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Abstract: The asymptotic formula for the variance of a percentile estimate is inversely proportional 
to the square of the probability density function evaluated at that percentile. In this note we show, 
for small and moderate sample sizes, that the estimate of the variance can have a moderate to large 
coefficient of variation even when the form of the density is known. When the density must be 
estimated empirically, the coefficient of variation increases substantially. We conclude that the 
estimate of the variance should not be used in either confidence interval estimation or hypothesis 
testing except for very large sample sizes. 
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Introduction 

Estimation of the percentiles of a distribution function provides a useful 
summary for univariate data, but the interpretation of the estimated values is 
incomplete without an evaluation of the variability of the estimates. When an 
independent, identically distributed series of observations, x a, x2,. . .  ,xN, is availa- 
ble from a cumulative distribution, F(x),  the estimates of the percentiles are 
functions of the order statistics. Distribution-free confidence intervals can be 
obtained for the percentile estimates when the data are complete (David [5]). 
Emerson [6] and Brookmeyer and Crowley [4] propose two different nonparamet- 
ric methods to estimate confidence intervals for the median of a distribution when 
some data are censored. 

An alternate method of evaluating the precision of the percentile estimate is to 
compute its asymptotic variance (Gross and Clark [7]) 

?(1  - P)  (a) 

f ( X p )  2 N 

where x e is the P th percentile, f ( x )  is the probability density function (p.d.f.) and 
N is the size of the sample. Usually, f ( x )  must be estimated from the sample. Due 
to the computational simplicity of this variance estimate, several computer 
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programs report it both for complete and for censored data such as in a life table. 
Our objective is to show that this estimate of the variance is unreliable even 

with moderately large sample sizes. When the p.d.f, is empirically estimated from 
the sample and used in place of the theoretical functional form of the p.d.f., the 
estimated variance is even less reliable. This is demonstrated for a range of 
Weibull distributions by evaluating the variability of (1) when the percentile is 
estimated or when the density and the percentile are jointly estimated. We 
conclude that this estimate of the variance should not be used in hypothesis 
testing or in confidence interval estimation. 

Methods 

g ( u j ) =  

where 

Since censored data are often modelled by the Weibull family of distributions 
with c.d.f. 

F(x') = 1 - e x p ( - x  Y) (2) 

our study considers this family with 

~, = 0.5, 1.0 (the unit exponential) and 2.0. 

Given a sample of size N, the distribution of the j th  order statistics xo) is 

N! u j - ' (1  N-j ( j -  1)!(N-j)! - uj) , 0 < uj < I, (3) 

uj-- F(x(j)) 

and the joint distribution of the ith andj th  order statistics (i < j )  is 

_ N!  < - '  (uj - u,) J - ' - ' (1  - uj) N-j, 
g ( u i ' u J ) = ( i - 1 ) ! ( j  i - 1 ) ! ( N - j ) !  

0 < u i < u 2 < 1, (4) 

where 

u, = F(x(i)); uj= F(xo)  ) 

(David [5]). By numerical integration we evaluate the variance of the j t h  order 
statistic 

o2=  Varx(xo,) = Varu(F- ' (u j ) )  

= <[  u,)] } -( (u,)] } 
where j = NP. 

Similarly we evaluate the expectation and variance of the asymptotic variance 
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formula assuming the functional form f ( x )  is known. That is, 

f (x ,J , )  2 L f (F - ' ( u J ) )  2 ( 1  (6) 

is the expectation and 

V ar x 1 P (1 ] [ ; P )  =Var,, 1 P(1 P) (7) 
f(x(j)) 2 1 [ f ( F - l ( u j ) )  2 N 

where uj = F( x(j) ). 
Lastly, when the functional form of the p.d.f, f ( x )  is not assumed to be known, 

f (x)  is estimated as 

} ( x ( j ) )  = 
X( j+h) - -X( j -h )  

= 2 h / N  (8) 
X(j+h)--  X( j -h)  

for appropriately chosen values of h. That is, the density is estimated by 
numerical differentiation of the c.d.f, in the region of the percentile of interest. 
The evaluation of the expectation and variance requires numerical integration in 
two dimensions. 

(}(x,.) 
[ 1 ( r-'(uj+.)-F- 

= E u ( 2 h / N ) 2  

0 < Uj_ h < Uj+ h < 1, 

P ( 1 ;  P ) ] ,  

(9) 

and similarly for the variance. 
The expressions (5), (6), (7) and (9) are evaluated by numerical integration 

using a 32-point Gaussian quadrature formula (Abramovitz and Stegun [1]). The 
region of integration (e.g. (0, 1) for the single integral) is divided into one, two, 
four, six and eight equal subintervals, as necessary, until the results of two 
successive integrations agree to a relative accuracy of 10 -5. 

We set sample sizes N equal to 20, 40, 80 and 160 and percentiles P equal to 
0,1, 0.25, 0.5, 0.75, 0.9 at which to evaluate the variance (5) and the expectation 
and variance of the approximation ((6) and (7)). 

Due to the greater cost associated with the double integration (9), only a few 
selected computations are performed. 
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Results and discussion 

The results of the numerical evaluation of the true variance (5) and of the 
expectation (6) and variance (7) of the asymptotic formula are presented in Tables 
1, 2, and 3 for the Weibull distribution with 3' = 0.5, 1.0 and 2.0 respectively. The 
first column of results presents the true variance a 2 of xo)  where j = NP. The 
second column reports the ratio of the expectation of the asymptotic formula (6) 
to 0 2 . The following column gives the coefficient of variation (in %) of the 
estimate due to the asymptotic formula 

[=  100 × s.e. ( fo rmula) /E( formula) ] .  

The last column presents the ratio of the asymptotic formula 0 2 (1), assuming that 
the density and xp are known exactly, to the true variance o 2. 

The Weibull with 3' = 0.5 is denser near zero than the other two distributions 
and sparser than the other two in the upper tail of the distribution. Hence the true 
variance of the percentiles is relatively small in the lower tail and relatively large 
in the upper tail. The Weibull with 3' = 2.0 has a much reduced difference in the 
variances between the two tails. 

As expected, the bias of the asymptotic formula decreases as the sample size 

Table 1 
The true variance and the expected value of the approximation of the variance 
distribution with 3' = 0.5 when the density is known 

for the Weibull 

P N 02 E(o2)/o 2 c.v. of 02 02/02 

0.1 20 0.0005835 0.752 213.9% 0.423 
40 0.0002013 0.833 129.1% 0.613 
80 0.0000803 0.900 84.5% 0.768 

160 0.0000354 0.944 57.5% 0.872 

0.25 20 0.007702 1.050 158.5 % 0.716 
40 0.003302 1.014 94.6% 0.835 
80 0.001515 1.003 62.0% 0.911 

160 0.000723 1.002 42.3% 0.953 

0.5 20 0.10664 1.322 170.1% 0.901 
40 0.05082 1.141 93.7% 0.945 
80 0.02473 1.066 59.8% 0.971 

160 0.01219 1.032 40.4% 0.985 

0.75 20 1.1531 1.848 * 1.028 
40 0.5706 1.351 138.3% 1.010 
80 0.2870 1.157 78.8% 1.004 

160 0.1439 1.074 51.0% 1.002 

0.9 20 7.7247 * * 1.235 
40 4.3120 2.119 * 1.107 
80 2.2715 1.418 151.9% 1.050 

160 1.1645 1.184 82.5% 1.024 

* The numerical integration did not converge. 
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Table 2 
The true variance and the expected value of 
distribution when the density is known 

the approximation to the variance for the exponential 

P N o 2 E ( o ~ ) / o  2 c.v. of of o~/o 2 

0.1 20 0.005270 1.060 16.3% 1.054 
40 0.002705 1.030 11.0% 1.027 
80 0.001371 1.015 7.6% 1.013 

160 0.000690 1.007 5.3% 1.007 

0.25 20 0"~015722 1.079 29.0% 1.060 
40 0.008094 1.038 19.3% 1.030 
80 0.004106 1.019 13.3% 1.015 

160 0.002068 1.009 9.2% 1.007 

0.5 20 0.046396 1.138 54.2% 1.078 
40 0.024081 1.065 34.5% 1.038 
80 0.012268 1.032 23.3 % 1.019 

160 0.006192 1.016 16.2% 1.009 

0.75 20 0.13255 1.344 129.8% 1.132 
40 0.07048 1.153 67.0% 1.064 
80 0.03635 1.072 42.4% 1.032 

160 0.01846 1.035 28.6% 1.016 

0.9 20 0.34616 2.470 * 1.300 
40 0.19663 1.488 209.9% 1.144 
80 0.10509 1.208 88.0% 1.071 

160 0.05436 1.097 53.5 % 1.035 

* The numerical integration did not converge. 

increases (first column). The percentile with the minimum bias depends upon the 
distribution. (It may be argued that the estimate of the pth percentile, x j, should 
not be based on j =  PN, but rather on j =  P(N + 1) or some other function. 
However, j = PN is commonly used to estimate percentiles in survival analysis.) 
Serious biases occur when N is small (20 or 40) or P is extreme (0.10 or 0.90). 

A more important indicator of the quality of the approximation is the coeffi- 
cient of variation (c.v.) of the asymptotic formula. When a sample is drawn from 
the Gaussian distribution, the expected value of the sample variancies o 2 and the 
variance of the sample variance is 204/f where f is the degrees of freedom of the 
sample variance. Therefore, the c.v. of the sample variance is of the order of 
magnitude 100(2/f) 1/2. Therefore, if f =  50, the c.v. is approximately 20%; if 
f =  18, c.v. = 33% and if f =  8, c.v. = 50%. 

The c.v.'s that are reported in Tables 1, 2 and 3 are large compared to the c.v.'s 
where the estimates are based on Gaussian data. The magnitude of the c.v. is very 
dependent on the distributional form and on the percentile. For small samples or 
for the upper percentiles the c.v.'s are large. 

Table 4 reports the equivalent results for N = 160 and p = 0.5 when the density 
is estimated by (8). The c.v.'s are large compared to those reported in Tables 1, 2, 
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Table  3 
The true variance and the expected value of the approximation to the variance 
distribution with ~/= 2.0 when the density is known 

for the Weibull 

P N 02 E(o~2)/o 2 c.v. of %2 o~/o2 

0.1 20 0.011954 2.044 * 1.103 
40 0.006289 1.346 59.7% 1.048 
80 0.003221 1.148 33.4% 1.023 

160 0.001629 1.069 21.4% 1.011 

0.25 20 0.013679 1.232 32.3% 1.059 
40 0.007040 1.104 17.5 % 1.029 
80 0.003570 1.049 10.9% 1.014 

160 0.001798 1.024 7.2% 1.007 

0.5 20 0.017056 1.111 16.1% 1.057 
40 0.008768 1.053 10.0% 1.028 
80 0.004446 1.026 6.6% 1.014 

160 0.002238 1.013 4.5% 1.007 

0.75 20 0.024729 1.179 70.9% 1.094 
40 0.012922 1.084 40.6% 1.047 
80 0.006609 1.041 26.5% 1.023 

160 0.003342 1.020 18.2% 1.012 

0.9 20 0.039920 * * 1.224 
40 0.021969 1.280 * 1.112 
80 0.011568 1.127 64.5% 1.056 

160 0.005942 1.061 40.7% 1.028 

* The numerical intergration did not converge. 

and 3. That is, if the density is estimated, the quality of the estimate is poor. 
It should be noted that some of the commonly-used computer programs do not 

estimate the density as in (8). The estimate of the density used is often that 
obtained by an arbitrary division of the data into categories (such as in a life 
table); the estimate used is the sample density of the category in which the desired 
sample percentile occurs. This density estimate is conditionally biassed depending 
upon whether the estimate of the percentile in the original scale is at the upper or 

Table  4 
The true variance and the expected value of the approximation to the variance when the density is 
estimated by numerical  differentiation when N = 160 and P = 0.5. 

Distr ibution h o :  E ( o ~ ) / o  2 c.v. of  o~ 

, / =  0.5 5 0.01219 1.121 77.0% 
10 0.01219 1.097 59.2% 

y = 1.0 5 0.006191 1.099 64.7% 
(Exponential)  10 0.006192 1.058 45.4% 

-~ --- 2.0 5 0.002238 1.096 62.3% 
10 0.002238 1.052 42.5% 
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lower end of the category. (One leads to overestimation of the density and the 
other to underestimation depending upon the shape of the density.) 

When the data are censored and the percentiles are estimated by the 
Kaplan-Meier  [8] survival curve, the c.v. can be expected to be larger than that 
reported here. 

Berry [3] tested by simulation the equality of percentiles of survival distribu- 
tions using the formula 

estimate~ - 'est imate 2 
• ] / 2  " (asymptotic varianc% + asymptotic varlance 2) 

She found the empirical test sizes were far from the nominal test sizes. Our results 
explain her findings. 

Emerson [6] and Brookmeyer and Crowley [4] propose two methods of obtain- 
ing nonparametric confidence intervals for the median when there are censored 
data. In their simulation studies each of the methods are compared with the 
parametric methods of Bartholomew [2] and the use of a variance-stabilizing 
transformation. Their simulations show that as the shape of the underlying 
distribution differs more from that of the exponential, the average empirical 
coverages of the confidence intervals produced by the latter methods differ more 
greatly from the nominal coverage desired. However, the coverages of the non- 
parametric methods are not severely affected by the choice of the underlying 
distribution. As expected, the average lengths of the nonparametric intervals 
exceed those of the parametric intervals when both have the same average 
coverage. Both consider only intervals for the median although the extension to 
other percentiles is direct. 

Our recommendation is that the asymptotic variance formula n o t  be used 
except for very large sample sizes. Alternate methods, such as those of Emerson 
and of Brookmeyer and Crowley should be used to obtain confidence limits rather 
than standard errors. 
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