBSETS; 

get-first: PROCEDURE; 
PARAMETERS; 

first_tcb RESULT OF [tcb], 
one-there RESULT OF [logical] 
END PARAMETERS; 

TRANSITIONS; 
cannot: empty --> 

one theretfalse AND first_tcbwndefined, 
delete: other OK full -> 

one_thcre=true AND Eirst_tcb=defincd 
AND (empty OR other) 

END TRANSITIONS; 
END PROCEDURE; 

put-last: PROCEDURE; 
PETERS; 

the_tcb VALUE OF [tcb] 
END PARAMETERS; 

TRANSITIONS; 
insert: (empty OR other) AND the_tcb=defined --> 

other OR full 
END T~NSITIONS; 

END l'ROCF,DURl?; 

put-and-get: PROCEDURE; 
PARAMETERS; 

the tcb VALUE OF [tcb], 
first tcb RESULT OF ftcbl, 
ok RESirLT OF [logical] 
END PARAMETERS; 

TRANSITIONS; 

Pgl: other AND the_tcb=defined --> 
other AND first_tcb=defined, 

Pi32 g empty AND the_tcb=defined -> 
empty AND first_teb=deEincd 

END TRANSITIONS; 
BODY; 

put: ME,put_laet(the_tcb); 
get: ME.get_first(first_tcb,ok); 
END BODY;. 

END PROCEDURE; 
END MONITOR CLASS; 

Figure 1. 



Software Design System 127 

models and bodies consist of statements. Labeling of 
the statements in the model or body of a control process 
may be employed to designate the corresponding activ- 
ities as primitive endogenous events within a subsystem 
class definition. However, since the labeling of control 
process statements is, for our purposes here, not signif- 
icantly different from the labeling of monitor class pro- 
cedures and the statements within them, we will confine 
our discussion and examples of endogenous event spec- 
ification to monitor classes for the remainder of this 
paper. 

PRIMITIVE EXOGENOUS EVENT SPECIFICATION 
IN DREAM 

Unlike endogenous events, definitions of which may ap- 
propriately be embedded within the monitor or subsys- 
tem classes whose activities give rise to them, exogenous 
events are not naturally associated with any monitor or 
subsystem class. Therefore, a third class type, the event 
class, has been developed in DREAM for use in the def- 
inition of exogenous events. 

The DDN event class is intended solely for the spec- 
ification of exogenous events. Aside from the documen- 
tation textual units which may appear anywhere in a 
DDN description, only three types of textual units de- 
fining its attributes may be nested within an event class. 
A qualifiers textual unit allows for the parameteriza- 
tion of the class, as it does for monitor and subsystem 
classes [8]. A desired behavior textual unit may also 
appear within an event class; desired behavior textual 
units are discussed in a later section of this paper. The 
actual definition of primitive exogenous events occurs 
within an event definition textual unit inside the event 
class. The events are defined by giving a labeled prose 
description of each primitive exogenous event which is 
defined for the event class. 

As an example of primitive exogenous event specifi- 
cation in DREAM, consider the DDN fragment shown 
in Figure 2. It, like the previous example, is taken from 
a DDN design description for the scheduler subcom- 
ponent of a multiprocessor operating system [ 161. Since 
the scheduler, in selecting a task to run on an available 
processor, must manipulate the shared ready list data 
structure (Fig. 1) in a mutually exclusive fashion, this 
event class was developed to describe an event, associ- 
ated with the event identifier scan ready list, whose 
occurrence is potentially significantto the-scheduler’s 
execution. 

EVENT SEQUENCE EXPRESSIONS 

Given a vocabulary of event identifiers provided by the 
specification of primitive endogenous and exogenous 

events in the manner discussed above, a software sys- 
tem designer may for various reasons wish to represent 
particular combinations of those events. Such a repre- 
sentation is accomplished in DREAM through the use 
of event sequence expressions. 

An event sequence expression is a DDN represen- 
tation for a set of sequences of events in the same sense 
that a regular expression is a representation for a set of 
sequences of symbols which constitutes a regular lan- 
guage. The DDN representation is syntactically func- 
tional, consisting of a set of event sequence function op- 
erators whose operands may be either event identifiers 
or event sequence subexpressions. In the remainder of 
this section, we present an informal, intuitive discussion 
of the formation and interpretation of event sequence 
expressions. Examples of their uses in DREAM will be 
found in subsequent sections of this paper, while a few 
technical points regarding their interpretation are de- 
ferred to Appendix A. 

The simplest form of an event sequence expression is 
that consisting of a single event identifier. Such an 
expression represents the singleton set of event se- 
quences consisting of just the named event. In addition 
to designer-defined event identifiers, the DDN reserved 
word ANY may appear as a simple event sequence 
expression, representing the set of all possible event se- 
quences over all event identifiers defined within the cur- 
rent DDN design description. Thus, within the event 
class of Figure 2, either of the following could be an 
event sequence expression: 

scan ready list 

ANY - - 

The former represents the single event sequence con- 
sisting of one occurrence of the event scan ready-list. 
The latter represents the set of all possible sequences of 
defined events. If the [scan] event class4 happened to be 
the complete current DDN design description, then 
ANY would denote the set of event sequences consist- 
ing of zero or more occurrences of the event 
scan ready list. 

More complicated event sequences may be repre- 
sented in DDN through the use of the various event se- 
quence function operators. Three of these, REPEAT, 
SEQUENCE, and OR, are exactly analogous to the 
standard regular expression operators. REPEAT(x) 
represents the set of sequences consisting of zero or 
more occurrences of x. SEQUENCE(x,y) represents 
the set consisting of the event sequence “x followed by 
y.” OR(x,y) represents a two-element set of sequences, 

41n DDN, identifiers used to name classes are always enclosed in 
square brackets. 



128 J. C. Wileden et al. 

one of which is a single occurrence of x and the other class of Figure 2, any of the following would be possible 
of which is a single occurrence of y.’ Within the event event sequence expressions: 

REPEAT(scan ready list) 

REPEAT(SEQUENCE(scan ready list,scan ready list) 1 
OR(scan_ready_list,R~~EAT(SEQUENCE(scan_=eady_list,scan ready list))) - - 
SEQUENCEfscan ready list,REPEAT(scan ready list)) - - - - 

The first expression denotes the set of event sequences represents the set consisting of all even-length 
consisting of zero or more occurrences of the event quences of the event scan_ready_list (including 

se- 
the 

scan ready list. Thus it is synonymous with ANY in 
the &se where the [scan] event class is the entire cur- 
rent DDN design description. The second expression 

zero length sequence), while the third represents that 
set augmented by the addition of the sequence consist- 
ing of a single occurrence of scan-ready list. The 
fourth expression represents the set of sequ&ces con- 
sisting of one or more occurrences of the event 

'Although presented here as binary operators, both SE- 
QUENCE and OR may have any numberofoperands. REPEAT, 
however. is a unarv ooerator. 

scan ready list. 
Tie of the DDN event sequence function operators 

Figure 2. 

provide the software designer with a means of express- 
ing a qualified “don’t care” in an event sequence 
expression. Whereas the DDN reserved word ANY 

[scan]: EVENT CLASS; 
JXXlJKfZNTATION; 

In anticipation of eventual elaboration of the operator 
interaction functions of the multiprocessor system, an 
event relevant to the scheduler is defined. 
Later elaboration will no doubt convert the exogenous 
event defined here to an endogenous event. 
However, the desired behavior of this event relative to 
the scheduler might well be forgotten by that time. 
This event class serves to record that desired behavior 
while it is fresh in the designer's mind. 
END ~~NTATION; 

EVENT DEFINITION; 

scan-ready-list: DESCRIPTION; 
scan-ready-list is an event which occurs when an operator 
wishes to examine the current state of tasks in the system. 
It may well entail the consecutive removal and replacement 
of entries on the ready-list, or could involve selective 
removal and replacement, or might make no actual alterations 
to the list at all. Its behavior is not yet specified in 
detail. However, the manipulation of the ready-list must 
be exclusive of the critical sections of objects of class 
[scheduler], hence this event class. 
END DESCRIPTION; 

END EVENT DEFINITION; 

END EVENT CLASS; 



Software Design System 129 

represents all possible event sequences over all event 
identifiers defined within the current DDN design de- 
scription, the function ANY(x,y, . . .) represents the set 
of all possible sequences of the event identifiers which 
are its operands.6 Such a representation is useful when 
sequences of any number and ordering of a particular 
set of events are equivalent from the designer’s view- 
point. For example, to indicate that an acceptable usage 
of a file requires that it first be opened, then read and/ 
or written any number of times and finally closed, a de- 
signer might use the event sequence expression: 

SEQUENCE(open,ANY(read,write),close) 

to represent the set of acceptable event sequences. 
The function ANYBUT(x,y, . . .) is the complement 

to the ANY(x,y, . . .) function. This function represents 
the set of all possible event sequences over all event 
identifiers defined within the current DDN design de- 
scription, except for those which are its operands. This 
representation is useful when sequences consisting of 
any number and ordering of all but a few events are 
equivalent for the designer’s purposes. For instance, in 
the [ready list] example (Fig. 1), the designer might 
indicate the set of event sequences which could take 
place during a time period when the list was never 
empty by using the event sequence expression: 

ANYBUT(cannot,pgZ) 

representing the set of all sequences containing any 
number and ordering of occurrences of the events get- 
Jirst. put-last, put-and-get, delete, insert, pgl, put, 
and get, along with any events defined elsewhere in the 
current design description. 

The two remaining event sequence function opera- 
tors, SHUFFLE and REENTRANT, are used to rep- 
resent the interleaved activity resulting from concur- 
rent activity within the software system. SHUFFLE, 
which may take any number of operands, represents the 
set of all sequences resulting from the arbitrary inter- 
leaving of the sets of sequences represented by its op- 
erands. For example, the event sequence expression: 

SHUFFLE(SEQUENCE(x,y),REPEAT(OR(a,b))) 

represents the set of sequences: 

{xy,xya,xay,axy,xyb,xby,bxy,xyaa,xaya, 
axya,xaay,axay,aaxy,xybb,xbyb,bxyb,xbby, 
bxby,bbxy,xyab,xayb,axyb,xaby,axby,abxy, 
. . *) 

6Note that this set could equivalently be represented by the 
expression REPEAT(OR(x,y, . . .)). Note also that the event 
expression ANY is thus synonymous with the event expression ANY 

(X,Y,Z, . .I in which all event identifiers defined within the current 
DDN design description appear as operands of the function 
operator. 

that is, all sequences consisting of one x, one y, and any 
number of a’s and b’s, in which the x precedes the y. If 
a software system designer wished to describe the be- 
havior of a system consisting of two concurrent, asyn- 
chronous processes, one of which operated in such a 
way as to cause first an x event and then a y event, while 
the other’s operation could lead to any number of a and 
b events occurring in any order, the event sequence 
expression given above would provide exactly the de- 
sired description. 

The REENTRANT operator, which is unary, rep- 
resents the set of sequences resulting from applying the 
SHUFFLE operator to its operand any number of 
times. For example, the event sequence expression: 

REENTRANT(SEQUENCE(a,b)) 

represents the set of sequences: 

bull, ab, aabb, abab, aaabbb, aababb, 
aabbab, ababab, . . .) 

that is, all sequences containing an equal number (pos- 
sibly zero) of a’s and b’s such that, at any point within 
any sequence the number of a’s to the left of that point 
is not less than the number of b’s to the left of that 
point. If the event a is interpreted as “process begins 
execution” while the event b is interpreted as “process 
completes execution,” the event sequence expression 
given above exactly represents the set of possible be- 
haviors for that process’ reentrant execution or, equiv- 
alently, for an (arbitrarily large) set of identical, asyn- 
chronous, concurrent processes. 

There is one other DDN construct relevant to event 
sequence expressions. A unique event identifier, repre- 
sented in DDN by an integer expression enclosed 
within <>, may appear anywhere that an event iden- 
tifier may appear within an event sequence expression. 
Unique event identifiers are intended to restrict the in- 
terleaving of event sequences and thus to represent 
some synchronization of activities within a concurrently 
operating software system. A unique event identifier 
corresponds to a null event, but within an event se- 
quence expression all unique event identifiers having 
equal-valued integer expressions represent the same 
time point. Therefore, no interleaving may result in a 
sequence in which a non-null event separates any pair 
of equal-valued unique event identifiers. For example, 
the event sequence expression: 

SHUFFLE(SEQUENCE(a,b,<l>,c),SEQUENCE(d, 
<l>,e)) 

represents the set of sequences: 

{abdce,adbce,dabce,abdec,adbec,dabec} 

Sequences such as adebc violate the restriction on 
unique event identifiers, since the event e would appear 



J. C. Wileden et al. 

between the < 1 > following the event d and the < 1 > 
following the event b, and are therefore not represented 
by this event sequence expression. If a designer wished 
to describe the behavior of two concurrent processes in 
which the b and d events represented production activ- 

ities for which the e and c events represented the re- 
spective consumption activities, with production neces- 

sarily preceding consumption, then the event sequence 
expression given above would provide precisely the de- 
sired description. 

COMPLEX EVENT SPECIFICATION IN DREAM 

In addition to its use in the definition of primitive ex- 

ogenous events, the event definition textual unit may be 
used within a monitor, subsystem or event class defini- 

EVENTDEFINITION: 

tion for the specification of complex events. Within an 
event definition textual unit, a complex event may be 
specified in terms of a sequence of state subsets of a 
monitor class, or in terms of a sequence of statements 
in a procedure body or in a control process body or 
model. Event sequence expressions may also be used in 
specifying a complex event. 

The DDN function operator STATE SEQUENCE 
is used to define a complex event corresponding to the 
passing of a monitor class object through a particular 
sequence of state subsets. Labeled with the event iden- 
tifier chosen for this complex event, the STATE SE- 
QUENCE operator defines the event corresponding to 
the consecutive occurrence of the state subsets named 
by its operands. For example, the following event defi- 
nition textual unit might be added to the monitor class 

definition of Figure 1: 

first item: STATE SEQUENCE(empty,other), 

list refilled: STATESEQUENCE(full,other,full), 

list-refilled: STATESEQUENCE(full,empty,fulll 

list-refilled: STATESEQUENCE(full,other,empty,cther,full) 

ENDETENTDEFINITION; 

defining two new complex events in terms of state sub- EVENTDEFINITION; 

set sequences of the monitor class [ready list] .’ p g execution: putTHRUget _- 
The DDN reserved word THROUGH (alternatively ENDEVENTDEFINITION; 

THRU) may be used to join two event identifiers which 
are statement labels in order to define a complex event Although in this instance the new complex event 

in terms of a sequence of procedure body, control pro- p-g-execution is equivalent to the event defined by the 

cess body or control process model statements. Labeled procedure label put-and get, in general this construct 

with the even identifier chosen for this complex event, provides the software system designer with a useful 

the THROUGH construction specifies an event corre- means for specifying complex events. 
sponding to a sequence of statement executions begin- Event sequence expressions, labeled with an event 

ning with the statement bearing the first label and end- identifier selected for the complex event they define, 

ing with the statement bearing the second label. For provide the final mechanism for complex event specifi- 
example, another event definition textual unit which cation within an event definition textual unit. For ex- 

might be added to the [ready list] monitor class (Fig. ample, the following could be added to the event defi- 

1) is the following: nition textual unit of the [scan] event class (Fig. 2): 

one scan: scan ready list, 

many scans: REFEAT(scan ready list), 

even_REPEAT(SEQUENCE(SCAN ready list,scan ready-list)), 

one or even:OR(scan ready-list,even) - -- - _ 

Note that the complex event one_scan defined here is defined in the event definition textual unit may them- 

identical to the primitive event scan-ready list defined selves appear in event sequence expression definitions of 
previously; this ability to provide several synonymous other complex events; the one or even event definition 
identifiers for events is sometimes convenient for a soft- given here is a compact version of an event sequence 
ware system designer. Notice also that complex events expression presented as an example in the previous 

section. 

‘Notice the use of three different definitions for the complex 
event list refilled. In DDN, multipledefinitionscorrespondingtothe of any of the state sequences “full, other, full,” “full, empty, full,” 
same event identifier indicate that the occurrence of any one of them or “full, other, empty, other, full” would constitute an occurrence of 
constitutes an occurrence of the named event. Thus, an occurrence the event list refilled. 



Software Design System 131 

DESIRED BEHAVIOR SPECIFICATION IN DREAM 

Having considered the DDN mechanisms for event 
specification, we now describe the facilities provided by 
the DREAM system for indicating the constraints 
which a designer might wish to see imposed upon the 
behavior of the software system being designed. Such 
constraints are expressed by including desired behavior 
textual units within the DDN description of the system. 
Within each such textual unit, a list of concurrency 
expressions and/or event sequence expressions is used 
to specify the various behavior constraints to which the 
designer wishes the system to conform. 

Concurrency expressions are formed using either the 
MUTUALLY EXCLUSIVE function operator or the 
POSSIBLY CONCURRENT function operator. A 
variant of the latter operator which allows an integer 
expression to appear between the words POSSIBLY 

DESIREDBEHAVIOR; 

and CONCURRENT may be used to express bounded 
concurrency. The operators for concurrency expressions 
are all binary, their operands being sets of events.’ MU- 
TUALLY EXCLUSIVE(x,y) represents the constrain- 
ing behavioral specification that no occurrence of an 
event from the set of events x may overlap any occur- 
rence of an event from the set of events y, except that 
an event which is an element of both x and y is not pre- 
cluded from occurring. The concurrency expression 
POSSIBLY CONCURRENT(x,y) represents the per- 
missive behavioral specification that any occurrence of 
an event from the set of events x may overlap any oc- 
currence of an event from the set of events y. 

An example of the use of concurrency expressions 
for desired behavior specification is the following tex- 
tual unit, which might be added to the [scan] event 
class (Fig. 2): 

POSSIBLY2CONCIJRRENT(scan ready list, [scan](scan ready list), 

MUTUALLY EXCLUS.IVE(scan ready li<t,OR( [schedulerIlcriti<al_l, [schedulerllcritical 2) 1, - - 
ENDDESIREDBEHAVIOR; 

The above textual unit indicates that the designer 
wishes to allow a maximum of two concurrent occur- 
rences of the event scan ready list, presumably due to 
some limitation such asa maximum number of autho- 
rized operators. It also indicates that the event scan- 

ready list must not be permitted to occur during 
zither of two events associated with the (as yet unde- 
fined) [scheduler] class, each presumably involving the 
scheduler’s accessing of the ready list data structure. 

Event sequence expressions provide a flexible mech- 
anism for specifying constraints on a software system’s 
behavior. Each event sequence expression appearing 
within a desired behavior textual unit is normally inter- 
preted as a partial’ specification for the set of accepta- 
ble or desirable sequences of occurrences of the events 
whose identifiers appear within that event sequence 
expression. Events whose identifiers do not appear 
within the event sequence expression are not, however, 
generally constrained by that expression. For example, 
if the following event sequence expression appeared 
within a desired behavior textual unit: 

REENTRANT(SEQUENCE(a,b)) 

it would be interpreted as indicating that no sequence 
of event occurrences in the system being designed could 
at any point in time include more instances of event b 
than it did event a. However, this expression would not 
be interpreted as restricting what other (non-a and non- 
b) events could occur between instances of the a and b 
events, nor as prohibiting the occurrence of any other 
(non-a and non-b) events. Thus, both of the following 
event sequences: 

aababb and axbabzayb 

would be interpreted as acceptable with respect to this 
event sequence expression specification of desired 
behavior. 

Certain properties of the interpretation of event se- 
quence expressions permit their use as partial desired 
behavior specifications in the manner described above. 
We informally describe some of those properties here; 
a somewhat more complete and technical discussion is 
found in Appendix A. 

The use of the ANY(x,y, . . .) and ANYBUT(x,y, 
. . . ) functions in event sequence expressions is the key 
to the interpretation of these expressions in desired be- 
havior specifications. While a given expression does not 
in general imply any constraints on the occurrences of 
events not explicitly mentioned within that expression, 
this aspect of its meaning can be altered through use of 
these two functions. In particular, when ANY(x,y, . . .) 
appears in an event sequence expression and all of its 
operands are defined within the same class definition 

'These sets of events are specified using event sequence expres- 
sions. We defer discussion of the details of this representation to Ap- 
pendix B. 

qhe specification is only partial since other event sequence or 
concurrency expressions within the desired behavior textual unit 
may impose additional constraints on the occurrence of some or ail 
of the events named in the event sequence expression. This allows 
for modular specification of desired behavior, but also introduces the 
possibility of inconsistent specifications, as mentioned below. 



132 J. C. Wileden et al. 

textual unit in which the expression occurs, it denotes 
all sets of sequences of its operands and of any events 
defined in any other class definitions. Thus, for exam- 
ple, suppose that the following event sequence expres- 
sion: 

SEQUENCE(open,ANY(read,write),close) 

appeared within a desired behavior textual unit nested 
inside a class definition wherein the events open, close, 
read, write, create, and destroy were defined. This 
expression would be taken to indicate that between any 
occurrence of the event open and the next subsequent 
occurrence of the event close, no create or destroy 
events could occur. The following event sequence: 

open read destroy close 

would not then conform to the desired behavior speci- 
fication given by the event sequence expression, while 
all of the following sequences: 

openreadreadwriteclose 
openreadxreadywritez close 
createopenreadclosedestroy 

(where x, y and z are events defined in some other class 
definition) would conform to the specified desired be- 
havior. Similarly, the appearance of the function 
ANYBUT(x,y, . . .) in an event sequence expression 
denotes any sequence of events other than those which 
are its operands. Note that this interpretation implies 
that, appearing within a desired behavior textual unit, 
the event sequence expression: 

SEQUENCE(a,ANYBUT(a,b,c),b,ANYBUT(a,b,c),c 

has precisely the same connotation as the event se- 
quence expression: 

SEQUENCE(a,b,c) 

Of course, a desired behavior textual unit may con- 
tain multiple concurrency and event sequence expres- 
sions indicating the intended constraints on various as- 
pects of the system’s behavior. It may even happen that 
no possible event sequence would conform to all the de- 
sired behavior specifications within a given design. 
Such a situation would indicate that the design cannot 
be realized as it is currently specified, since various as- 
pects of its intended behavior are in conflict. (Recall 
that the desired behavior specifications in a DREAM 
design do not in any sense influence the behavior which 
the design, as specified by bodies, models, and transi- 
tions, can exhibit; they are merely indicative of the de- 
signer’s desires and intentions with respect to the sys- 
tem’s behavior.) It would be extremely useful to provide 
automated checking both of the consistency of the var- 
ious desired behavior specifications and the potential 
behavior indicated by the functional and structural 

(body, model, and transition) specifications. The possi- 
bility of providing some such automated checking in the 
DREAM system remains a topic of research. It is felt, 
however, that even in the absence of such capabilities, 
DDN’s facilities for rigorously specifying the designer’s 
intentions regarding system behavior, in a manner in- 
dependent of the system’s structural and functional 
specification, will prove to be most advantageous to the 
production of correctly operating, reliable software 
systems. 

RELATIONSHIP TO OTHER BEHAVIOR 
SPECIFICATION TECHNIQUES 

The behavior specification technique described in this 
paper is based upon concepts developed in previous 
work on event expressions [6], path expressions [ 11, 
and constraint expressions [ 171. The approach pre- 
sented here is also related to behavior specification for- 
malisms reported by Shaw [ 151 and Greif [3]. 

The most fundamental contribution to our notion of 
event sequence expressions comes from event expres- 
sions, which are the source of the basic set of event se- 
quence expression operators. Event expressions provide 
a general technique for describing behavior, but they 
have been used primarily for describing the complete 
message transmission behavior of software systems for- 
mally modeled as collections of concurrent processes. 
Shaw’s flow expressions, aside from notational differ- 
ences, are extremely similar to event expressions. They 
have been proposed as “a useful notation that can aid 
in the design, analysis, and understanding of software 
sytems” [ 151. Greif s problem specification language, 
in which the sequencing of event occurrences is con- 
strained by a partial ordering defined over those occur- 
rences, is also closely related to event expressions. In 
essence, the Greif technique implicitly defines the sets 
of event sequences which are explicitly defined in the 
event expression and flow expression formalisms. 

Campbell and Habermann’s work on path expres- 
sions suggested a number of the concepts employed in 
our technique, most notably the specification of behav- 
ior in terms of a set of partial behavioral specifications. 
A significant difference exists between path expressions 
and DREAM desired behavior specification, however, 
since path expressions are a programming language 
construct assumed to enforce the behavior they specify. 
DREAM desired behavior specifications, as we have 
noted, do not inlluence system behavior but merely in- 
dicate a designer’s intentions for that behavior. Our no- 
tation and basic set of operators are also quite different 
from those used in path expressions, although methods 
for translating path expressions into event expressions 
are known [ 51. 



Software Design System 133 

Constraint expressions represent an effort to adapt 
and particularize event expressions so as to make them 
suitable for desired behavior specification, assimilating 
certain ideas from path expressions. As such, they are 
the most direct precursor to the DREAM technique. 
The ANY and ANYBUT operators and the projection 
capabilities of the DREAM approach to behavior spec- 
ification may be traced to the constraint expressions 
work. 

SUMMARY AND CONCLUSIONS 

A technique for software system behavior specification 
appropriate for use in designing systems with concur- 
rency has been presented. The technique is based upon 
a generalized ability to define events, or significant oc- 
currences in a software system, and then indicate what- 
ever constraints the designer might wish to see imposed 
upon the ordering or simultaneity of those events. Con- 
structs implementing this technique in the DREAM 
software design system have been presented and illus- 
trated. Included among these constructs are event iden- 
tifiers, event classes, event sequence expressions, and 
event definition and desired behavior textual units. We 
have also briefly indicated how this technique is related 
to constraint expressions, event expressions, flow 
expressions, Greif s problem specification language, 
and path expressions. 

The behavior specification technique described here 
possesses the necessary properties to serve as a valuable 
tool for software system designers. It provides the abil- 
ity to designate certain selected system occurrences as 
events, and the ability to specify desired behavior rela- 
tive to any subset of those events, thus allowing for pro- 
jection and the focusing of attention upon particular in- 
teresting aspects of system behavior. The technique’s 
nonprocedural behavior specification constructs make 
possible a statement of system behavioral requirements 
which is redundant and orthogonal to the structural and 
functional system definition given (in DDN) in terms 
of procedures and control processes. Thus the technique 
is valuable as a basis for description and, at least infor- 
mal approaches to, analysis. Even in the absence of au- 
tomated analysis methods, the benefits cited here are 
sufficient to indicate the value of the DREAM behavior 
specification technique to designers of software 
systems. 

APPENDIX A 

We have until now avoided the technical details of event se- 
quence expressions and their interpretation. In this appen- 
dix, we provide a brief discussion of some of those details. 

Three distinct levels of scope can be defined for an event 

sequence expression appearing within a given class definition 
textual unit. The first of these, denoted by R’, encompasses 
all events defined for any single particular instance of the 
class defined by the given textual unit. R’ may be viewed as 
the default scope for event identifiers in an event sequence 
expression. That is, all event identifiers within the expression 
which are not qualified” with an object name or class iden- 
tifier refer to events occurring in the same single instance of 
the class defined by the enclosing class textual unit. An event 
identifier qualified with the appropriate object name may be 
used to overcome this default scope and reference an event 
occurring in a specific object of the given class. 

The second level of event sequence expression scope, de- 
noted by R, encompasses all events defined for all objects of 
the class defined by the given textual unit. The scope of an 
event identifier qualified with the appropriate class identifier 
is considered to extend to R. 

The final level of scope for event expressions, denoted G, 
encompasses all events defined for all objects of all classes 
defined in the current DDN design description. This global 
scope is never referenced explicitly, but is nevertheless sig- 
nificant to the interpretation of event sequence expressions. 

These scope levels are used primarily in assigning a 
meaning to each occurrence of the function ANY(x,y, . . .) 
in an event sequence expression. The function always de- 
notes the collection of all event sequences over some set of 
events. This event set always includes the events which are 
specifically named as the function’s operands, according to 
the scope rules outlined above. The set may also include 
other defined events, however, depending upon the scope lev- 
els of the function’s operands. Specifically, if all of the func- 
tion’s operands have scope R’, i.e., none of the operands is 
an event identifier qualified with a class identifier, then the 
set also includes any event occurring in any instance of any 
class except for the particular instance(s) referred to by the 
function’s operands. However, each class identifier which 
qualifies one of the function’s operands leads to the deletion 
of all events defined for that class (except those appearing 
among the operands) from this event set. We express this by 
the rule: 

ANY(x,y,z) = ({x,y,z)U (G -Q(x,y,z)))*, 
whereQtx,y,z) =Qtx) UQ(y) UQtzl 
andQ(w) =R’ ifwisanunqualifiedevent 

identifier 

=R’<v>ifwisoftheformv(eventid 
=Rlc]ifwisoftheform [clleventid 

Thus an ANY(x,y, . .) function connotes sequences over 
both specifically named events and events whose defining 
class or instance is not specifically referenced among the 
function’s operands. This interpretation is consistent with 
and may clarify the examples discussed in the paper. 

The special event identifier ANY and the function 

“A DDN qualified identifier [8] is simply an identifier which 
has been prefixed with either an object name or the class identifier 
of the class in which it is defined, followed by a “I”, e.g., 
cpu queue 1 insert or [ready list] 1 insert. _ 



134 

ANYBUT(x,y, . . .) can also be explained in these terms. 
ANY is simply G*, which is equivalently expressed in the 
form given in footnote 6 above. The rule for the ANY- 
BUT(x,y, . . .) function is: 

ANYBUT(x,y,z) = (G - {x,y,z})* 

This too is consistent with the examples given in the paper. 
Finally, the partial behavior specification aspect of event 

sequence expressions can be described in these terms. The 
technically correct form for a SEQUENCE function in an 
event sequence expression is: 

SEQUENCE(xO,Al,xl,AZ, . . .,An,xn) 

where each Ai is either ANY or one of the functions 
ANY(x,y, . . .) or ANYBUT(x,y, . . .). This form thus com- 
pletely specifies the events which are allowed to occur be- 
tween occurrences of the explicitly named events. However, 
the operand subsequence: 

xi,ANYBUT(xO,xl, . . .,xn),xj 

can be abbreviated by “xi,xj”. Again, this is consistent with 
the discussion and examples presented in the body of the 
paper. 

APPENDIX B 

In this appendix, we discuss certain details regarding the in- 
terpretation of event identifiers which appear in the operands 
of concurrency expressions. Throughout this discussion, we 
will be referring to the desired behavior textual unit shown 
in Figure 3, which is presumed to be part of the definition of 
a monitor class called [r-w]. This monitor class is assumed 

Figure 3. 

J. C. Wileden et al. 

to include the definition of the four events shared read, shar- 
ed write. private read, and private write, where the first two 
correspond to operations on resources shared among all in- 
stances of the monitor class while the latter two correspond 
to operations on private, unshared resources. 

As was stated earlier, the operators for concurrency 
expressions are binary, their operands being sets of events. 
When appearing in an operand of a concurrency expression, 
event identi~ers not qualified by a class or instance identifier 
refer to event occurrences specific to any single instance of 
the class for which they are defined, while those qualified by 
a class identifier refer to event occurrences arising from any 

instance of the class and those qualified by an instance name 
refer to event occurrences specific to the named instance. 
Thus the first concurrency expression of the Figure 3 ex- 
ample represents the restriction that while some [r w] mon- 
itor class instance is performing a shared write, i.e.Tits shar- 

ed write event is occurring, no other [r w] monitor class 
instance may be performing a shared wTite and no [r w] 
monitor class instance may be performing a shared read. 
Similarly, the second noncurrency expression expresses the 
restriction that while some [r w] monitor class instance is 
performing a shared read, i.e, its shared read event is oc- 
curring, no [r-w] monitor class instance gay be performing 
a shared write. (Notice that neither of these concurrency 
expressions precludes the possibility of shared reads being 
performed by several [r w] monitor class instances simul- 
taneously.) The third concurrency expression indicates the 
designer’s intention that at most one of the private read, pri- 

vate write, shared read, or shared write events will be oc- 
cur&g at any time within any given instance of the [r w] 
monitor class. The fourth concurrency expression in the Fig- 
ure 3 example indicates that the designer intends to allow 
multiple instances of the [r w] monitor class to be perform- 
ing shared reads simultaneously, i.e., an instance’s share- 

MUTUALLY 

MUTUALLY 

MUTUALLY 

POSSIBLY 

POSSIBLY 

EXCLUSIVE(shared_write,OR{[r_w] Ishared_write, 
[r-w] 1 shared-read) ) , 

EXCLUSIVE(shared_read,[r_w] Ishared_write), 

EXCLUSIVE(OR(private_read,private_write,shared_read, 
shared_write),OR(private_read,private_write, 
shared_read,shared_write)), 

CONCURRENT(shnred_rcnd, [r-w] ~shnred_rcnd), 

~ONCURR~NT(OR(p~iv~te__re~d,priv~te_ write), 
Ott{ ]r wf ]priva~e_rcad, [r-w] fprivatc_write, 

[rw]]shared_read,[r_w]lshared_write)) 



Software Design System 

d read event may overlap the shared read event of any in- 

s&cc. And the final concurrency expression of the example 

expresses the designer’s willingness to allow private read or 
private write events of one instance of the [r w] monitor 
class to&erlap any of the events private read, private write, 
shared read, or shared write of any [r w] monitor class - - 
instance. 

It should be noted that, taken together, the concurrency 
expressions of this desired behavior textual unit represent 
precisely the behavioral specifications which a software de- 
signer might wish to indicate regarding the use of shared and 
private data structures. That is, they specify that the writing 
of a shared structure must not be concurrent with any other 
manipulations of the shared structure (first concurrency 
expression), while the reading of a shared structure may be 

concurrent with other reading but not writing in that struc- 
ture (second and fourth concurrency expressions). Further, 
this desired behavior textual unit indicates that reading or 
writing of private structures may be concurrent with reading 
or writing, shared or private, by other instances of the [r-w] 
monitor class (fifth concurrency expression), but that at 
most one of the four operation types may be occurring within 
any given instance of the [r w] monitor class at any given 

time (third concurrency exp&ion). 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

R. Campbell and A.N. Habermann, The specification of 
process synchronization, in Lecture Notes in Computer 
Science, Vol. 16, Springer-Verlag, 1974. 
R. Floyd, Assigning meaning to programs, in Mathe- 
matical Aspects of Computer Science, Vol. 19, Am. 
Math. Sot. 1967. 
I. Greif, A language for formal problem specification, 
Commun. ACM, 20, 931-935 (1977). 
Z. Manna, Mathematical Theory of Computation, 
McGraw-Hill, New York, 1974. 

W. Riddle, The translation of path expressions into mes- 
sage transfer expressions, RSSM/2, Department of 
Computer and Communication Sciences, The Univer- 

sity of Michigan (1974). 

W. Riddle, An approach to software system behavior 
specification, J. Computer Languages, 4, 29-47 (1979). 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

135 

W. Riddle, An assessment of DREAM, in Software En- 
gineering Environments (Hunke, ed.), North-Holland, 

1981, pp. 191-221. 
W. Riddle, J. Sayler, A. Segal, A. Stavely, and J. Wi- 
leden, Hierarchical description of software system or- 
ganization, in Proc. 13th Hawaii International Conf on 
System Sciences, Honolulu, 1980. 

W. Riddle, Abstract process types, RSSM/42, Depart- 
ment of Computer Science, University of Colorado at 
Boulder, 1977, revised July 1978. 
W. Riddle, J. Sayler, A. Segal, A. Stavely, and J. Wi- 
leden, A description scheme to aid the design of collec- 
tions of concurrent processes, in Proc. 1978 National 
Computer Conference, Anaheim, 1978, pp. 549-554. 
W. Riddle, J. Wileden, J. Sayler, A. Segal, and A. 

Stavely, Behavior modelling during software design, 
IEEE Trans. Software Engineering SE-4, 283-292 
(1978). 
W. Riddle, J. Sayler, A. Segal, A. Stavely, and J. Wi- 
leden, DREAM-A software design aid system, in In- 
formation Technology: Proc 3rd Jerusalem Conf on In- 
formation Technology, (J. Moneta, ed.), North- 
Holland, 1978. 
W. Riddle, J. Sayler, A. Segal, A. Stavely, and J. Wi- 
leden, Abstract monitor types, in Proc. of Specification 
of Reliable Software Conference, Boston, 1979, pp. 37- 
43. 
J. Sayler, Philosophy of the DREAM system, RSSM/ 
39, Department of Computer and Communication Sci- 
ences, The University of Michigan, 1977. 

A. Shaw, Software descriptions with flow expressions, 
IEEE Trans. Software Engineering SE-4, 242-254 
(1978). 
J. Wileden, DREAM design notation example: Sched- 
uler for a multiprocessor system, RSSM/S 1, Depart- 
ment of Computer and Communication Sciences, The 
University of Michigan, 1977. 
J. Wileden, Modelling Parallel Systems with Dynamic 
Structure, Ph.D. thesis, Department of Computer and 

Communication Sciences, University of Michigan (Jan- 
uary 1978). 
J. Wileden, DREAM-An approach to designing large 

scale, concurrent software systems, in Proc. ACM Na- 
tional Conf, Detroit, 1979, pp. 88-94. 


