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We show how the renormalization group may be used in supersymmetric models to determine 
the expectation values of fields whose scales are undetermined by the classical potential. We apply 
this formalism to supersymmetric models of the O'Raifeartaigh type, and in particular, to Witten's 
model of the gauge hierarchy. We discuss the possibilities for a mass hierarchy and propose a 
criterion for an aesthetic model, which limits the magnitude of the hierarchies in perturbative 
unification models. We consider the zero-mass limit of Witten's model and argue that, despite the 
ground state becoming supersymmetric, the scale of the spontaneous symmetry breakdown of 
gauge symmetry remains fixed by radiative corrections. These models, after dimensional transmu- 
tation, undergo decoupling at smaller scales. In conclusion, we suggest the possibility of a new 
"weak tumbling" scenario for aesthetically generating mass and possibly gauge hierarchies. We 
also indicate how our work may be extended to finite temperatures and discuss the implications for 
cosmology. 

1. Introduction 

Global ly  supersymmetric  unified models (SUMs) offer hope for resolving the 

naturalness  or gauge hierarchy puzzles of grand unified theories. [1] A part icularly 

attractive class of models was addressed by Wit ten  [2], in which the fundamenta l  

lagrangian contains  a single scale m which represents the scale of spontaneous  

b reakdown of supersymmetry  by the mechanism originally suggested by 

O'Raifear ta igh [3]. However, in the tree approximation,  there is a field (or fields) X 

whose expectation value ~ X)  remains undetermined,  a necessary consequence of the 

O'Raifear ta igh mechanism. However, ( X )  may be determined by radiative correc- 

t ions to the effective potential.  In  non-gauge theories, ( X )  remains small [4], but  it 

was shown in ref. [2] that, in local gauge theories, this was not  necessarily the case. 

In  fact, it was plausibly argued that, if certain relations obta ined  between non-gauge 

couplings and gauge coupling constants,  the scale of ~ X) ,  determined by radiative 

corrections, could be exponent ial ly  larger than the original input  scale m. If ( X )  

also corresponds to the scale of gauge symmetry breaking, then the model natural ly  

develops a hierarchy in which one symmetry breaking occurs at scale ( X )  and 
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another occurs at scale m << Cx) .  It was subsequently realized* that these models 
have many light particles (including scalars!) with masses on the order of m2/Cx). 
It was originally suggested [2] that m be identified with the electroweak breaking of 
SU(2) x U(1) and ( X )  with the unification mass. An alternative possibility is that 
the electroweak scale is m2/C X) while m represents some intermediate scale of 
order  10 9-  l011 GeV, assuming ( X )  < mplanck = 1019 GeV. The latter possibility has 
been termed the "geometric hierarchy" and recently developed into an apparently 
phenomenologically acceptable SUM [6]. 

It might appear at first sight that the unification scale is not reliably calculable in 
perturbation theory, because of the development of large logarithms In X/m. We 
shall show, however, that since the breakdown of perturbation theory is associated 
with a large change in scale rather than a large coupling constant, it can in fact be 
overcome by application of the renormalization group to the effective potential. The 
unification mass ( X )  is calculable (if it exists) so long as the coupling constants 
remain small on that scale, much as in standard GUTs. 

To be specific, the prototypical model presented by Witten is an SU(5) gauge 
theory with three chiral supermultiplets: A and Y in the adjoint representation, and 
a singlet field X. The superpotential is 

W =  X 1TrA2Y+ )~2X(TrA 2 -  m2).  (1.1) 

In tree approximation, one finds that 

CA) X2m diag (2, 2, 2 , - 3 ,  - 3 ) ,  ( l .2a) 
+ 

x2Cx)  diag (2, 2, 2, - 3, - 3) . (1.2b) C Y ) -  )k, 

The scale of CX) is completely undetermined, but if CY) > CA), then this sets the 
scale at which SU(5) ---, SU(3) × SU(2) × U(1). If one inputs the tree values, then the 
effective potential in one-loop approximation is given for X >> m by [2] 

)t])t22m4 [ + 3h ( )t 2 )(297t21 50g2)ln X2] 
V ( X ) -  ;k 2 + 30•2 1 8~r2 )t]+30X22 - ~ -  , (1.3) 

where g is the SU(5) gauge coupling constant and bt is a scale parameter introduced 
in the process of renormalization**. If 50g 2 > 29X ] on scale/a, then one can only 

* This apparently was originally realized by Banks (unpublished, see ref. [5]) and independently by 
Raby (private communication). 

** We caution the reader that our notation differs from Witten [2]. 
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conclude that the minimum in X, if it exists, is very much larger than/~. If, on the 
other hand, one specifies the parameters of the theory on a large scale /~ where 
50g 2 < 292~ 2, then the minimum, if it exists, will be smaller than/~. Thus, one would 
expect a minimum to occur on a scale m U where 50gZ(mu) = 297~](mu), and 
( X )  --- m U. The rigorous analysis below will justify this heuristic argument and show 
that normalizing at m U one can calculate perturbatively. 

The outline of the remainder of the paper is as follows. In sect. 2, we present a 
general formalism for applying the renormalization group to the effective potential. 
We also derive a general formula for T r ( - ) F M 4  for an arbitrary supersymmetric 
gauge theory. We obtain a simple rule for determining the minima which may exist 
at finite values of the fields and show how it may be applied through two loops 
(O(h 2)). We also present explicit formulas for the one-loop B-functions and anoma- 
lous dimensions for an arbitrary SUM. In sect. 3 we apply the formalism to Witten's 
model [2], derive the condition for a minimum to exist at finite X, and plot the 
characteristic trajectories for this model. We analyze five different physical theories, 
depending on the choice of parameters, and show under what circumstances a 
hierarchy of masses might arise. We also propose a technical definition of "aesthetic" 
(as distinct from "natural")  which limits the acceptable magnitude of the hierarchy 
in a weak coupling theory. In sect. 4, we discuss the limit of Witten's model when the 
mass m ~ 0. The ground state becomes supersymmetric; nevertheless, the scale of 
gauge symmetry breaking remains fixed by radiative corrections. Regardless of the 
value of m, one must perform dimensional transmutation [7] in theories of this type 
in order to apply standard decoupling theorems. In sect. 5 we summarize our 
conclusions and make some speculations. We propose a new tumbling scenario [8] 
which does not require strong couplings. We also indicate how our work may be 
extended to finite temperatures and discuss some of its implications for the cosmol- 
ogy of these models*. 

2. The effective potential and the renormalization group 

A general supersymmetric gauge theory will be described by a group G and some 
chiral superfields q~i transforming according to some (generally reducible) representa- 
tion R of G. The superpotential for a renormalizable theory will be a cubic 
polynomial 

m i j  ~ktjk 
W= a'q~, + --~--Ofl~j + ~ - ~ O j O k .  (2.1) 

* While completing this work, we received a preprint by Yamagishi [9] treating the same topic and 
containing many of the same results presented here in sects. 2 and 3. However, our point of view 
about the hierarchy and decoupling (sect. 4) seems quite different from his. On the other hand, he has 
presented the explicit mass spectrum and obtained the low-energy effective superpotential which are 
not contained here. Finally, we accept full responsibility for the speculations of sect. 5. 
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The classical potent ial  is given by  

° w  Ez)  " " 
v= ~ 00~ 

i a 
(2.2) 

For  nota t ional  simplicity, we have assumed G is simple, but  the formula t ion  here 
can readily be extended to the general case. Thus,  g is the gauge coupling constant  
and D a ---,~i(Ta){q, j, where T, represents the generators  for R, and ~ i =  ,~,. The  

one- loop approx imat ion  to the effective potent ial  [7] may  be taken to be 

M 2 
1/1 = Vc,(dpi) + h T r ( - ) F M 4 1 n  , 

6492 /.t 2 
(2.3) 

where the second term is an abbrevia ted  notat ion for the sum over scalars and vector  
bosons minus the sum over fermions.  The mass  matrices M are determined in tree 
approx imat ion  as functions of the classical fields '/'i. In  stating that  the second term 
is the complete  and precise one-loop correction, we have tacitly assumed a specific 
mass- independent  renormal izat ion prescription*. The exact effective potent ia l  Vef f, 
to all orders, obeys the renormal izat ion group equat ion** 

0 i 0 C.C. ] V~f r = O. (2.4) 

We require a more  compac t  nota t ion  for the paramete rs  of  the theory. Def ine  

Xp = ( g ,  ~.ijk, Xijk, miJ, mi j ,  a',  ai) , 

so eq. (2.4) can be abbrevia ted  as 

9 (2.5) 

* We believe this is the simplest possible prescription, cf. ref. [7]. A single scale parameter ~ has been 
introduced. In the non-supersymmetric case, one must generally subtract another term of order h 
obtained from the one given in (2.3) by setting all coupling constants equal to zero in the expressions 
for M 2. 

** Note that the scalar fields are complex as are the couplings defined in (2.1) so that, in general, the 
complex conjugate (c.c.) must be added. As is customary, we represent this by differentiating 
separately with respect to a quantity and its c.c. Care must be exercised to take into account that m ij 
and ?&k are totally symmetric tensors. Group invariance implies the additional constraints Wi(T,){% 
= 0 for all values of ~i, and derivatives of this equation are also useful. Throughout the paper, we 
assume that calculations are performed in the Landau gauge to avoid the appearance of a gauge 
parameter in (2.4) and elsewhere. 
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In  par t icular ,  it  follows f rom (2.3) that ,  to one- loop  order ,  

y i q ~ j - ~ + c . c .  Vc , -  32~r 2 T r ( - ) F M  4. (2.6) 

We shall see be low that  the r igh t -hand  side will be of great  impor t ance  in de te rmin-  

ing the ex t rema of  the effective potent ia l ,  so it will ex t remely  useful to have a general  

fo rmula  for it. Af te r  cons iderab le  algebra,  we f ind* 

1 Tr(-)FM4 - 
32¢r 2 

1 
{ W;W;jk WSk;W; 

16~ 2 

+ g2 [2D~Wki(Ta)/Wjk - 2 Re WkWki( T 2 )S~j - 4 W / ( T 2  )/Ws ] 

Here,  we in t roduce  an obvious no ta t ion  for derivat ives of the superpotent ia l ,  

3W 02W 
W i - W is--- e tc . ,  

and  denote  complex  conjuga t ion  by  raising or lowering indices, thus q~;= q~, 

W;j = W ;j*, etc. The  expression takes on a s impler  appea rance  if we decompose  R 

into  its i r reducible  representa t ions  T a = ~2,, • T2, so that  T z -- ~ • C2(R,~)E,~, where 

E,~ is the p ro jec to r  onto  the i r reducible  represen ta t ion  R,~. Then we may  write 

1 Tr( - )VM4= 
32qr 2 16v 2 

- 2 ~ C 2 ( R ~ ) R e W W k , t E  U- R ; E~)/W;] k , , ~ , , g s - 4 Z C z (  , ~ ) W (  
0~ 

(2.s) 

* We differ slightly from Yamagishi's formula [9]. Incidentally, this formula is true for an arbitra~ 
superpotential and is not restricted to renormalizable theories. Finally, we remark that, since (2.6) is 
an identity in the fields, (2.7) provides a powerful check on the one-loop coefficient functions/~ and y. 
Some are related by non-renormalization theorems and so, given partial knowledge of these coeffi- 
cients, the remainder can often be determined from (2.6) and (2.7). 
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where we defined X~ 2)J - W~kIWJkl /4 .  It may be useful to recall that D a - E~ep'(Tfl)Jepj 

and T(R) = E ~ d ( R ~ ) C 2 ( R ~ ) / r  where d[R~] is the dimension of R~ and r = d[G]  is 

the dimension of the group G. No te  that (2.8) vanishes as expected in the supersym- 
metric case where D = 0 and Fi* --- - W ~ = 0. Except in a gauge theory, Tr( - ) F M 4  

>~0. 

Now we shall return to the exact renormalization group equation (2.5) and discuss 
its general solution. Dimensional  analysis implies 

p , -~  q'- ~p~kp q- O i ~ /  "[- (~ - ~ i  -- 4 Veff= ,0 (2.9) 

where 8p is the dimension of  coupling Xp ((~p = 0 for g, •jk; 1 for mi); 2 for a~). 
Then, subtracting from (2.5), we obtain 

- ( v / +  + c . c .  + vo f = 0 
: :OOi 

(2.10) 

where 

0 
@ ~--- ( ~p -- (~p~p) ~ - p  "~- 4 . 

For  the typical problem of interest here, the min imum of certain fields are not 
determined at the classical level. For  simplicity, let us suppose, as in Witten 's  model, 
there is a single such field X. Given X, all other fields are determined in the tree 

approximation.  In the exact effective potential V~ff, we formally input the values of  
the exact  minima (which may depend on X)  for all fields other than X. Thus 

a V c f f /  O~) i = 0, SO 

{-(, (2.11) 

where 

i * X  

and V is the value of Wef t evaluated at the minima (~i)- We suppose further that X 
may be taken to real, i.e., that one can choose phases such that 7x is real. The 
general solution of  this first-order partial differential equation may  be obtained by 
the method of  characteristics [10]. 
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Solve instead the system of ordinary differential equations 

- d r  dX dXp dV (2.12a) 
(1 + ~ I x ) X  Bp -- ~pXp 4V '  

subject to initial conditions at r = 0 which we take to be 

Xp=Ap,  X =  )((Ap),  V= V(Ap).  (2.128) 

The choice of 2 is a matter of convenience'~; common practice is to choose k =/~. 
The specification of V determines the dynamics of the theory but depends as well on 
the precise normalization conventions employed. Let us represent the solution for 
the parameters of the theory as 

~kp = ~kp('r; A p , ) .  (2.13) 

Inverting this system yields the "running coupling constants" 

Ap = Ap(r ;  )tp,). (2.14a) 

They may equally well be defined as the solutions of 

dA P 
d~" = (flp(Ap) -6p Ap ) ,  (2.148) 

subject to initial conditions that Ap = )tp at r = 0. Then we must solve, subject to 
X = X(Ap) at r = 0, 

dX  
dr  = (1 + ~,x)X (2.15a) 

to obtain 

X=X(,;.,Ap) 

Inserting the running couplings from (2.14a) and then inverting determines 

r =  r(X;/~,  )tp). (2.16) 

Finally the general solution for V is (from (2.12)) 

V= I / (Ap(r ;  )~p,)) exp(4r) ,  (2.17) 

where we implicitly assume that the parameter r is replaced by the function in (2.16). 

~' The dependence of ~" and 1) on the scale parameter/* has been suppressed. 

(2.15b) 
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It is tempting to try to write the inverse problem to (2.15), but since "Ix may 
depend explicitly upon X, it is not so straightforward. It is instructive to work 
through the special case (sufficient for the application in the next section) when 7x 
depends only upon ~p and is independent of X. Then one can write 

In ~(Ap,)  d'r'[l+yx(~p('c';Ap'))]" 

Replacing A p, by A p,(~'; ~p) and using the fact that 

~p('r ' ;  Ap,('r, ~p)) = Ap (~- - -r'; ~kp,), (2.18) 

we find 

x /0 T lnf((Ap(,r,~kp,)) = d 'r ' [1-l-Yx(Ap( 'r ' ;~p'))]"  (2.19) 

In principle, Ap(T, ~p,) is known, so the integral can be performed. This formula 
may be regarded as explicitly giving X =  X(~; )(; X) or implicitly defining ~=  
~'(X; X, ~p). By analogy with the running coupling constants (2.14a), one might 
consider replacing k by a function .~(~-; X, Xp). It obviously satisfies 

m 

dX 
d~- (1 + yx)X.  (2.20a) 

Eq. (2.20a) generalizes to the case of an X-dependent anomalous dimension ~{x. The 
freedom previously expressed by the choice of the function )((Xp) now is expressed 
by the specification of an initial condition for X. Although it may seem most natural 
to require .,~= X at ~" = 0, one may equally well specify alternative initial conditions: 

X = X ( X, X p ) at ~- = 0. (2.20b) 

Eqs. (2.20) are the inverse problem of (2.15) with appropriate choice for X. (We find 
the original formulation less confusing.) 

Now, we seek the minimum of V for which 

3V 3"r OV ( O'r ) I OV ] 
J x -  3X OX c3"r - ~  e4r ~ + 41~ = 0. (2.21) 

Assuming the characteristic starting at ~-= 0 actually reaches the minimum (which 
may require a judicious choice for X) the prefactor O'r/OXe 4~ will not vanish for 
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finite ~'*, so the ext rema satisfy 

[ ---~-r + 4 I ? =  (~p(Ap,)--~pAp) +4 V(Ap)=0, (2.22) 

where we used the chain rule and (2.14b). Alternatively,  using dimensional  analysis, 
the function J,()~p) may  be determined as 

0 3 0 ] (7(~kp) 
(2.23) 

So the ext rema are determined by calculating J , (~p) ,  replacing the parameters  by 
their running couplings, and determining the zeros of J~ (Ap (y; ~ p,)). The  ext rema so 
determined will be  a local m in imum provided that  at those values of  X,  OZv/ox 2 > O. 

General ly,  

a2v ( a . ) 
= ( ~ ) e  J r ( A p ) ( 4 ~ g - { - g  2 a X  2 f f X I  e --~J~.(Ap) + - -  . (2.24) 

In  the case of  zeros at finite values of r * ,  where J~.(Ap) vanishes, only the first term 
contributes,  and the requirement  may  be expressed more  simply. Define 

O(Ap(q'; ~kp,)) ~ (4"b-~)J.r(Ap). 

Using the chain rule as before, we may  write 

(2.25) H(~kp)=@. ] ' r (~ -p )=  ( ~ + f i p ~ p ) J , r ( ~ k p )  - 

Thus the zeros of J r ( A p ( r ;  X p,)) are local min ima  provided that, at those points,  

H ( A p ( ' r ;  •p,)) > 0. (2.26) 

The  preceding formulat ion is complete ly  general and exact if we regard/3p and 7x as 

known. 
It remains to determine the function 1) for any given model.  Suppose we consider 

the one-loop approx imat ion  to the effective potential  (2.3). This will be a valid 
approx imat ion  provided the dimensionless coupling constants  are sufficiently small 

* For zeros at r = _+ oo ((X) = 0 or + oo), one must analyze OV/OX itself and rely on (2.24) below for 
stability rather than (2.26). These cases can also be interesting. 
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on the scale # and that  the second term is not  large compared  to the classical 
potential.  This requires that  the masses M not  be  too large, that  is, the scale of  the 
fields ~i must  not be  too large compared  to/**. Note  that  small masses present  no 
p rob lem for Vefe, that  is, there are not large infrared logar i thms.  So we may  admit  
fields whose scales are small compared  to/~. We shall re turn to these points  in sect. 3 
below. 

In  passing f rom Vet t to V, (2. I 1), we input  the exact minima  for those fields other  
than X. In one-loop approximat ion,  the posit ion of the min ima  will be of  the form 
qa~]) = q~l + bAl i ,  where qa~ denote  the tree values for these min ima  and A ~  the shift 
due to the one- loop correction. However  the value of the effective potent ial  depends 
on A~i only in O(h  2) since 

avd ~o' V,(X,q~}")= Vl(X,q~r')+haq, i--~i +O(h2) ,  (2.27) 

but, by definition, 

0Vcl <=  
Oq~ O. (2.28) 

Thus  we realize the remarkable  simplification that, to one-loop accuracy, we may  
evaluate V 1 at the tree values q,~l( X)!  These ¢ 1 ( X )  may  depend on the field X whose 
min imum is not determined at the classical level. Then V 1 has the form 

M 2 
V~= Vc,(X,(Pi(X ) .... ) + ~ h  T r ( - ) F M 4 1 n  . 

64rr2 ~2 
(2.29) 

In  fact the value of the classical potent ial  at the classical minima,  the first term 
above,  is complete ly  independent  of X and is a function only of the parameters  ~p, 

i.e., V~1(X, 4~i(X) . . . .  ) -  V0(kp). We conclude that  the one-loop approx imat ion  to V 
is 

V1(X'~p)= V o ( ~ p ) +  h647r 2 T r ( - ) v M 4 1 n 7  M2 + O ( h  2) ,  (2.30) 

where the second term hAil is to be evaluated by inserting the classical min ima  
q~i(X) for i =  X. While the first term is independent  of  X, the second term will 
depend on X. To  obtain  IS"(?~p), we must  choose k(?~p). Insert  X =  5((Ap) in (2.30), 

* Although Witten [2] supposed this was true on the intrinsic scale m, of (1.3), it may or may not be the 
case that the fundamental couplings g, N jk are small on this scale. Actually, all that is required is to 
be able to find some scale/L on which all couplings are small. In practice, this may require t~ >> m, 
since the fundamental coupling constant of SU(5) may increase substantially at small scales. 
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that is, 

(2.31) 

A particularly convenient choice for )( is to make the second term zero, that is, 
choose ~" such that 

Tr( - )FM4 In M 2 = (ln ~') T r ( -  ) F M 4 .  (2.32) 

In the large-X limit, this corresponds to )(=/~. Noting that V 0 is independent of/~, 
we have 

0 V  0 . . 
(2.33) 

o h Tr( -- ) F M 4 .  J , ( X p )  = v0 = 
32qr 2 

OVc~( X, *i) o~,'(x)= 0 
OX 

Now return to (2.6) and insert the tree values. Then we conclude that 

(2.34) 

(2.35) 

So, 

This implies, in particular, that T r ( - ) F M  4 is independent of X, even though M 2 
depends on X! Now the right-hand side can be computed directly from our general 
expression (2.7) or (2.8). In certain cases, this too can be further simplified: From 
(2.2), 

OV~1 - WjW ij + gZD, eoJ( T, )). (2.36) 

If, as is true in Witten's model [2], the classical ground state has D, = 0, then it 
follows from (2.36) that WjW ij = 0 also. In this case, (2.8) collapses to 

32¢r 2 4qr 2 

where the one-loop approximation to tip is to be understood. There is a useful 
alternative expression for J,. First, it is easy to see that 
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Recall also that, despite possible appearances to the contrary, it follows from (2.35) 
that (2.37) is independent of X. 

Having determined the function J,(?,p), our rule is to replace hp by Ap('r; Xp,) 
and to find the solutions of JT(Ap('r; ~kp,))= 0". We remark that the existence of an 
extremum depends only upon determining that there exists a value of • where J, 
vanishes, and not upon the precise relation between ~- and X, and in particular not 
upon the choice for X. If there is more than one minimum, one must select the one 
with the smallest value of the effective potential. In general, so long as the running 
coupling constants remain small, we expect the one-loop approximation to the 
effective potential to be good. From (2.31), it is given by 

v =  v0(aoC+; X..))e 4" (2.38) 

Of course, the actual degree of accuracy is unknown without performing a two-loop 
calculation. Presumably the existence of a zero of J, is independent of the choice of 
)(, even though the precise relationship between ~" and X will depend on this 
renormalization prescription. More generally, if we insert (2.31) into (2.23) and use 
(2.35), we find 

0 2  OAV 1 X=)( Jr(hp) = h ,  Og 0X A- O(h2). (2.39) 

The function k must be chosen so that Ok/0/~ does not vanish; otherwise, the 
inversion from ~- to X implied in (2.16) cannot be carried out. Hence, to one loop, the 
zeros of J, are the solutions of 

OaG x,=A, 
OX x=k = 0 .  (2.40) 

We prefer to exploit the freedom of choice for k because (a) the zeros of (2.33) are 
explicitly a constraint among the parameters of the theory, and (b) eqs. (2.33) and 
(2.38) may be generalized to all orders. To see this, suppose the effective potential 
has been calculated through N loops so that (2.29) becomes 

VN= VcI( X, dPi( X) )  -4- AVN( X, ~)i( X) )  { - o (  ~N+ t). (2.41) 

Here q~i(X) are the exact minima (q~;(X) = ~cl(X) + A(~i (X)) ,  but we may add and 
subtract V~t (X, qs?l(X)) 

= v+,(x, q,?'(x)) + a G ( x ,  +,(x)) + (2.42) 

* This can occur in both abelian and non-abelian theories. 
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that is, we absorb shifts from the classical minima in the radiative corrections. 
Suppose we choose k from the class of functions for which (0/O/~) afz( X, ~i()()) = 0. 
With this choice equations (2.33) and (2.38) are formally correct to O(hU+l). 
Despite the complication this implies for determining the relation between X and r, 
this choice allows the constraint among the parameters of the theory supplied by 
(2.33) to be determined to arbitrary accuracy from a knowledge of the/3 alone! 

It will clearly be necessary to determine the running couplings to solve any given 
model, so we need to determine the beta functions/3p and anomalous dimensions 7j. 
To one-loop order, these are most easily determined in a mass-independent renor- 
malization scheme, which has been assumed in (2.3) anyway. In one-loop, they are 
given by* 

/3g- 16~r 2g3 [_3C2(G)+ l y~d[R~]C2(R,,) ~ ' 

/3ijk = 1 [X~2)iXO k + X~2)jxiki+ X(/2)kXtij 
8vr 2 

-g2NJk(C2 ( R , ) +  C2 (Rj) + C2(Rk))],  

_ _  X(2'jl,~ki__ g2miJ (C2 (R/) + C2 ( R j ) ) ]  1 [X~ )`mkj+''k "'" 
BiJ = 8ir2 

/3i= l~[xT)iaJ-gZaiC2(Ri) ] 
8,/72 

yji__ 16"n "2112XT)i-g28]C2(Ri)] (2.43) 

Notice that in a mass-independent renormalization scheme, the solution of the 
characteristic equations (2.12) naturally splits into subsets. The dimensionless run- 
ning coupling constants form a closed system 

dG dA ~jk 
= =/3'Jk (G, A) (2.44) d~" /3g(G, A) ,  d~" 

subject to initial conditions that G = g and A ~jk = N jk. 

3. Application to Witten's model 

In this section, we apply the machinery developed in the previous section to the 
SU(5) model discussed previously in sect. 1. In this model, we see from the first term 

* Refer to (2.8) for notation. 
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in (1.3) that 

~k2 ~k2 m 2 
V 0 (3.1) 

2t ] +30X 2 

Then the function J,(g, ?h, X2, m) can be calculated from (2.37) (or simply read off 
from the second term in (1.3)*) 

+ 3ox )2 
(3.2) 

Consequently, a zero of J, will occur where 

2 9 A l ( ' r ; ~ k p ) 2 = 5 0 G ( ' r ; ~ k p )  2. (3.3) 

It remains to be determined whether and where this occurs. For this purpose, we 
need to determine the/3 functions and running couplings. For this model, one may 
readily obtain them by application of (2.41) or by direct calculation. It is temporarily 
convenient to denote the gauge coupling by X 0 = g. Then the/3 functions are of the 
form 

/3Xp- 16"-~2 q=0 
p = 0, 1,2. (3.4) 

Generalizing slightly to SU(N), the matrix of coefficients is given by 

- N  0 0 

- 6 N  5 ( N 2 -  4) 8 
N 

- 4 N  4(N 2 -  4) 2 (U 2 + 3) 
N 

(3.s) 

The anomalous dimension of the field X is given by 

1 2 (3.6) 
7 x  = 16 ~.'-----7"YX 2, 

* As the derivation of (2.35) shows, this result for J~ in no way depends on the scale of X being large 
compared to rn, despite the fact that the particular form given in (1.3) assumed this. 
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with 7 = 2( N2 - 1). The anomalous dimension for the mass is then 

tim: m2 (b20~% + b21~ ] + (b22_ y)X2) (3.7) 
16~.2 ~ 

reflecting the fact that ~,2m2X is not renormalized. As described generally at the 
close of the preceding section, the solutions for X(1-; -'¢O and M2(~-; m 2) follow 
directly from the solutions for the dimensionless couplings, which themselves form a 
closed system of equations. In one-loop approximation, the equation for the gauge 
coupling X0 decouples from those for A t and ~k 2 and has the usual solution 

1 1 1 
(3.8) GZ( , r ;  g 2 )  g2 8,/r2 b00"r " 

The remaining two equations for the running couplings can be written as 

dA21 _ A] (bloG2 + b l lA  2 + blzA~) 
dT 8~r 2 

dA22 A 2 (bzoG2 + bzl A] + b22A22). 
dz 87/.2 

(3.9) 

The fact that G2('r;  g )  is known and the homogeneity in A] suggests defining 
Yi =- A2/G2.  Then 

1 dYi _ Yi [b i jY j_  boo] i =  1,2 (3.10) 
G2(r)  d~" 8 ~  2 ' ' 

where we define Y0 = 1. This suggests a new choice for parameterizing the character- 
istic do - (G2(~')/8~r2)d~ " which implies 

so that 

1 l n ( 1 -  boo 2 ] 1 G__~ 2 
o ( ~ ' ) -  boo ~ 2 g  ~) = - ~  in g 2 '  (3.11) 

dr, 
do - Yi [b i jY j -  boo], (3.12) 

with initial conditions Y, = ~2/g2 at o = 0. Since the right-hand side of (3.12) now 
has no explicit dependence on o, the characteristic trajectories in the ]I1, Y2 plane are 
the solutions of 

dY2 Y 2 [ b z l Y l + b z 2 Y z + ( b z ° - b ° ° ) ]  (3.13) 
dY, Y l [ b , l Y , + b t 2 y 2 + ( b l o - b o o ) ]  " 
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R ¥1 

Fig. 1. Characteristic trajectories for Witten's model. 

TABLE l 
Liapounov exponents and eigenvectors for the fixed points in Witten's model 

Exponent (e to) Eigenvector (Yl, Y2 ) 

U: - 3N (0, 1) 
5N (1,0) 

( 3 ( N z - 4 )  ) .  ,-- -, N(5N 2 + 3) 1, 2 N ~ + 3 , 1  
S: N 2 + 3 

+ 3N (0, 1) 

+N ( 2N 1) 
N 2 _ 4  ' 

+5N (1,0) 

R: 

The location of the fixed points is s tandard*,  being those values of Y1 and Y2 where 
bo th  the numerator  and denominator  vanish in (3.13). These are 

u: Y, =o  Y~=o 

S: Yl  = 0 Y2 = (boo - b 2 o ) / b 2 2  

R: Y1 = (boo - b l o ) / b l l  Y2 = 0. (3.14) 

Linearizing about  each of these, we determine that U is ultraviolet stable, R is 
infrared stable, and S is a saddle point, so the characteristic trajectories are as 
depicted in fig. 1. The Liapounov exponents and eigenvectors are given in table 1. As 
one can see from table 1, the unique trajectory which actually reaches the saddle 
point  S has slope equal to 

dY  2 3 ( N  2 - 4) 

dY1 2 N ( 2 N  2 + 3) 

* These are called critical points in the mathematical literature; for a particularly nice discussion, see 
ch. 9 of ref. [1 l]. 
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There is one unique characteristic which passes from R to S as indicated in fig. 1. 
This determines the domain of attraction of the ultraviolet fixed point at the origin. 
We were unable to determine this trajectory analytically, but one can obtain it 
approximately by Liapounov's second method [11]. Presumably it could be easily 
determined if desired by numerical iteration starting at S with initial "velocity" 
d Y z / d Y  1 equal to the critical slope given above. 

We have been unable to make further progress toward an analytic solution for the 
running couplings. However, the running mass may be expressed in terms of them 
as  ~r 

m ~ = e -  A~- A--~jg] ~ 2 ]  J (3.15) 

Then X is simply related; since the superpotential is not renormalized in a supersym- 
metric state, [ 12] ~ 2 m 2X must scale canonically. Therefore 

= e 3r A2m2 (3.16) 
)((A p) ~2 m2 

Obviously, the connection between X and r is generally quite complicated depend- 
ing, among other things, on the choice f o r  ) ( ( A p ) .  Now the question of the existence 
of a solution of (3.3) corresponds, in the present language, to whether a characteris- 
tic curve intersects the line Yl - ~ . -  5o This depends upon the specific initial values for 
X, and g as well as the intersection occurring for sufficiently small values of the 
running couplings so that the loop expansion is valid. To say this another way, the 
reliability of these calculations depends upon perturbative unification just as in 
standard GUTs. From fig. 1, there will be some choices of g, ~l, and X 2 for which 
this will be true. 

The theory is specified by giving/~, g, X~, ~2, and m. Although/~ is arbitrary, we 
must assume that it can be specified in a range where the dimensionless couplings 
are all sufficiently small so that we can calculate perturbatively. Otherwise, we can 
say nothing at all. Now we may specify rn arbitrarily and, because the theory is 
supersymmetric, any value chosen will be technically natural. However, we would 
argue that it would be unaesthetic to choose a value for m (except for the special case 

m = 0) outside this range where all dimensionless couplings are small, because the 
physics on the scale m is not describable perturbatively in terms of those coupling 
constants**. Given this definition of aesthetic, we may as well choose/~ = m***. 

'~ We will denote the running mass in this model by ~ rather than by M, in order not to confuse it with 
the mass matrix M of sect. 2. 

'~'~ By this criterion, QED is aesthetic but QCD with current quark masses m << AQC D is not aesthetic. 
This indicates that an unaesthetic model may not be complete but may yet be a phenomenologically 
useful theory. 

*'~'~ The reader who objects to our definition of unaesthetic can easily modify the following discussion by 
allowing m to be an arbitrary scale independent of the normalization point #. Then additional cases 
are possible, but not qualitatively different. Indeed, in the next section, we shall consider a wider 
range for m. 



46 M. B. Einhorn, D. R. T. Jones / Scale fixing 

(The case m = 0 is aesthetically acceptable only because it is a theory with a higher 
symmetry.  In  this respect, "aesthetic" agrees with "s t rongly  natural".  This case will 

be discussed in the next section.) Then we shall discuss five theories, depending on 
the values of  the couplings on scale m: 

(A) Suppose h I, X 2 and g correspond to the point  A in fig. 1. Since the min imum 
occurs at point  B, we have ( X )  > m, so ( X )  determines the scale of SU(5) breaking 

(assuming X 2 -- ~X l)" 
(B) Suppose X ] 50_2 = ~ g  , and A 2 is such that we are at point  B in fig. 1. Then 

<X> = m and there is a single mass scale. 

(C) Suppose the initial values of  the couplings place us at point  C on scale m. 
Then ( X )  < m, and so the gauge symmetry breaking is set by  m*. 

(D) Starting at point  D, the trajectory does not intersect the line at Yt 50 = ~ before 
the coupling X 2 becomes large. In  this case, we cannot  trust perturbative calcula- 
tions, so we cannot  say what happens. But it seems likely that strong coupling will 
produce new physical phenomena  on a scale >> m. 

(E) In this case, the initial values of these couplings are within the domain of  
attraction of the origin U. Then as T-~ 00, the theory is truly asymptotical ly free, 

with X l and X 2 tending to zero even more rapidly than  g. Since no min imum is 
achieved for finite ~-, one cannot  rely on J , (Xp) a n d  H ( ~ p )  to  tell us what is going 

on. However, there is no breakdown of perturbat ion theory so we can examine the 

behavior of  the effective potential directly. Thus we want  to examine as ~- --, 

V =  e4"~  4 A]A2 (3.17) 
A 2 + 30A~" 

Inserting our  solutions for these quantities, this becomes 

V -  m 4 [  Y23°y17G6°]l/St 

Yl -[- 3 0 ]¢'2 (3 .18)  

From table 1, we find that, as ~" ~ oo, 

V - ~ -  2--, 0 ,  (3.19) 

where we used (3.8) for G. Thus the effective potential decreases monotonical ly  to 
zero as r --, oe, or in terms of X, we find 

V -  m 4 In ~ O. (3.20) 

* This possibility seems to have been ignored previously. 
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We interpret this to mean that, as a result of radiative corrections, ( X )  = oo. We 
shall discuss this case further in the next section, where we shall argue that this is a 
perfectly acceptable vacuum state*. 

In addition to the above cases, one must also analyze the theory in the extreme 
ultraviolet ( X ~  oo) and infrared ( X ~  0). Except for case (E) above, either A 2 o r  

A 1 --* oo as X-~  oo, so perturbation theory breaks down. In the infrared, although 
Y2 -~ 0 and Y~ - ,  constant, G blows up, so again perturbation theory breaks down. 
Thus, the preceding cases (A), (B), (C), and (E) exhaust the range of applicability of 
a perturbative analysis, even after summing up large logarithms by utilizing the 

renormalization group. 
Incidentally, although it is intuitively clear, one can easily check that the ( X )  is, 

in fact, a local minimum in cases (A)-(C) by verifying that H > 0, (2.26). 
Because the dimensionless couplings vary only logarithmically with scale, it is 

quite possible to generate a calculably large hierarchy, that is, it can turn out that 
m << ( X )  in case (A) and m >> ( X )  in case (C). The case (E) is an example of the 
ultimate hierarchy, since m / ( X )  = 0. However, our analysis of the m = 0 case in the 
next section suggests that, in some sense, the hierarchy has been put in by hand. 

4. Dimensional transmutation and decoupling 

In this section, we wish to argue that the scale of symmetry breaking ( Y )  and the 
scale ( X )  are not set by m. To see this, we shall first consider the m ~ 0 limit of 
the theories defined by IV. To be precise, imagine, in contrast to the discussion of 
the previous cases in sect. 3, we have normalized in such a way as to yield eq. (1.3) 
for Vef f at an arbitrary scale/~ and have specified g, ~1, X2 and m. What happens as 
m ~ 0 for fixed g, kl, ~2, and #? Clearly, we have (A)  -~ 0 and the ground state 
becomes supersymmetric. However, ( X )  remains fixed by the zero of Jr which, in 
one-loop, corresponds to the relation 

29~.] ( ( X ) ) =  5 0 g Z ( ( x ) ) .  (4.1) 

Similarly, ( Y )  remains fixed and, in lowest order, in given by (1.2b). Thus, in 
the limit m ~ 0 ,  the gauge symmetry SU(5) breaks to SU(3)× SU(2)× U(1) at 
scale (Y) .  However, in this limit, the theory is specified by three dimensionless 
couplings g, ?~l, k2, and an arbitrary scale parameter/~. Since the physical theory is 
independent of the choice of /~, one should think of it as being specified by a 
one-dimensional parameter, ( X )  or (Y) ,  determined by radiative corrections, and 
two  dimensionless coupfings, say g and ?~2, with ?~l fixed in terms of these. Although 
the scale of V and Jr are set by m, the position of the zeros of J,  is independent of m ! 
Certainly as m ~ 0 and, we would argue, also for finite m, these theories are best 

* Cf. Witten [2] and Yarnagishi [9]. 
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thought of as undergoing dimensional transmutation, just as in the original illustra- 
tion of the phenomenon [7]. 

Consider for a moment the theory de__ned by setting m = 0 in W (1.1) with 
superpotential 

Wo = ~I T r A 2 Y  + X2 XTrA2- (4.2) 

This theory has a large class of degenerate supersymmetric ground states, including 
A = 0, X arbitrary, and Y an arbitrary diagonal matrix. Thus one has symmetry 
breaking patterns other than SU(5) --, SU(3) x SU(2) x U(1), and the scales of ( X )  
and (Y)  are arbitrary and unrelated. The non-renormalization theorems [12] assure 
us that any one of these remains correct to all orders in perturbation theory, that is, 
the superpotential is not renormalized. Nevertheless, it is apparent from the discus- 
sion above there is a unique one of these degenerate ground states which is selected 
by the m ~ 0 limit of W, (1.1). Thus, the addition of a term linear in X to W o, with 
arbitrarily small coefficient, determines the direction of the symmetry breaking to be 
SU(3)x  SU(2)× U(1) and fixes the scales of ( X )  and, hence, (Y)  by radiative 
corrections through dimensional transmutation. Since m / ( X )  can be arbitrarily 
small, this is the ultimate hierarchy. 

Note by the way that the theory defined by W 0 is strongly natural and has a 
higher global symmetry than W, namely A ~ ei"A with X, Y unchanged. The original 
Witten model, (1.1), is a theory in which this symmetry has been softly but explicitly 
broken down to A ~ - A .  The scale of this explicit breaking is m, is arbitrary, and 
bears no relation to the unification scale (Y) ,  from this point of view. If m << ( X ) ,  
then the theory possesses a large hierarchy but it has been put in by hand, just as in 
standard GUTs. However, because this theory is supersymmetric on scales greater 
than m, there is no "naturalness" or "fine tuning" problem, that is, radiative 
corrections will not lift the scale up to (X) .  In this sense, Witten's model is natural 
but does not "explain" the hierarchy. On the other hand, even if m is chosen 
aesthetically and the dimensionless couplings specified on that scale, there can be an 
enormous range for the resulting ratio m / ( X ) ,  because the dimensionless couplings 
vary only logarithmically with scale. Thus if one chooses a theory "at  random" by 
specifying "initial" values for the couplings on scale m, then it is clear from fig. 1 
that one is apt to get ( X )  very different from m. However, it seems to us equally 
likely that m >> ( X )  as m << (X) .  

Supposing that m << (X) ,  let us discuss the effective theory on scales # << ( X )  
but I~ >1 m. After dimensional transmutation, the usual decoupling arguments [13] 
apply. On these scales, the effective theory is supersymmetric and so will be 
describable by a SU(3)× SU(2)× U(1) symmetric gauge theory described by a 
superpotential Wee f which will be a polynomial in the light fields containing terms 
which, beyond third order in the fields, have couplings proportional to inverse 
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powers of ( X )  *. There will be some supermultiplets of mass on the order of m and 

others which are massless to order m2/ (X)  **, which sets the scale of the mass 
splittings among members of supermultiplets. In this sense, m2/ (X)  sets the scale of 
supersymmetry breaking. To be more precise, the effective low energy theory on 

scales m <</~ << ( X )  will contain certain parameters Xp. These may be more or 

fewer than the number of parameters of the underlying theory. For example, there 

will be three gauge coupling constants g3, g2, g~ corresponding to each unbroken 
gauge group SU(3)× SU(2)× U(1). The relation between these parameters I~p and 

the parameters ~p of the fundamental theory will be obtained in the standard 

manner by running the effective theory up to scale ( X )  via the beta functions of the 
effective theory and matching them to the parameters of the underlying theory. One 

does not run the parameters ?tp down via the beta functions of the underlying theory 

to the scale of interest; in general, one can not even do this reliably because certain 
coupling constants (such as the SU(5) gauge coupling g) may become large, 

invalidating a perturbative calculation. Of course, this is irrelevant to the physics on 
scale ~. To state this another way, the only scales /~ on which the fundamental 
Lagrangian provides a good representation of the physical degrees of freedom is 
/a > (X) .  It seems to us unattractive to introduce ad hoc a mass parameter m into 

this theory with m << (X) .  
However unattractive it may seem, this is, we admit, a matter of taste and others 

may regard this an explanation for mass hierarchies. However, there is a limit to the 

magnitude of the hierarchy, for it is certainly unaesthetic, in the technical sense 

introduced in the previous section, to introduce a mass parameter on a scale on 
which any of the dimensionless couplings become of order unity, since there is no 
way to calculate reliably on that scale. However, this still allows considerably more 
freedom of choice in a fundamental theory than appeals to us. Perhaps the 
specification of the absolute magnitude of m requires going beyond the SUM 
framework, to the inclusion of gravity, for instance. In that case, there is no aesthetic 

objection to any particular choice for m and, because of supersymmetry, every 
choice is technically natural. We shall speculate about other possibilities in the next 

section. 
In concluding this section, we would like to reiterate that it is only after 

dimensional transmutation that the standard decoupling theorems apply. If we 
renormalize on scale/~, regarding W as a theory with 3 dimensionless couplings g, 

X l, and X 2, and one mass parameter, m, then ( X )  can be varied only by varying the 
dimensionless couplings in a certain way. That is not a situation in which decoupling 
arguments apply. Thus, it is imperative that we regard Witten's original model as a 
theory with two mass scales, rn and (X) ,  and only two coupling constants, g and X2. 

'~ Yamagishi [9] has given the leading (renormalizable) contributions to W~ff and has worked out the 
fields and spectrum of the light theory. 

** See the first footnote on page 30 and appendix A of ref. [6] for a discussion of the stronger decoupling 
theorem. 
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Let us return to case (E) of the preceding section, for which we found ( X )  = ~ .  
We now realize that this is a theory in which decoupling is complete, and the low 
energy effective theory becomes the exact theory on all scales. The effect of radiative 
corrections has been to push some degrees of freedom in the classical theory off to 
infinity. Nevertheless, the vacuum is perfectly well-defined and stable, shifted in 
energy by only a finite amount from the classical energy. Thus it seems one can write 
down a Lagrangian apparently containing degrees of freedom at the classical level 
which are not present in the quantum theory*. 

5. Summary and further speculations 

In this paper, we have generalized the application, initiated in ref. [7], of the 
renormalization group to the effective potential. This may have many applications to 
both condensed matter and elementary particle physics, but our particular motiva- 
tion was the analysis of supersymmetric models of O'Raifeartaigh type. In sect. 2, we 
derived the general conditions for the determination of local minima, (2.22) and 
(2.26). We showed how the effective potential may be determined at all scales by 
matching to perturbation theory. In the class of models of interest, the minima of the 
effective potential for the field X may be determined in principle through Nth  order 
from the N-loop fi functions, knowing only the tree approximation to the positions 
of the other fields. 

In sect. 3, we applied the formalism to Witten's SU(5) model [2] and discussed the 
characteristic curves for various assumptions about the parameters of the theory. 

There is a certain paradox about the results which illustrates the power of the 
renormalization group. Suppose one had happened to choose to specify the theory 
on a scale /~ for which ?~2 = 50g2/29, and suppose further that m <</~. Then we 
would have found that the effective potential remains independent of X (for X - / z )  
through one-loop order in perturbation theory. Since Vef f is independent of X, one 
concludes that, if X has a minimum on this scale, its determination requires going at 
least to two-loop order. How then were we able to conclude that ( X ) = / ~ ?  The 
resolution is that the curvature of the effective potential can only be seen in order h 2. 

Indeed, one sees from eq. (2.5) that, whereas the leading non-zero approximation to 
J ,  is O(h), the lowest non-trivial approximation to H is O(h2), beyond the reach of a 
one-loop approximation to V. Had we had the foresight to normalize at this value of 
/~, then by doing a second order calculation to V~ff we should find 

OZv 
- -  c ~ H ( X - / ~ )  2, 
O X  2 

so we could have concluded that ( X ) = / ~  and avoided any discussion of the 
renormalization group. Thus the result can be realized perturbatively! Had we 

* Of course, new physics such as gravity may cause one to modify the theory. 
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normalized on any other scale/~ ~ ( X ) ,  then we could only have concluded from 
perturbation theory that ( X )  >>/x or ( X )  <</~. The triumph of the renormalization 
group analysis is its ability to compensate for changes of scale and to allow a 
perturbative calculation starting from any scale as long as the running couplings 
begin small and remain small throughout the range of interest. 

In sect. 4, we considered the relationship between m and ( X )  and took up 
decoupling. Considering the m ~ 0 limit, we argued that ( X )  and ~Y) remain fixed 
and finite, being set by a relation among dimensionless coupling constants. Thus, 
Witten's model is best regarded as having two scales, m and ( X ) ,  the second 
entering via dimensional transmutation [7]. 

Let us contrast the situation here with the more familiar Coleman-Weinberg (CW) 
mechanism [7]. In the CW case, the scalar field is determined already at the tree level 
but, after radiative corrections, is shifted in such a way that the symmetry is reduced. 
In the O'Raifeartaigh case considered here, the scalar field or fields of interest 
remain undetermined at the classical level. Generally, the symmetry is already 
spontaneously broken, albeit at an arbitrary scale. It is this scale which is determined 
by radiative corrections in theories like Witten's model, (1.1). As in the original 
application [7], these theories are best regarded as undergoing "dimensional trans- 
mutation". (Note that at the minimum, the couplings ~ and g are of the same order, 
rather than X~ - g2 as in the case of scalar electrodynamics.) We have argued that 
the discussion of decoupling, even in models which like Witten's [2] have an explicit 
scale, requires that one perform this exchange of a dimensional parameter  for a 
dimensionless one. All this could conceivably occur in non-supersymmetric theories 
as well and is similar to the discussion of the masses of pseudo-Goldstone bosons 

[14l. 
Since W (1.1) undergoes dimensional transmutation, the model is best regarded as 

a theory with two mass parameters, ( X )  and m, and with one fewer dimensionless 
coupling constant. (This is necessary in order to discuss decoupling.) In this sense, 
the theory is similar to the standard GUTs.  It may be that m << ( X )  or m >> ( X ) ,  
but such a hierarchy has in a sense been put in by hand just as in non-supersymmet- 
ric models or as in previous SUMs [1]. However, the logarithmic variation of the 
coupling constants with scale makes a large difference between m and {X)  more 
natural, as long as m is chosen aesthetically. 

We have tacitly assumed throughout this paper that k2 and k~ are of the same 
order on the scale of ( X ) .  If they were very different, then another mass hierarchy 
would develop since {X)  and {Y) would be very different. As one sees from the 
figure, their behavior in the infrared (near R)  is quite different since Y2/Y~ ~ 0 as 
~- --* - ~ .  Presumably this is irrelevant since this behavior has nothing to do with the 
physics on that scale. However, if one adopts the point of view of Witten [2], then 
another large hierarchy might seem natural, since, if kl - ) ' 2  initially at m << ( X ) ,  
then their evolution will be similar to the case D discussed in sect. 3 and indicated 
on the figure. Indeed, it seems one must initially specify ~ z << k l in order to have 
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perturbative unification. So there is a possibility of a substantial difference between 
X )  and <Y). It would be of interest to pursue this further, however, henceforth we 

shall assume ?t 2 - 2,~ at ( X )  and speak loosely of the scale of unification as either 
<x> or <r>. 

Having said this, it is easy to imagine other scenarios which do lead to intrinsically 
large hierarchies. Suppose we begin with a supersymmetric theory like W which, for 
simplicity, has only one mass parameter m and which undergoes spontaneous 
breakdown of a gauge group O to another symmetry G~ at a scale (X}  determined 
by a relation among dimensionless couplings. After dimensional transmutation, we 
may apply standard decoupling theorems to replace the fundamental Lagrangian 

[G] by an effective Lagrangian 

0 1 ~[G]  -~ ~ [ G , ]  + 7VV ~NR + . (5.1) 

The first approximation to the low energy effective theory is a renormalizable 
Lagrangian E[G1] which, since supersymmetry remains unbroken, will be describ- 
able by some G~-invariant superpotential W[GI].  The form of W[G1] will be much 
like W[G], and it may be that the process will repeat itself, that is, could undergo 

symmetry breaking at some other scale (X~) determined by radiative corrections 
through the intersection of certain combinations of running coupling constants of 
E[G1]. The scale <X~) will be determined by the expectation value of some field X~ 
in WIG t] which was undetermined classically. Because the couplings in E[Gt] vary 
only logarithmically, one could naturally anticipate large mass hierarchies*. More- 
over, this may lead to further gauge symmetry breaking G~ -~ G 2. And the process 
may continue, in much the same manner as envisaged in strong-coupling tumbling 
scenarios [8]. The advantage here is that the entire process may occur for weak 

couplings and, therefore, may be calculable. Weak tumbling models will be explored 
in future work. 

At present, it seems to be necessary to introduce an explicit scale parameter m to 
initiate the weak tumbling and to determine its direction. It would have been nice 
not to have to introduce any mass parameter at all. From our point of view, the 
function of m is to insert the scale of supersymmetry breaking into the theory. If 
supersymmetry breaking could be dynamically generated, it would serve the same 
function, but so far no one has provided a convincing illustration of its occurrence in 
four dimensions [2, 16]. Another possibility is that of soft explicit breaking resulting 
from a low energy effective description of supergravity theories [17]. One might well 
hope that all masses would find their ultimate origin in at most one input scale. 

In sect. 4, we pointed out that the m --* 0 limit of Witten's model selects uniquely 
one of the continuum of degenerate ground states of W 0. This may be interpreted to 

* This is similar to, but  not  the same as, a scenario previously proposed by  Weinberg [ 15]. 
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mean that the theory defined by W 0, (4.2), is extraordinarily sensitive to small 
changes in the theory. The addition of a term linear in X is only one example. If one 
imagines W 0 is itself the effective field theory for an even more fundamental theory, 
it may be that additional higher dimensional operators select among the degenerate 
ground states, a situation in which "irrelevant operators" would not be irrelevant. If 
one generalizes Witten's model from SU(5) to SU(N),  then for N even, there are 

supersymmetric ground states with arbitrary values of ( X ) .  By the non-renormaliza- 
tion theorems [12], this remains true to all orders, so one is led to inquire about the 
effects of small changes in the models for even N. Since supersymmetry is broken at 
any finite temperature, there will be temperature-induced radiative corrections which 

might resolve the degeneracy. 
The cosmology of these models is quite interesting and paradoxical. Temperature 

may be included in the renormalization group analysis by simply treating T as 
another parameter  with dimensions of mass but with anomalous dimension zero. 
Previous discussions of Witten's model argued that no symmetry breaking occurs 
until the temperature falls to T -  m, at which point ( X )  may grow to a large value 
[18]. If, when T falls to O(m), ( Y )  grows slowly compared to the expansion time, 
then one might expect that an intermediate era of exponential expansion would be 

initiated, as in one popular cosmology [19], which has recently been amended [20]. It 
remains to be worked out whether a marriage of these two ideas can really be 

arranged. 

We would like to thank Y.-P. Yao for discussions about decoupling, and G.L. 
Kane and Y.-P. Yao for their comments on the manuscript. This research has been 
supported in part by the U.S. Department  of Energy. 

N o t e  added in proof .  In a recent paper  [21], it is pointed out that in the model of 
Witten, which we used in sect. 3 to illustrate the formalism, starting values of the 
couplings very close to the infra-red fixed point R are required to generate a 
hierarchy characteristic of grand unified theories, so a fine tuning is required after 
all. It  can be seen, however, that this result is due to the accidental proximity of R to 
the line Yl - 5o - ~ and therefore not necessarily true of such models in general. We will 
present elsewhere an example which avoids this criticism. 

A formula for T r ( - 1 ) F M  4 equivalent to (2.7) for the special case when W is a 
cubic polynomial has been independently calculated by Barbieri et al. [22]. An 
analogous formula has also been given by Frampton et al. [23] but appears to differ 
from our (and Barbieri et al.'s) result by the omission of the second term in (2.8). 
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