
Nonlineor’Anolysir, Theory, Methods & Applicariom. Vol. 7, No. 3, pp. 239-257, 1983. 0362.546xj83/030239-19 $OS.MJ/O 

Printed in Great Britain. @ 1983 Pergamon Press Ltd. 

EXISTENCE THEOREMS OF OPTIMAL CONTROL PROBLEMS IN 
BANACH SPACES* 

Hou, SHUI-HUNG? 

Department of Mathematics and Department of Computer Information and Control Engineering, University of 
Michigan, Ann Arbor, Michigan, U.S.A. 

(Receiued 2 November 1981) 

Key words andphrases: Optimal control, maximal monotone, property (Q), multifunction, CarathCodory 
mapping. 

INTRODUCTION 

THE SUBJECT of optimization problems in the theory of distributed parameter control systems 
has gained much interest. This is readily seen in the survey on the subject by Robinson [20] 
and Russell [21]. Linear systems governed by partial differential equations have been given 
the most attention, cf. Axelband [2], Aziz et al. [3], Balakrishnan [4] and Lions [18], to name 
a few. 

In the present paper we first seek sufficient conditions for the existence of admissible pairs 
(x, u) of optimal control systems monitored by nonnecessarily linear operational equations of 
the form 

W)(t) + (Ax)(t) = &> u(t)), 

u(t) E w(t), t E 10, Tl, 
where the function u is the control function, and x defined on [0, T] is the state or trajectory 
and both u and x have values in Banach spaces. Secondly we prove existence theorems for 
optimal solutions for Lagrange and Mayer problems for systems monitored by the above 
operational equations. 

On the operators E and A and function g we shall only assume that E is a linear monotone 
operator. On the operator A we assume a weak continuity condition and a mild coercivity 
condition on A - g. 

The state and control functions in the operational equations are separated from each other, 
thus including linear systems as a special case. This separation feature enables us to prove the 
closure property of admissible trajectories and compactness for attainable sets, as seminor- 
mality conditions, for example property (Q) (cf. Cesari [8], Hou [12]), are readily satisfied. 

Finally we study several examples in detail. 

1. STATEMENT OF THE CONTROL PROBLEM 

Let H be a real Hilbert space with inner product ( , )H and V be a real separable reflexive 
Banach space. Denote by V* the dual of V and assume that V C H C V* with each inclusion 
mapping continuous and densely defined. Let (u*, u) or (u, u*> denote the duality pairing 
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between U* in V* and u in V; if u, U* E H, this is the inner product in H. Denote by /. IH the 
norm in H and by 11. (1 and 11. (I.+ h t e norms in V and V* respectively. 

Let J = [0, T], T > 0, be a compact interval of the real line R. For any separable metric 
space Z the symbol At(J, Z) denotes the set of all measurable functions on J with values in 
Z. 

For 1 <p < m, let X = L,(J, V) be the space of all V-valued strongly measurable functions 
x(t) defined a.e. in J such that Ilx(t)II” is Lebesgue-integrable over J. It is well known that X 
is a Banach space with the norm defined by 

ll-dlx = [b l14w]1’p. 

Because of the reflexivity of V, the dual X* is isometrically isomorphic to L,(J, V*) with 
l/p + l/q = 1 (see Leonard [17] for a short proof). The correspondence is given as follows: 
for each FE X*, there exists a unique g E L,(J, V*) such that 

F(f) = j (s(%f(t)> dl 
J 

for all f in X and 

IIFllx~ = [ j IlsN 11’ dl] 1’q, 
J 

We will always identify the dual X* with L,(J, V*) in this manner. Thus X* = L,(J, V*) and 
the duality pairing between X and X* is given by 

for any f E X and g E X*. Since V* is reflexive, we have X** = (L,(J, V*))* = 
Z&J, V**) = L,(J, V) = X and hence X is reflexive. 

Let E, A, be two operators with domains D(E), D(A) C X and values in X*. Let U be a 
separable complete metric space and o:J+ U be a measurable multifunction with closed 
values (cf. Hou[l3]). 

We shall be concerned with the control system described by 

(Ex)(t) + (AX)(~) = g(6 ~(0) (1.1) 

u(t) E m(t) a.e. in J. (1.2) 

We shall hereafter refer this system by (P). 
We say a pair (x, U) is admissible for this system provided x E D(E) n D(A), u E At(J, U) 

and (1.1) and (1.2) are satisfied. We say that x is an admissible trajectory or state and that 
u is an admissible control. 

Remark. In view of applications, the right-hand side of (1.1) is written as a function of control 
rather than as a control by itself. Systems with g(t, x, u) will be considered in a later paper 
(cf. Hou [14]). 

The function g :J x U+ V* in (1.1) is assumed to be a CarathCodory function; more 
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precisely, g(t, u) is strongly measurable in t for each fixed u E U and demicontinuoust in u 
for almost every t in J. 

Under this assumption, g(. , u( -)) is then strongly measurable from J to V* for any u E 
@J, U) (cf. appendix, theorem 3). Suppose further that g( -, u(a)) belongs to X*, then we 
can define an operator N,: D(A) + X* by 

(N,x)(t) = (AX)(t) - s(t, u(t)). (1.3) 

Thus (l.l), (1.2) may be viewed as 

Ex+N,x=O inX*, (1.4) 

u(t) E w(r) a.e. in J. (1.5) 

2. BASIC ASSUMPTIONS AND THEOREMS CONCERNING THE EXISTENCE OF 
SOLUTIONS 

In this section, we study the problem of existence of admissible trajectories of (P) corre- 
sponding to a given control u with u(t) E o(t) a.e. in J. 

To solve the problem just posed, we shall make the following basic assumptions: 

(Al) E: X + X* is a linear, maximal monotone operator with domain D(E) C X. 
(A2) A : X+ X* is an operator with domain D(h) = X and it is sequentially weakly continuous 

from X to X*; i.e., A maps weakly convergent sequences of X into sequences weak-star 
convergent in X*. 

(A3) For any measurable selection u of o, g( . , u(a)) E X*. 
(A4) There exists a bounded closed convex set K C X containing the origin in its interior such 

that {N, x, x} 2 0 for any measurable selection u of w and for any x E dK. aK denotes 
the boundary of K and N, is defined as in (1.3), ( we consider this condition (A4) as a 
mild coercivity condition on A - g). 

Before stating an existence theorem for the nonlinear problem (1.4), (1.5), we need the 
following property of M-type operators from a Banach space B to its dual B*. 

Definition 2.1. A single-valued mapping T of D(T) = B into B* is called of type M if it satisfies 
the following two conditions: 

(Ml) If {Xi} is a net such that ]lxi]]e G C, xi-x in B, 

Txixx* in B*, 

and lim Sup(Txi, Xi) s (x*, x), then TX TX*. 

(M2) The restriction of T to any finite-dimensional subspace of B is continuous with respect 
to the weak-star topology of B*. 

Remark. The concept of M-type mapping was first introduced by Brezis [6]. 
We now state an existence theorem for nonlinear equations which is a special case of a 

theorem due to Kenmochi [16, theorem 21. 

t A function z: CJ+ V* is said to be demicontinuous if z(u,) --z(u) for any sequence {u,} converging to u in U. 
‘-’ denotes weak convergence in V*. Note that the weak and weak-star topologies in V* coincide, since V* is 
reflexive. 
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THEOREM 2.2. Let K be a bounded closed convex subset of a reflexive Banach space X 
containing the origin in its interior. Let E be a linear, maximal monotone operator of 
D(E) c X to X* and N a bounded mapping of type M from D(N) = X to X*. Suppose that 
{Nx, x} 2 0 for all x E dK, where dK is the boundary of K. Then the set S = {x E K: Ex + 

Nx = 0} is nonempty. 
Using theorem 2.2, we can obtain the following main existence theorem for (P): 

THEOREM 2.3. Suppose that E, A, g, of (P) satisfy assumptions (Al)-(A4). Then for any 
measurable selection u of w, there exists an admissible trajectory x, E K for (P). Moreover, 
the set 

Q, = {x E K : (x, u) admissible pair for some u} 

is relatively sequentially weakly compact in X = L,(J, V). 

Proof. We must show that for any measurable selection u of w, the equation Ex + N,x 
= 0 has a solution x, in K. In view of theorem 2.2. and the definition of N,, it is enough to 
show that A is a bounded mapping of type M. 

For boundedness of A, we apply the lemma below. 

LEMMA 2.4. Let Br be a reflexive Banach space and B2 a Banach space. If f maps weakly 
convergent sequences of B1 into sequences weakly convergent in B2, then f is bounded. 

Now by assumption (A2), A is sequentially weakly continuous, whence A is bounded by 
lemma 2.4. 

To see that A is of type M, we need only to demonstrate that A satisfies (Ml), as (M2) is 
obviously fulfilled because of (A2). To this end, let {xi} be a net in X such that ]]xi]lx G C, 
xi - x and Axi -x*, we intend to show Ax = x*. Since V is separable, the space X = L,(J, V) 
is also separable (cf. Warga [23, theorem 1.5.81). The closed ball 9’J = {z E X: ]]z]lx G C} is 
weakly compact because X is reflexive. Therefore the weak topology of 3 is a metric topology 
(Dunford & Schwartz [ll, theorem V.6.31). Thus there exists a subsequence {b,} C 9, of {xi} 
such that b,-- x. It follows from the sequential weak continuity of A that Ab,-Ax. Hence 

Ax = x*, proving that A is of type M. 
All the hypotheses of theorem 2.2 are now satisfied, therefore for each measurable selection 

u of w, there exists an admissible trajectory in K. Since the set Q c K and K is bounded, 
@ is therefore relatively weakly compact, hence relatively sequentially weakly compact by the 
Eberlein-Smulian theorem (cf. Dunford & Schwartz [ll, theorem V.6.11). This completes 
the proof of theorem 2.3. 

It remains to prove Lemma 2.4. 

Proof of lemma 2.4. We argue by contradiction. Suppose there is a bounded sequence {b,} 

inB1suchthat]]f(b,J]]B2+m. By the reflexivity of B1, {b,} has a weakly convergent subsequence 

{b,,]. By hypothesis, if @,,)I is weakly convergent and hence norm-bounded. But this con- 
tradicts the fact that Iif lie2 -00. Lemma 2.4 is thereby proved. 

3. PROPERTIES OF THE SOLUTIONS 

We need the following lemma due to BrCzis [5] for the next result. 
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LEMMA 3.1. Let X be a reflexive Banach space and let D(s&) be a linear subspace of X and 
ti be a linear, monotone, single valued operator from D(Se) to X*. Then the following 
assertions are equivalent. 

(1) Sp is maximal monotone. 
(2) SQ is a densely defined, closed linear operator such that its adjoint ti* is monotone. 
(3) Se is a densely defined, closed, linear operator such that tie* is maximal monotone. 

In order to prove the set @‘, defined in theorem 2.3, is closed under sequential convergence, 
we impose two more assumptions on the mapping g of (1.1). 

(Bl) There exists an 1 E L,(J, R) such that /g(t, u(t))I/* < Z(t) a.e. for any measurable selection 
u of 0. 

(B2) For almost every t in J, the set g(t, w(t)) is closed and convex in V*. 

Remark. We note that assumption (Bl) implies (A3). 

THEOREM 3.2. Let the assumptions (Al)-(A4), (Bl) and (B2) hold. Then the set @ is 
sequentially weakly compact in X. Moreover, @ is sequentially weakly compact in the space 
D(E) endowed with the topology induced by the graph norm associated with E. 

Remark. The graph norm is defined by 

III x 111 = IIxlIx + lIExllx*~ 

Since E is linear maximal monotone, it is densely defined, closed and linear from X to X* by 
lemma 3.1. Hence D(E) is a Banach space under the graph norm. Moreover D(E) is 
continuously imbedded into X and dense in X and it is reflexive. 

proof of theorem 3.2. Let {x,,} be a sequence in @ and suppose x,, - x. Then x E K. We 
must show x E a. Since x, E @‘, there exists measurable selections u, of w such that, for a.a 
t in J, (Ex,)(t) + (Ax,J(t) = g(t, un<t)). By (Bl) we get II + (bJ(t)ll, c l(t) a.e. This 
in turn yields I/ Ex, +Ax,IIp s IIZI(Lq(~.Iw). As A is bounded, thus {AXE} and hence {Ex,} are 
bounded. We may assume, by relabelling if necessary, that Ax, - E and Ex, - q for some 
E, r~ E X*. The fact that E is closed by lemma 3.1 implies Ex = q. Also by (A2), we have 
Ax = 6. Thus Ex, + Ax,- Ex + Ax. 

Let us define %(t, x) = g(t, w(t)) f or every (t, x) E J X X. Obviously YI is a multifunction 
from J xX,,,? to V* satisfying property (Q) with respect to x for all t E 1. As x,-x, 
Ex, + Ax, - Ex + Ax, and (Ex,)(t) + (Ax,J(t) E g(t, w(t)) = %(t,x,) a.e. in J, we have by 
Cesari’s closure theorem (cf. Appendix, theorem 1) that 

(Ex)(t) + (Ax)(t) E %(t, x) = g(t, w(t)) a.e. 

To see that x is an admissible trajectory, we must produce a measurable selection u of w 
such that (Ex)(t) + (Ax)(t) = g(t, u(t)) a.e. Since V is separable and reflexive, there exists a 

t X, denotes the topological space X with the weak topology a(X, X*) 
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countable family Y C V” * that separates points of V* (cf. Hille & Phillips [ 1.5, theorem 2.8.51). 
The map g is Caratheodory and w is measurable with closed values. Thus we can apply the 
implicit function theorem in the Appendix to produce a measurable selection u of w as 
required. Therefore (x, u) is an admissible pair and whence x E Q. This completes the proof. 

4. THEOREMS CONCERNING THE EXISTENCE OF OPTIMAL SOLUTONS FOR MAYER 
AND LAGRANGE TYPE PROBLEMS 

In this section we solve two specific optimization problems making use of the results of 
sections 2 and 3. 

The first problem we consider is of Mayer type, i.e. minimizing a cost functional Z[x] over 
the class @ of admissible trajectories x. 

THEOREM 4.1. Suppose the hypotheses of theorem 3.2 are satisfied. Let Z[x] be a weakly 
lower semicontinuous functional on X which is bounded from below on every bounded subset 
of X. Then the functional Z[x] has an absolute minimum in @. 

Proof. Since Z is bounded below on Q’, the infimum i of Z on @ is finite, and we take a 
sequence {xk} C @ with Z[xk] + i as k+ CQ. The compactness of @ (theorem 3.2) implies that 
there is a subsequence, again denoted by {xk}, such that xk-x E Q with Z[x] 2 i. By the lower 
semicontinuity of I, we have Z[x] < i and hence Z[x] = i. This completes the proof of theorem 
4.1. 

We need the following compactness lemmas due to Serierstad [22]. 

LEMMA 4.2. Let U be a separable Banach space and G be a finite measure space. Let A be 
a closed convex set in U with the property that bounded subsets of A are relatively weakly 
compact. Let S be a norm bounded subset of the space L,(G, U) made up of functions whose 
values are in A C 17. Then S is relatively weakly compact for 1 < Y < a~. 

THEOREM 4.3. Suppose that the hypotheses of theorem 2.3 are satisfied and g(t, u) = B(t)u, 
where {B(t); t E J} is a family of bounded linear maps from U to V*. Moreover the space U 

is assumed to be a separable Banach space and o:.Z + U is a measurable multifunction with 
closed convex values; each cc)(t) being a subset of a closed convex set A in U with the property 
that bounded subsets of A are relatively compact and there exists an integrable function 
h E L,(J, R), 1 < r < ~0, such that sup{]lull~: u E u(t)} 6 h(t) a.e. in J. Let Z[x, U] be a weakly 
lower semicontinuous functional which is bounded below on the class of admissible pairs 

Q = @ x {u:Il~lIL,(J,Li) s (IhllL,(J,a) and u(t) E u(t) a.e.1. 

Then Z[x, U] has an absolute minimum in Q. 

Proof. Since Z is bounded below on Q, the infimum i of Z on Q is finite, and we take a 
sequence of admissible pairs (xk, &) E a, k = 1, 2, . . . , with Z[xk, &] += i as k+ CC. Then we 
may assume by theorem 2.3 and lemma 4.2 that there is a subsequence, again denoted by 
(xk, &), such that xk- X and Uk - u. By the weak continuity of E and A, we have 
EXk + AXk - Ex + Ax. Since the B(t) are linear, the operator B : L,(J, U) + X*, defined by 
@u)(t) = B(t)u(t), is also linear and we derive Buk- Bu. Thus Ex + Ax = Bu. The sets 



Existence theorems of optimal control problems in Banach spaces 245 

o(t) are closed and convex by hypothesis. Since uk -u and uk(t) E m(t) a.e., we conclude 
that u(f) E o(t) a.e. by force of Cesari’s closure theorem. Thus (x, u) E S2 and Z[X, u] 3 i. By 
the lower semicontinuity property of I, we have Z[x, u] G i. Hence Z[x, u] = i. This completes 
the proof. 

Remark. The assertion of theorem 4.3 remains valid when U is reflexive; it is also true for 
r = 1 if each w(t) is a subset of a weakly compact set ‘% of U in view of the next lemma due 
to Diestel [lo]. 

LEMMA 4.4. Let % be a weakly compact convex subset of a Banach space U and consider the 
set 

% = {fE Ll(J, U) :f(r) E % a.e. inJ}. 

Then (e is weakly compact in &(.I, U). 
We now turn to the second optimization problem which is of Lagrange type; i.e. minimizing 

a cost functional of the form 

over the class SJ = {(x, u): x E a} of admissible pairs. 
We shall make use of the following assumptions. 

(Ll) Let Y be a Banach space and f0 a Carathkodory map from J X Y X U+ 5%; i.e., 
fO(. ,y, u) is measurable for fixed (y, u) andfo(t, a, .) is continuous for a.e. t EJ. 

(L2) M: D(E)--+ I&, Y) ma p s weakly convergent sequences in D(E) into sequences strongly 
convergent in I&, Y). 

(L3) There are b E V and q E &(.I, R) with v(t) 2 0 such that 

fo(t, Y > u) 2 (b > SC& u) > - v(t) 

for all (t, y, u) in J X Y X U. 
(L4) The multifunction 9.2: J X Y- R X V* defined by 

qt, y) = ((2, 2) : z” sfo(t, y, u), z =g(t, u) andu E w(t) a.e.} 

has property (Q) with respect to y for almost every t. 
(L5) Z[x, u] is infinite for some (x, u) in 52. 

THEOREM 4.5. Let the assumptions (Ll)-(L5) hold. Suppose the hypotheses of the theorem 
2.3 are satisfied. Then the functional Z[x, u] defined by (4.1) has an absolute minimum in 
52. 

Proof. Let r 3 inf Z[X, u] < + m. Choose a sequence (xk, uk) in 51 such that lim Z[xk, uk] = 
r. We first show r > --oo. By the relative compactness of @ (theorem 2.3) we may assume 
xk - x. Since E, A are SeqUentidly weak COntinUOUS, Exk + hk - Ex + Ax. From (L3) we 
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get, for a.e. t, 

fo(C (MG) (9, WC(t)) 3 -V(f) + (b, g(t, G(9)) 

= -Y (0 + (b, (Wf) (t) + (Ax/J (t) ). (4.2) 

Since Exk +Axk - Ex + Ax, {Exk + Axk} is therefore bounded and hence the integral 

I 
@, (&J (t) + (Axk) (t) > dt 

J 

is necessarily bounded. An integration of (4.2) shows that Z[xk, Q] is bounded below. Hence 

r> --cQ. 
By (L2) we may assume, by choice of subsequence if necessary, that (Mxk) (t) -(Mx) (t) 

a.e. in J. As Exk +Axk-- Ex + Ax, the Banach-Saks-Mazur theorem (cf. Dunford & 
Schwartz [ll]) enables us to construct a sequence of finite convex combinations {h,} such that 

h,(t) = c &n[(-% +J (t) + (Axn+J (41 (4.3) 
i 

with 

x/Ii,= l,Ain>O , and Mt) + (Ex) (4 + (Ax, (4 

strongly a.e. Let us define a sequence 

un(t> E 7 Ai,fO(t, (MXn+i) Ct>, un +iCt>) 

where &,, are as in (4.3). 
Let u(t) = lim inf un(t). From (4.3), (4.4) and (L3) we get 

t&l(t) - (b, h,(t)) 

= I$ &[fa(t, (MX,+i) (t), Un+i(t)) - (b, (Exn+J (t) + (Axn+i) (t>)I 

= T &n[fO(t, (MXn+i) (t>, un+iCt)) - @9 kdt, Un-i(t>))l 

a T A,(- VW) = - v(t>. 

Hence we may apply Fatou’s lemma to obtain 

lim inf 
I 

[un(t) - (b, h,(t))] dt 
.I 

3 
I 

lim inf [un(t) - (b, h,(t))] dt 
J 

= J [u(t) - @, (Ex) (4 + (Ax) (48 dl I 

and 

u(t) - (6, (Ex) (t) + (Ax) (t)) 2 -tit) a.e. 

(4.4) 

(45) 

(4.6) 
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From (4.5) we obtain 

i 
u(t) dt 6 lim inf 

J I 
u,,(t) dt. 

J 

But from (4.4) we have 

lim inf 
I I 

u,,(t) dt = lim inf x h,, Jfo(t, (Mx, +J (t), U, +i(t)) dt 
i I 

=liminf~,i,Z[x,+i,U,+i] =r. 
i 

Thus from this result with (4.6) and (4.7), we see that u is integrable and hence 

I u(t) dt G r. 
J 

247 

(4.7) 

We next show that (u(t), (Ex) (t) +(Ax) (t)) E %(I, (Mx) (t)) a.e. Let us fix a t in J at which 
the set-valued map %(t, y) has property (Q) with respect to y, and for which (k&)(t) + 

@4x)(t), u,,(t) -+ ~(9, and h,(t) + (Ex)(f) + (Ax)(t) by choices of appropriate sub-sequences 

if necessary. Then for each 12, we have 

(un(t), h,(t)) = 7 hin[fo(f, (Mx,+i) (t), U,+i(t)), (Ex,+J (t) +(Ax,+i) (t)] 

so that, on letting n + TV, 

by property (Q) (cf. Hou [12]). Obviously (4.8) is true for a.a. t in .Z. 
Now we show that there exists a measurable function U: .Z+ U such that for a.e. t in .Z: 

(i) (Ex) (I) + (Ax) (t) = g(t. u(t)), 
(ii) u(t) E w(t) and 

(iii) u(r) 2 fa(t, (Mx) (t), u(t)). To this end, define 

“Mr(t) = {U E w(t): u(t) +J(t, (MX (t), U)}. 

We note first that each w(t) is closed in U because fo is Caratheodory. We claim: “u’ is a 
measurable multifunction from 1 or U. Indeed, the map fo(t, (Mx) (t), u) is measurable from 
.Z x U to II&’ (cf. Appendix, theorem 3), hence so is the function X(t, U) = u(t) - 

f&, (Mx) (9, u). Th en we have Gr(W) = Gr(u) fl ?C-‘(R+), proving that ‘IV is measurable 
(cf. Hou [13], corollary 3.5); lRf denoting the set of nonnegative real numbers. 

In this manner, the problem of finding a u satisfying (i), (ii) and (iii) is reduced to that of 
finding a measurable selection u of W such that (Ex) (t) + (Ax) (t) = g(t, u(t)) a.e. The 
existence of such a measurable selection follows by applying the implicit function theorem 
(cf. Appendix) in the same way as in the proof of theorem 3.2. 

Now the pair (x, u) is admissible and hence belongs to Sz. It remains to show Z[X, U] =S r. 
By (L3) we have fo(t, (Mx) (t), u(t)) a- +(t) +( b,g(t, u(t))> and so fo(t, (Mx) (t), u(t)) is 
bounded below by an integrable function. As fo(t, (Mx) (t), u(t)) s u(t), hence 
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fa(t, (Mx) (t), u(t)) is integrable and 

proving Z[x, U] = r. This completes the proof. 

5. THE CASE IN WHICH E = d/dt 

We shall apply the results of section two, three and four to the case in which E = d/dt, the 
derivative is in the sense of distribution. Thus (P) becomes an evolution equation of the form 

g (4 + (Ax) (4 = g(t, u(O), 40) = x0, (5.1) 

u(t) E o(t) a.e. inJ. (5.2) 

We give an interpretation of the initial condition x(O) = x0. 
Suppose assumptions (A2)-(A4) hold, that is, the operator (N,x) (t) = (Ax) (t) - 

g(t, u(t)) maps every x in X = L,(.Z, V) to an element NUx in X*. Thus if x satisfies (5.1) for 
a certain control U, then x in X and dx/dt E X*. In other words, x is an element of the space 

W = {x E X: dx/dt E X*}. 

W is a Banach space when endowed with the norm 

llxllw = llxllx + Ildx/dtllx*. 

Denote by C[J, H] the space of all continuous functions on J with values in h. Then WC 
C[J, H] with continuous imbedding (cf. Carroll [7]). S ince elements of Ware strictly speaking, 
not functions defined on J, but rather equivalence classes of such functions defined and equal 
up to sets of measure zero, we must clarify what is meant by the imbedding of W into C[.Z, H]. 
What is intended is that the equivalence class x E W should contain an element belonging to 
the continuous function space that is the target of the imbedding and bounded in that space 
by a constant times IIxI]~. More precisely, WC C[J, H] means that for each x E W, when 
considered as a function, can be redefined on a set of measure zero in the open interval (0, T) 
in such a way that the modified function x (which equals x in W) is continuous on (0, T) with 
values in H and can be extended to a continuous function, again denoted by x, on [0, T], and 
satisfies sup j x(t) I H G ClCy]lw where C is a constant independent of x. 

Thus if x E W, 

lim x(t) 
r-O+ 

exists, and we always interpret x(O) = xo to mean 

,ty+ x(t) = x0. 

Similarly we interpret 

x(T) = ,:m_ x(t), 

In the sequel, dx/clt, x’ are used interchangeably to denote the distributional derivative of 

X. 
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We consider first the initial condition x(0) = x0 = 0. 

LEMMA 5.1. Define E = d/dt, in the sense of distribution, from X = L,(J, V) to X* with 
domain D(E) = {x E X: dx/dt E X*,x(O) = O}. Then E is a linear, maximal monotone operator. 

Proof. That E is linear is evident. The monotonicity of E follows from the inequality 

{Ex,x} = {x’,x} = JIl(X’(S),x(S))ds 

= B[ Ix(T) I$ - lx(O) I%] = l/x(T) I’H 2 0. 

Let(y,z)EXxX*and{z-Ex,y-x} 3 0 for all x E D(E). If we can showy E D(E) and 
z = y’, then E is maximal monotone. For this, let x = rj~u where u E V and v E 9(J), the 
space of all infinitely differentiable real-valued functions with compact supports in the open 
interval (0, T). Clearly x E D(E) and 

O<{z-v’u,y-x} 

= {z, Y> - {VJ’U, Y] - {z, VU> + (Vu, Vu1 

= {z,y> - (b [V(S)Y(S) - ~6) z(s)1 ds, ~1, 

the last term {q’ U, +u} = 0 since $0 has compact support. As u being arbitrary, we have 

i r/~‘(s) y(s) ds = i r/~(s) z(s) ds for all q E 9(J). 

This implies z = y ’ . 
It remains to show y(0) = 0. Let x(t) = tu/T for every t E J where u E V. Obviously x E 

D(E). Then 

OS{y’-x’,y-x}= ,(y’(s)-x’(s),y(s)-x(s))& 
I 

= i[jyV) - x(T) k - Iv(O) - 43 I!4 

= %/Y(T) - d& - lu(O>l?d. 

Thus Iv(O) I$ sly(T) - u/5 . S ince V is dense in H and u is arbitrary in V, we assert that 
y(0) = 0. This completes the proof. 

Remark. In the proof of lemma 5.1, we have used the following formula. For any x, y E W, 

(x(t),Y(t))~- (+(S),Y(r))~=~~(~‘(l),y(r))dr + i’(y’(r),x(r))dr 

where t, s E J (cf. Carroll [7]). 
In view of lemma 5.1, all the results of sections 2-4 are valid for E = qdt with D(E) = 

{x E X: Ex E X*, x(O) = O}. However, we can obtain more interesting results about @ defined 
in theorem 2.3. We need the definition below. 
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Dejinition 5.2. Define Q(t) = {x(t) E H: x E @} for 0 =C t G T and Q(O) = (0). 

Thus Q(t) is the attainable set of the system described by (5.1), (5.2) at time t. With abuse 
of notation, we also employ the same symbol @ to denote the multifunction t+ Q(t) from 

J to H. 

THEOREM 5.3. Suppose the hypotheses of theorem 3.2 are satisfied with E = d/dt and 
D(E) = {x E X: Ex E X* and x(0) = O}. Then the multifunction Q is upper semicontinuous 
from J to H,,, with weakly compact values, where H, is the space H with weak topology. 

Proof. If we are able to show that for every t,+ to, & E @(tn), we can extract a subsequence 
of {&} converging weakly to a point in @(to), then the assertion of theorem 5.3 follows from 
theorem 4.9 of Hou [12]. By definition of CD(t), there are x,, E @ such that x,,(&) = &. Since 
@ is sequentially compact (theorem 3.2), we can assume X, -+ x E Q’, and so it is enough to 
show xn(tn) -+ x(t0). Let u E V, we can write 

(u, Xn(Gl) - x(to)) = ( U,X,(Gz) -x,(to)> + (u,x,(to) -x(to)). (5.4) 

For the first term on the right-hand side of (5.4), 

Ku, x&J - -4td)i = 11: b, d(4) ds 1 

s Ilull IIdllx* It, - tol + 0 
as n -+ 00, {XL} being bounded as XL -x’. For the second term on the right-hand side of (5.4), 
we have 

(u, x,(t,,) - x(to)) = 6’” (u, x;(s) -x’(s)) ds = 0 

as XL-X’. Therefore we have proved that (u, x,(t,)) + (u, x(h)) for every u E V. The fact 
that V is dense in H implies that xn(t,,) -x(to) in H. This completes the proof. 

COROLLARY 5.4. Q(t) is weakly compact in H for 0 < t d T. 
We are now able to state an existence theorem of time optimal control of intercepting a 

moving target. 

THEOREM 5.5. Suppose the hypotheses of theorem 5.3 are satisfied. Let t -+ S(t) be a sequen- 
tially closed multifunction from J to H, (cf. Hou [12]). If 

X = {t E J: s(t) n Q(t) # 0) 

is nonempty and if k = inf X, then S(k) fl @(k) # 0. 

Proof. Let tn E SC, tn + k, then there exists xn E Q such that xn(tn) E S(t,) W(t,). Since 

@ is upper semicontinuous with compact valued from J to H,. We may assume that 
x”(t”)+x(k) with ,X E @ (cf. Hou [12, theorem 4.91). Now we also have x(k) E S(k) since S 
is sequentially closed. Hence x(k) E S(k) rl Q(k), proving that S(k) fl Q(k) # 0. This com- 
pletes the proof. 
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We now treat below the case that x(0) = x0 # 0 but x0 E V. If this is the case, we can always 
reduce back to the previous case x(0) = 0 by a technical device. 

Taking w(t) = x(t) - x0 and introducing w instead of x as our unknown function, we note 
that w satisfies the initial value problem 

(5.5) 

w(0) = 0, 

u(t) E w(t) a.e. inJ. (5.6) 

where the operator B, defined by Bw E A(w + x0), is still sequentially weakly continuous as 
A is. If further B satisfies (A4) in place of A, then all the theorems in sections 2-4 are valid 
for (5.5) and (5.6). 

6. THE PERIODIC CASE 

We define E = d/dt, in the sense of distribution, as in section five but with a different 

domain D(E) = {x EX: Ex E X*, x(O) = x(T)} . Thus the system (P) becomes 

g (t) + (Ax) (4 = g(4 4t>), 40) = x(T), (6.1) 

u(t) E o(t) a.e. inJ. (6.2) 

LEMMA 6.1. If E is the operator d/dt with domain D(E), then E is a linear, maximal monotone 
operator from X to X*. 

Remark. In view of this lemma, all the results in sections two, three and four are applicable 

to (6.1) and (6.2). 

Proof. That E is linear is evident and the monotonicity of E follows from 

{Ex, x} = j- (x’(s), x(s)) ds = $[ lx(T) I’H - Ix(O)\‘H] = 0. 
J 

To show E is maximal monotone, let (y, z) E X X X* and {z - Ex, y - x} 3 0 for all x E 
D(E). As in the proof of lemma 5.1, we may assert z = y’. It remains to show y(0) = y(T). 
For this, we note that for all x E D(E). 

0 C (y’ - x’, y - x) 

= i[ly(T) - x(T) I& - Iv(O) - x(O) I&l 

= (x(o),Yv-v -Y(~))H+~IY~~~12H-~lY(O)l~. 

The fact that x(0) is arbitrary implies that y(0) = y(T). This proves that E is maximal monotone. 

7. THE CASE IN WHICH E = d/dt AND A IS LINEAR 

We consider in this section the control system (P) with E = d/dt and A determined by a 
bilinear form. This is mainly the kind of systems studied by Lions [18]. 

For each t in J, we are given a continuous bilinear form a(t; u, w) on V X V to R having the 
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following properties: 
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For all U, w E V, the function t + (t; u, w) is measurable and 

MC V? w) I c 4~11 II4 (7.1) 

where L is a constant independent of t, v and w. Also there exists a> 0 such that 

a(t; v, v) > (Y~~v~~*, for all v E V. (7.2) 

Thus for fixed u E V, the linear form w + a(t; v, w) is continuous on V, therefore it can be 
written as 

a(t; u, w) = (A(t) v, w), A(t)v E I/*. (7.3) 

We also deduce from (7.1) that 

IIA(t)uII s Lljvll, for all v E V. 

Then {A(t)},,, is a family of continuous linear operators from 
it is also coercive; i.e. for each t of J, 

(7.4) 

V to V*, and because of (7.2), 

(A(t)v, v) 2 ayl/~[)~, for all u E V. (75) 

If we let A be the operator from X= L2(J, V) to X* = L2(J, V*) (p = 2) defined by 

(Ax)(t) -A(t)x(t), foreveryt EJ,x EX. (7.6) 

Then A is linear and continuous with norm less than L. 
The system (P) in which we are interested becomes 

$ (t) + (Ax) (t) = g(t, u(t)), x(0) = x0 E H, 

u(t) E w(t) a.e. in./. 

(7.7) 

(7.8) 

we observe first that if (7.7) has a solution, it is unique. 

LEMMA 7.1. If (x, u), (Y, ) u are two admissible pairs for (7.7), (7.8) with the same admissible 
control U, then x = y. 

Proof. If (x, u), (Y, U) are two admissible pairs, then 

(x’(t) - Y’(t), x(t) - Y(r)) + ((Ax) (t) - (AY) (t), x(t) -y(t)) = 0. 

and x(O) = y(0). Now by (7.5) we get 

(x’(t) - y’(t), x(t) - y(t)> s -MO - Y(0112 s 0. 

Integrating from 0 to t and using (.5.3), we obtain $1x(t) -y(t)l& s 0 , hence x = y. Lemma 7.1 
is thereby proved. 

A solution to (7.7) for a given u is equal to x = x1 + x2 where x1 satisfies 

g (t) + (Ax) (t) = 0, x(0) = x0 E H. (7.9) 

This equation is uncontrollable. x2 is a solution to (7.7) but with initial condition x2(0) = 0. 
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That (7.9) always has a unique solution follows from a theorem of Lions [18, theorem 1.2, 
p. 1021. Thus we may as well assume that the initial condition x0 in (7.7) is always equal to 

0. 
We demonstrate next that the results of section 2 are applicable here. 

THEOREM 7.2. (existence and uniqueness of solutions). Suppose that A satisfies (7.4), (7.5) 
and the map g satisfies (Bl) of section 3. Then (7.7) (with x0 = 0) has a unique solution for 
a given measurable selection u of o. 

Proof. We need only to show that the hypotheses of theorem 2.3, i.e. (Al)-(A4), are 
satisfied. (Al) holds since E = d/dt with domain D(E) = {x E X: Ex E X*, x(O) = 0} is linear 
and maximal monotone by lemma 5.1. Since A is linear and continuous, (A2) clearly holds. 
(A3) is implied by (Bl). As for (A4), we have to produce a bounded closed convex subset 

K containing 0 in its interior such that {N,x, x} 3 0 for all x E aK. N, is defined by 

(N,x) (t) = (Ax) (t) -g(t, u(t)) . We note that, by (7.5) and (Bl), 

Wux, x> = I Wux) (4, x(t)> dt 
.I 

= j- (A(t)x(t), x(t)> dt - 1 (dt> 4t>>> X(t)> dt 
J J 

2 j- 414t>l12 dt - 1 llgk W>ll, Il4t)ll dt 

2= ll:llx~~llxllx - 1lL>d 
Thus if we choose K = {x E X: (JxIIx s C}, then, for sufficiently large C, we have {N,x, x} 3 0 
for all x E aK, establishing the validity of (A4). 

Now it follows from theorem 2.3 that (7.7) with x0 = 0 has a solution in K. Uniqueness of 
solution is immediate from lemma 7.1. Theorem 7.2 is thereby proved. 

It is also clear that the results of sections 3 and 4 are applicable to the system (7.7), (7.8). 

8. AN EXAMPLE 

Let G be an open bounded subset in the n-dimensional Euclidean space R” with sufficiently 
smooth boundary. We denote points of G by Zj = (&, . . . , &,). We consider real-valued 
functions ~(6) defined on G and belonging to the Sobolev space W;(G) (cf. Adams [l]) where 
m is a natural number and p > 1. Let & be a multi-index, a = (LYE, . . . , an), where cu, are 
nonnegative integers. The Sobolev space is defined by 

W:(G) = {X E L,(G, R): D”x E L,(G, R) for all 1 al s m} 

with the norm given by 

Here 

D”= (-$)“. . . (2)“; 

the derivatives are in the sense of distributions. 
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Let S(G) be the family of infinitely differentiable functions with compact support in G. The 
closure of g(G) in the metric of W;(G) is denoted by w’,“(G). @r(G) is a separable reflexive 
Banach space for 1 < p < + 00. 

Letn=3,p=2andm=1.LetV~iY:(G)andH~L2(G,[W).ThenVCHCV*. 
We consider here a problem of heat transfer in an inhomogeneous bounded body G C R8’ 

of sufficiently smooth boundary. This example is an extension of the case considered by 
Quilghini [19]. The system to be controlled is described by the equation 

(8.1) 

x(& t) = 0 for all c E aG, t E [0, T], 

x( lj, 0) = lim x( 5, t) + 0, 5 E G. 
1-O+ 

where kl 2 k(c) 2 k. > 0 for all 5 in G. 
Here x(& t) describes the change of temperature at point 5_ at time t and q(t, u(& t))f(Q 

describes the amount of heat supplied by a source of heating output q(t, u(E, t)) which is 
distributed on G proportionally to the values f(E) > 0 of a function f E H. 

Let J = [0, T]. The function q: J x R+ R is a Caratheodory map; i.e. q(. . s) is measurable 
for fixed s and q(t, *) is continuous for almost all t in J. We assume also that 

lq(t, s)l S /3(t) a.e. inJ, (8.2) 

where BE L,(J, R). Each control U: G x J -+ R is a function such that for each t in J, 
u(t) = u(. , t) is an element of the control set co(t) defined by 

w(t)={uEH:O6u(~)~C a.e.inG} (8.3) 

where C > 0. Let CJ = H, then co: J-+ ZJ is a measurable multifunction with closed convex 
values. 

If we set 

a(t; v, w) = 
I 

k(E)Vu . VW dj 
G 

for all U, w E V, then it is easy to check that (7.1) and (7.2) hold with CY = ko/C, where CI is 
a constant determined by the PoincarC’s inequality. In this manner, (8.1) is reduced to (7.7) 

withg(t, 44) (n = q(t, u(& t))f(E) an d x0 = 0. Clearly g satisfies the assumption (Bl) because 

of (8.2). 
We now want to prove g is a CarathCodory map from J x U -+ V* . 

LEMMA 8.1. g: J x U+ V* is CarathCodory 

Proof. We prove first that g(t, u) is demicontinuous in ~1. Let {u,} be a sequence in U strongly 
convergent to U. Then we may assume ~~(6) + u(g) a.e. since q is Caratheodory, we get 

4(4 %4n> + 4(t, @)> a.e. Thus for any u E V, 

We conclude that g is demicontinuous in u. 
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To see that g( . , u) is strongly measurable from .Z to V*, it is enough to show g(. , u) is 
scalarly measurable since V* is separable (cf. Yosida [24]). To this end, let u E V** = V. 
Then the function 

is clearly measurable from J to R by Fubini’s theorem. this completes the proof of lemma 8.1. 
By theorem 7.2, (8.1) has a unique admissible trajectory for any given measurable selection 

u of cc). If we can show that assumption (B2) of section 3 holds, then the set @ of all admissible 
trajectories is sequentially weakly compact. 

LEMMA 8.2. For almost every t of J, the set g(t, m(t)) is closed and convex. 

Proof. For convexity, let 21, zz E g(t, u(f)) f or some t E .Z and let z - Azi + (1 - A)22 for 
fixed d, 0 < A < 1. By definition of g(t, o(t)), there are ui E w(t), i = 1,2, such that zi(<) = 

4(6 4!3>fcn f or a.a. CE G.Let us sety(E) = Aq(f, Q(E)) +(l - A)q(f, uz(Q) for all EE G. 

Then ~(63 E q(f, W a.e. in G because q(f, X) is convex, where X is the closed interval [0, C]. 
By Hou [13, theorem 4.5.1 we are able to find a measurable function U: J+ iw with 0 c U(E) c C 

and satisfy y(E) = q(f, v(E)) a.e. Therefore u E w(t) and z = yf E g(t, u(f)), proving that 

g(t, w(t)) is convex. 
For closedness of g(f, w(f)), let us fix a f in J such that lq(t, s)/ G B(f) for all s E R. This is 

possible by (8.2). Let {z,} be a sequence in g(f, w(f)) with z,,+ z strongly in V*. We claim: 

z E g(t, o(t)). There are u, E w(f) such that zn(E) =q(f, un(c))f(is>. 
p(f), we may assume q(f, un(*)) 

Since /q(f, un(Q)I c 
converges weakly to some w in H. It is clear that z = wf. 

Since q(t, X) is closed and convex, and q(f, un(E)) E q(f, X) for a.a. EE G, it follows easily 
from Cesari’s closure theorem that w(E) E q(f, X) a.e. By theorem 4.5. in Hou [13] we are 
able to find a measurable function u: .Z+ R with 0 s u(E) c C a.e. and satisfying w(E) = 
q(f, u(g)) a.e. therefore z = wf E g(f, w(f)), proving that g(t, w(t)) is closed. Lemma 8.2 is 
thereby proved. 

It follows now from theorem 3.2 that the set @ of all admissible trajectories is sequentially 
weakly compact. In particular, by corollary 5.4 Q(T) is weakly compact in H. 

We consider the optimization problem of minimizing the deviation of temperature of the 
body from a preassigned temperature distribution R(E), 5 E G at time T, i.e., to minimize the 
functional 

over Q(T). It is obvious that Z is weakly lower semicontinuous on H. Hence Z has an absolute 
minimum in Q(T). 

APPENDIX 

The theorem below is a Banach space version of Cesari’s closure theorem (cf. Cesari [9] and Hou [12, theorem 
5.41). 

THEOREM 1. Let G be a measure space, X a topological space and E be a Banach space. Let f: G x X-+ E be a 
multifunction that satisfies sequential property (Q) with respect to x in X, i.e., the set inclusion 

,c, cl co ,un f(r, Xk) c f(t3 x) 
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holds for almost all t in G and for any sequence X” converging to x in X. Let c, &, n = 1,2,. , be integrable 
functions in Ll(G, E), and z, z,, n = 1,2,. , functions from G to X, satisfying the relation&(t) ~f(t, z,(t)) almost 
everywhere in G, and such that &- 5’ weakly in .!,,(G, E), z,(t)+ z(t) in X for almost all t in G as n+ 03. Then 
at) Ef(t, z(t)) almost everywhere in G. 

The next theorem is a variant of Filippov’s implicit function theorem (cf. Hou [13, theorem 4.61). 

THEOREM 2. Let T be a measure space with a complete, u-finite nonnegative measure, 2 a Banach space with a 
countable family S C Z* separating points of Z, and X be a separable complete metric space. Let I? T-+X be a 
measurable multifunction with closed values, f a function from T X X to 2 such that f( , x) is strongly measurable 
for x E X and f(t, .) is demicontinuous for almost every t in T, and let g: T + Z be a strongly measurable function 
satisfying the relation g(t) Ef(t, r(t)) a most everywhere in T. Then there exists a measurable selection u: T+ X for 1 
r satisfying g(t) =f(t, u(t)) almost everywhere in T. 

The following theorem concerns the strong measurability of Banach space valued functions. 

THEOREM 3. Let T be a measure space and X, Y be Banach spaces. Let F: T x X-+ Y be a CarathCodory function, 
i.e., f(. ,x) is strongly measurable for every x in X and f(t, .) is demicontinuous for almost all t in T, and s be a 
strongly measurable function from T to X. Then the composite function h: t-f(t, s(t)) is strongly measurable from 
T to X. 

Proof Since s is strongly measurable, there exists a sequence of simple functions s,: T+ X such that s,(t) + s(t) 
strongl) for almost all t k-T. Thus for every n, the composite function-h,(t) =f(t, s,(t)) is strongly measurable. G; 
Pettis’ theorem (cf. Yosida 1241) there exist sets E, C T of measure zero such that h.(T\E,) is seuarable for everv 
n > 1, and by the demicont&&y off there exists set EO C T of measure zero such that h(fy = we’ak-limit H,(t) fdr 
all f in T\Eo. Obviously the set 

is of measure zero. The smallest closed linear subspace containing 

is clearly separable and contains h(T\E). Moreover, for every x* in X*, the function x*(h) is measurable and 
x*(h,(t)) +x*(h(t)) for all t in T\E. Thus h is essentially separably valued and scalarly measurable, whence strongly 
measurable by Pettis’ theorem. This completes the proof. 
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