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ABSTRACT 

Adel, G.T., Ulsoy, A.G. and Sastry, K.V.S., 1983. A theoretical analysis and control study 
of open-circuit grinding. Int. J. Miner. Process., 10:25--43. 

Regrinding is an essential step in many mineral processing flowsheets as a final prepa- 
ratory step for mineral separation. It is normally carried out in open-circuit ball mills or 
rod mills. Wide fluctuations occurring in the hardness and size distribution of feed 
materials to regrinding mills result in a nonuniform product fineness and processing 
inefficiency. Using a previously developed regrinding model, this paper presents the 
dynamic analysis and design considerations of a control system for open-circuit grinding, 
using the traditional P-, PI-, and PID-control algorithms. This study shows the utility of 
simple analysis techniques in designing a mineral process control system with special 
attention given to the effect of sampling and analysis time on control system performance. 

INTRODUCTION 

Grinding  is a s ize- reduct ion  ope ra t i on  of  minera l  p rocess ing  t h a t  is used  to  
l iberate  valuable  minera ls  f r o m  an ore. Mineral  feeds p r epa red  for  subsequen t  
process ing  by  f lo ta t ion  or  pe l le t i za t ion  o f ten  require  fu r the r  grinding, wi th  
this regr inding being carr ied ou t  in open-c i rcu i t  ball or  rod  mills. Hardness  
and size d i s t r ibu t ion  f luc tua t ions  in the  mill  feed resul t  in p roduc t - f ineness  
n o n u n i f o r m i t y  and  subsequen t  p rocess ing-opera t ion  ineff ic iency.  P rope r  
circui t  con t ro l  is r equ i red  to  ensure  p roduc t - f ineness  u n i f o r m i t y .  

Design cons idera t ions  of  Sas t ry  and W a k e m a n  (1980)  include the  use of  
pre- and  pos t -mix  tanks  to  s m o o t h  rapid f luc tua t ions  in the  feed charac ter -  
istics. Cont ro l  is based on feed- ra te  man ipu la t ion .  S imula t ion  results  show 
that :  

(a) Pre- and pos t -m i x  tanks  s ignif icant ly  r educe  adverse  e f fec ts  o f  feed  
hardness  and  size f luc tua t ions  on s y s t em  p e r f o r m a n c e .  

(b} Measur ing the  mill p roduc t - f ineness  and  a u t o m a t i c a l l y  adjus t ing the  
circuit  f eed- ra te  resul ts  in subs tant ia l  i m p r o v e m e n t s  in circui t  p e r f o r m a n c e .  
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(c) Sampling and analysis time delays affect control system performance. 
It is recognized that a complete analysis of  regrinding is possible by 

employing the phenomenological models of  the grinding process (e.g., Herbst 
et al., 1974; Austin et al., 1975; Herbst and Rajamani, 1979), however, such 
models require extensive computation to obtain practical solutions. There- 
fore, the purpose of  this s tudy is to present a formal analysis and design of 
a control system for open-circuit grinding based on the simple model equa- 
tions developed by Sastry and W-akemen (1980). Furthermore,  this paper 
is intended to illustrate the application of  the more simple control analysis 
and design techniques to mineral processing systems. 

PROCESS ANALYSIS 

The basic model equations describing a completely mixed grinding mill 
operated in an open circuit are given by (Sastry and ~:akeman, 1980): 

H dt  ] F ( S ° - S 1 ) + P G 1  (1) 

dG11 
H\--d~- ! = F ( G o  - G1) (2) 

The subscript, 1, refers to the mill and product  contents,  and the subscript, 
o, refers to the mill feed. System control is provided by manipulating the 
feed rate to the mill based on measurements of the mill product  surface area 
as shown in Fig. 1. Note that the variables - surface area (S) and grindability 
(G) - correspond respectively to the fineness and hardness properties of the 
material being ground. 

r Ana l yze r  
I 
i I 
p I 

Feed G r i n d i n g  1 
M i l l  Prod:ct 

Fig. 1. Schematic of an open-circuit grinding mill control system. 

Assume that the mill operates at the steady-state conditions characterized 
by the equilibrium values Soe, Sle, re, g~e, and goe. Assume also that H and P 
are constants for the mill system. A set of  linear equations about  the equilib- 
rium state is then obtained in terms of incremental variables --So, s~, f, go, 
and gl -- which are given by: 

So = Soe +so (3) 



SI = Sle + sl 

F = fe+f 

Go = goe + go 

G1 = gle + gl 
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(4) 

(5) 

Equations 1 through 7 can be combined and the following two equations 
are obtained after using the definition of the equilibrium state: 

[fe(Soe -Sle)  + P ( g l e ) ] / H  = 0 (8) 

f e (goe  - g~e)/H = 0 (9) 

From eq. 9: 

goe = gle = ge (10) 

Equations 1 and 2 can be linearized in terms of the incremental variables 
by making use of eqs. 3--10 and by neglecting terms containing products of 
incremental variables, thus obtaining: 

- ~  g ,  u 0 - ( r e~H)  g ,  L 0 f e / H  go 

The system of linear first-order differential equations in eq. 11 describes 
the behavior of the regrinding mill in the neighborhood of  the equilibrium 
state. The state variables of the system are s, and g, ; the disturbance variables 
are so and go; the control input (manipulated variable) is f; and the controlled 
variable is s, .  

Since eq. 11 is to be used in subsequent control system design and analysis, 
the following substitutions are made to simplify the analysis and to conform 
with standard control terminology; 

a = f e / H  (12) 

b = (Sle - Soe) /H (13) 

c = P / H  (14) 

x = = ( 1 5 )  
x2 g, 

v = = ( 1 6 )  
v: go 

U = f (17) 

( 6 )  

(7 )  



28 

Y =  s 1 

A = l - a  c 
0 - a  

c=[1  01 

D=[ a 
0 

(18) 

(19) 

(20) 

(21) 

o] 
(22) 

a 

Substituting eqs. 12--22 into eq. 11 results in the matrix state equation: 

dX 
- - =  AX+BU+DV (23) 
dt 

and the output equation: 

Y = C X (24) 

The operator  d/dt can be replaced by the Laplace operator  s and eqs. 23 
and 24 combined to give the following input-output  relationships: 

Y(s) = C(sI - A)- '  B U(s) + C(sI - A)- '  D V(s) (25) 

where I is the identity matrix. In eq. 25, the terms C (sI-  A ) - ' B  and 
C(sI-  A ) - 'D  are the plant (regrind mill) transfer function, Gp, and the 
disturbance transfer function, N, respectively (Takahashi et al., 1972). 

v2ct  N2 

. 1 ~,~,1 e~ 1~' ~~. 

Fig. 2. Block diagram representation of the matrix input-output equation (eq. 25). 

Solving these two terms for the plant and disturbance transfer functions 
one obtains: 
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Gp = - b / ( s  + a) (26) 

[° c5 ] 
N = (27) 

s +  a (s  2 

The block diagram representation of  eq. 25 is shown in Fig. 2. A pure time 
delay, e -sL, with a lag of  L time units has been included to model the effect 
of analysis time on the control performance. 

CONTROLSYSTEM ANALYSIS 

The purpose of  the proposed control system, shown in Fig. 1, is to maintain 
the surface area (fineness) of  the mill product  ($1) at the desired operating 
value (sle). ~.hen the feed surface area (So) and grindability (Go) deviate from 
their desired operating values (i.e., Soe and ge, respectively) then the feed rate 
(F}, and consequently the value of the deviation variable, f, must be adjusted 
by the controller to ensure S~ = S~e (i.e., s~ = 0). ~hi le  many control algorithms 
are possible which will meet this goal, we consider here only the traditional 
linear algorithms such as proportional (P), proportional plus integral (PI), and 
proportional plus integral plus derivative (PID) feedback control (Takahashi 
et al., 1972). In terms of the controlled input, f, these algorithms are given 
respectively by: 

f = K p s l  

t 
f = Kp 81 + Kif 

0 

t 

f = Kp sl + KI f sl (7)dr + K D 
0 

(28) 

(29) 

d s  1 
(30) 

dt 

Con t inuous  analysis 

The block diagram of the closed-loop feedback control system is shown 
in Fig. 3. In this figure G c is the transfer function of  the controller, R* is the 
reference input and E is the error. For the time being, the delay has been 
neglected. In the system under consideration, the ou tpu t  variable, Y, which 
is equal to s, ,  corresponds to the deviation of  the product  surface area from 
equilibrium, and thus, is equal to the error, E. Therefore, the reference input, 
R*, for the system becomes zero. 

The block diagram of Fig. 3 represents the following equation: 

v 1 N~ + v2 N2 
Y = ( 3 1 )  

i - Gc Gp 
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vl(t) =1 

v 2 (t) J, N 2 + 

R*=~ U(t) I .~+ Y (t) G c Gp ¥~ 

Fig. 3. Block diagram representation of the feedback control system. 

where the denominator,  1 - GcGp, set equal to zero is known as the closed- 
loop characteristic equation (Takahashi et al., 1972). 

For P-control (eq. 28): 

Gc = Kp (32) 

Substituting this relationship and eqs. 16, 18, 26, and 27 into eq. 31, an 
equation for the output  variable, sl, in the Laplace domain is obtained: 

CI Ca 

Sl = So + go (33) 
s +a + b K p  (s + a) (s  +a + b E p )  

The steady-state error of sl (t) can be investigated by applying the final-value 
theorem (Takahashi et al., 1972). Consider a unit-step change of magnitude 
* in the fineness and no change in the grindability. The final-value theorem s o 

yields: 

a s o 
sl( t  = oo) = (34) 

a + b K p  

Equation 34 indicates that P-control has a steady-state error for all finite 
values of Kp. As the proportional gain Kp is increased, the steady-state error 
is reduced. Similarly, setting So = 0 and letting go be a unit step of magnitude 
g*, the final-value theorem gives the following: 

c go* 
s l ( t  = ~)  - (35) 

a + b K p  

Again, a steady-state error exists for all finite Kp, and this error is reduced 
as Kp is increased. 

To investigate the stability under P-control, the Routh test (Takahashi et 
al., 1972) is used. Application of the Routh test gives the condition that the 
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system reaches asymptotic stability whenever: 

Kp > -a /b  (36) 

To eliminate the steady-state error of the system, integral action is needed. 
Using PI control (eq. 29), the controller transfer function, Gc, becomes: 

KI 
Gc = Kp + - (37) 

8 

where K! is the integral control gain. With PI-control, therefore, eq. 33 be- 
comes: 

a s  c a s  

sl = So +go  (38) 
s(s+a) + Kpbs  + K i b  s(s+a) + Kpbs  + K i b  

Applying the final-value theorem gives: 

s~(t = ~) = 0 (39) 

for either a step input in s o o rg  o. The Routh test gives, in addition to eq. 36, 
the conditions: 

K I > 0 (40) 

and 

2a 3 + 3a2bKp + abK I + b:KpKi + ab:Kp > 0 (41) 

for asymptotic stability of the system under PI-control. It can be seen that it 
is possible for the system to be unstable for certain values of the parameters. 
However, since a and b are always positive from physical considerations, if 
the control gains Kp and K I are chosen to be positive (which is the usual case 
in practice), then the system is always stable. 

Finally, for PID-control (eq. 30) where: 

KI 
Gc = Kp + + KDS (42) 

s 

eq. 33 becomes: 

s o as + go cas 
sl = (43) 

s(s+a) + Kpbs + Kib  + KD s2 

application of the final-value theorem once again indicates that  the PID-control 
system will eliminate the steady-state error. Applying the Routh test for sta- 
bility gives, in addition to eqs. 35 and 40 the conditions that: 

1 
KD > - b (44) 

and 

[2a + b ( K  D + Kp)] [a 2 + b(aKp + KI)] > (1 + b K D ) a b K  I (45) 
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S a m p l e d  analysis 

As was mentioned previously, Sastry and Wakeman (1980) have found the 
sampling interval to exhibit a significant effect upon the control of a regrind 
mill circuit. Therefore, it was deemed necessary to further conduct  the stabil- 
ity analysis for a sampled system and to establish a criterion for choosing the 
sampling frequency. This analysis is conducted by converting the plant trans- 
fer function in the Laplace domain, Gp, to the Z-domain and applying a 
slightly modified version of the Routh test (Takahashi et al., 1972). 

For P-control the control transfer function in the Z-domain is once again 
simply: 

Gc = Kp (46) 

The plant transfer function, Gp, now becomes: 

b (e -aT - 1) 
Gp - (47) 

a (z - e -aT) 

As before the characteristic equation is given by: 

1 -  Gc Gp > 0 (48) 

which is used in the modified Routh test for determining the stability limits 
of a sampled system. For sampled P-control, the condition given by eq. 36 
was still found to be true, along with the following additional condition: 

a (1 + e -aT) 
Kp < (49) 

b (1 - e -aT) 

where T is the sampling interval. 
In the case of sampled PI-control the control algorithms is given by the 

following: 

K I z 
G c = Kp + - -  (50) 

z - 1  

The modified Routh test gives in addition to eqs. 36 and 40, the condition: 

2a (1 + e -aT) 
2 K p + K  I <  b ( 1 - e  -aT) (51) 

Finally, for sampled PID-control, the control algorithm is given by: 

K I z K D (z - 1 ) 
Gc = Kp + + (52) 

z - 1  z 

and the asymptotic stability conditions are eq. 40 along with: 

2Kp + K I > - 2 a / b  (53) 
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2a (1 + e -aT) 
2Kp + K I + 4K D < b (1 - e -aT) (54) 

and 

4a 2 + 2Kiab(1 + ce -aT) + 4Kpab + [KDKpb -4KDa -2K pK i b  -K~ b] X 

X ( 1 - e - a T ) b  > 0 (55) 

Thus, it can be seen that the sampling interval does play a role in determining 
the stability of the control system. 

CONTROL SYSTEM DESIGN 

The system response was simulated for both a step disturbance input and 
a pulse train disturbance input as used by Sastry and Wakeman (1980). This 
pulse train disturbance input is shown in Fig. 4. The standard values of the 
system parameters used to generate the simulation results are as follows: 

Mill holdup, H = 10,000 kg 
Power input, P = 10 k~- 
Equilibrium values for: 

Feed rate, fe = 10,000 kg/h 
Feed grindability, ge = 10,000 (m2/kg)/(kg/kWh) 
Feed surface area, Soe = 75 m2/kg 
Product surface area, Sle= 175 m2/kg 

The traditional control algorithms of P, PI and PID control were simulated 
for a variety of control gains, sampling times, and disturbance inputs. To 

4~  

2e 

E 

- 2 f  

- 40  a A i | , .  i 

% 

E 

- 4  

t ,  hou rs  

Fig. 4. Pulse train input  disturbances in the grindabili ty,  go,  and feed surface area, So. 
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e v a l u a t e  t h e  p e r f o r m a n c e  o f  e ach  c o n t r o l  s y s t e m ,  t h e  t i m e  a v e r a g e d  v a l u e  

o f  t h e  a b s o l u t e  e r r o r  d e f i n e d  b y  S a s t r y  a n d  W a k e m a n  ( 1 9 8 0 )  was  u t i l i z e d .  
In  t e r m s  o f  t h e  p a r a m e t e r s  u s e d  in th i s  p a p e r ,  t h i s  t i m e  a v e r a g e d  e r r o r  is as 
f o l l o w s :  

(56) 

T a b l e s  I a n d  II  s u m m a r i z e  t h e  r e l e v a n t  r u n  p a r a m e t e r s  u s e d  in t h e  c o m -  

p u t e r  s i m u l a t i o n s .  A l l  c o n t r o l  gains ,  Kp ,  KI ,  KD,  w e r e  t e s t e d  fo r  s t a b i l i t y  
u s i n g  t h e  l i m i t s  e s t a b l i s h e d  b y  t h e  R o u t h  t e s t  a n a l y s i s  in  t h e  p r e v i o u s  s e c t i o n .  
T h e  r e s p o n s e  o f  t h e  g r i n d i n g  p r o c e s s  u n d e r  t h e s e  d i f f e r e n t  r u n  c o n d i t i o n s  is 
p r e s e n t e d  in Figs .  5 t h r o u g h  12 a n d  t h e  va lue s  o f  t h e  t i m e - a v e r a g e d  e r r o r  a r e  
s u m m a r i z e d  in T a b l e s  I a n d  II .  

In  t h e  f i r s t  se t  o f  c o m p u t e r  s i m u l a t i o n s  ( R u n s  2 t h r o u g h  7),  s a m p l i n g  a n d  
a n a l y s i s  t i m e  w e r e  a s s u m e d  t o  b e  neg l i g ib l e  a n d  t h e  s y s t e m  was  c o n s i d e r e d  
to  b e  u n d e r  c o n t i n u o u s  c o n t r o l  w i t h  a s t e p  d i s t u r b a n c e  i n p u t  a t  t i m e  e q u a l  

TABLE I 

Control gains, simulation parameters and results 
22.5 m2/kg and go = 2500 m2/kWh 

for a step disturbance input with So = 

Run Control strategy (*) Sampling Analysis Time-averaged Fig. No. 
No. freq. (h) delay (h) error, ~(m: /kg)  

kp k I k D 

1 Open Loop 0 0 18.37 5 

2 200 0 0 0 0 7.52 5 
3 400 0 0 0 0 4.68 5 
4 800 0 0 0 0 2.66 5 

5 400 312.5 0 0 0 1.84 --  
6 400 625 0 0 0 0.98 --  
7 400 1250 0 0 0 0.50 -- 

8 400 0 0 0 0.2 4.66 6 
9 400 0 0 0 0.4 4.84 6 

10 400 0 0 0 0.6 unstable 6 

11 400 625 0 0 0.2 1.03 --  
12 400 625 0 0 0.4 unstable --  
13 400 625 0 0 0.6 unstable --  

14 100 0 0 0 1.0 9.70 8 
15 90 27.3 0 0 1.0 9.57 8 
16 120 60 60 0 1.0 8.17 8, 9 

17 120 60 60 0.25 1.0 8.85 9 
18 120 60 60 0.50 1.0 9.54 9 

(*)Control gains for Runs 14 through 18 calculated by Ziegler-Nichols Tuning Rules. 
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Control gains, simulation parameters and results 
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for a pulse train disturbance input (Fig. 4) 

Run Control strategy (*) Sampling Analysis Time-averaged Fig. No. 
No. freq. (h) delay (h) error, E-(m~/kg) 

kp k I k D 

19 Open Loop 0 0.125 15.63 10 

20 267 0 0 0.25 0.125 4.89 12 
21 160 0 0 0.50 0.125 6.84 -- 
22 89 0 0 1.00 0.125 9.43 -- 
23 47 0 0 2.00 0.125 12.49 -- 
24 24 0 0 4.00 0.125 15.69 -- 

25 186 108 0 0.25 0.125 5.29 -- 
26 96 96 0 0.50 0.125 7.28 -- 
27 45 69 0 1.00 0.125 11.57 -- 
28 21 43 0 2.00 0.125 17.27 -- 
29 9.9 24 0 4.00 0.125 21.03 -- 

30 200 240 240 0.25 0.125 3.13 11 
31 85 213 120 0.50 0.125 5.63 -- 
32 30 154 60 1.00 0.125 13.22 -- 
33 9.1 95 30 2.00 0.125 20.26 -- 
34 2.5 53 15 4.00 0.125 27.63 -- 

(*) Control gains calculated by Modified Ziegler-Nichols Tuning Rules. 

to zero. As predic ted  by  the final-value t heo rem and the R o u t h  test, P-control  
showed  an offset  and was f o u n d  to be stable for  all positive values o f  Kp. 
Figure 5 shows the results for  the first four  s imulat ion runs, and it is clear 
tha t  the offset  can be reduced by increasing Kp. This requires an increase in 
the feed rate which is, of  course,  a desirable requ i rement  (since it leads to 
increased t h r o u g h p u t  f rom the grinding circuit).  We also note  tha t  P-control  
provides a significant improvemen t  over the open- loop  response (Run 1). 

The final-value t heo rem  analysis c o n d u c t e d  previously indicated tha t  the 
s teady-state  error could be comple te ly  el iminated if PI -cont ro l  was used. This 
was s imulated for  the condi t ions  used in the previous P-control  analysis, 
a p ropor t iona l  gain, Kp, of  400,  and various values of  integral gain, K I. Table 
I shows tha t  the integral act ion in Runs  5, 6 and 7 improves the cont ro l  
pe r fo rmance  over tha t  o f  P-control  in Runs  2, 3 and 4 as well as over the 
open- loop response (Run 1). 

A n u m b e r  o f  s imulat ions (Runs  8 th rough  16) were carried ou t  to accoun t  
for the analysis delay.  Figure 6 (for  P-control  with Kp = 400)  demons t ra t e s  
tha t  the analysis delay has qui te  a significant effect  on the regrinding mill 
operat ion.  When L, the  delay time, is increased, the con t ro l  pe r fo rmance  
degrades unti l  the  sys tem ul t imate ly  becomes  unstable.  Similar results were 
obta ined  for  PI-cont ro l  (Table II, Runs  11, 12 and 13). Thus, it is clear 
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Fig. 5. The effect of  p ropor t iona l  gain, Ep, on continuous P-control  for a step change 
disturbance in the feed surface area (run nos. 1, 2, 3, and 4). 
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Fig. 6. The effect of  analysis delay, L, on continuous P-control dur ing a step change 
disturbance in the feed surface area (run nos. 8, 9 and 10). 

from these results that  unless L is very small, its value must be accounted for 
in the controller design. 

Since the delay could not  be taken into account in the Routh test, any 
instability arising from this delay time would not be predicted. The work of 
Ziegler and Nichols (1942, 1943), however, provides a method for proper 
selection of the controller gains for systems where the delay time L is signif- 
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icant. Their method is based on two values, R and L, which are obtained 
from the open-loop unit step input response of the process to be controlled. 
Figure 7 shows a typical unit-step process response curve, and defines the 
varibles R and L. Ziegler and Nichols recommended the following rules for 
setting the control gains: 

(a) P-control: K p  = 1 / R L  

(b) PI-control: K p  = 0 . 9 / R L  

KI  = 0 . 2 7 3 / R L  2 
(c) PID-control: K p  = 1 . 2 / R L  

K I = 0 . 6 / R L  2 

K D = 0 . 6 / R  

E 

s~ t f 

j# 

1 

/ i 

k - - ~ /  1 1 I 
I 2 3 4 

t ,  hours 

Fig. 7. Unit step response for obtaining control parameters by Ziegler-Nichols tuning. 

In this investigation, the analysis delay, L, was chosen as 1 hour and R 
was determined from Fig. 7 to be 0.01. Thus, using the above rules, Kp = 100.0 
for P-control, Kp = 90.0 and K I = 27.3 for PI-control, and Kp = 120.0, K1 = 
60.0, and K D = 60.0 for PID-control. The performance of these controllers is 
shown in Fig. 8 and Runs 14 to 16 of Table I. Even with a fairly large sampling 
and analysis time of L = 1.0, the control systems are stable. The performance 
of the controllers, while not  as good as with L = 0.0, is quite satisfactory. 
The PID-controller exhibits the best control but the PI-controller performance 
is also acceptable and requires less control effort. The P-control results in a 
steady-state error, and is least effective of the three. 

The control system analysis presented thus far has been conducted 
assuming that  control action was being taken continuously. From a plant 
operation point-of-view, this is not very practical since the mill discharge 
samples are taken only periodically. Clearly, no control action can be taken 
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Fig. 8. Continuous P, PI and PID-control tuned by the Ziegler-Nichols rules (run nos. 
14, 15  and 16) .  
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Fig. 9. The effect of sampling interval, T, on PID-control tuned by the Ziegler-Nichols 
rules (run nos. 16, 17 and 18). 

be tween  samples, and thus,  the  con t ro l le r  input  is held cons tan t  dur ing these 
periods.  The  e f fec t  of  sampling interval  does  no t  seem significant when  a 
con t inuous  PID-cont ro l le r  and a sampled PID-cont ro l le r  are c o m p a r e d  for  
the step d is turbance  condi t ions  used previously  as shown in Fig. 9. This 
response,  however ,  is misleading since, f rom a pract ical  s tandpoin t ,  the  
d is turbance  inpu t  is no t  one  pulse bu t  a series o f  pulses, in which case, the  
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sampling interval becomes important.  Therefore, the control gains must be 
chosen to provide for both analysis delay and sampling interval. 

The Ziegler-Nichols tuning equations have been modified (Takahashi et al., 
1971) to account for the sampling interval, T. These modified Ziegler-Nichols 
tuning rules are as follows: 

(a) P-control: Kp - 1 
R (L + T) 

= 0 . 9  , 
(b) PI-control: Kp R (L + T) - ~ KI 

0.27 
KI = T 

R (L + 0.5T) 2 

(c) PID-control: Kp 1.2 , = -~K I 
R (L + T) 

0.6 
K I = T 

R (L + 0.5T) 2 

0.6 
KD - 

RT 

For the system under consideration, L = 0.125 h was chosen as a reasonable 
value for the analysis delay of an automated system. Once again R was 0.01 
as previously determined, and various values of sampling interval were chosen 
for the simulation of the sampled data system. 

The P, PI, and PID controllers were simulated for the sampled system using 
a disturbance input represented by the pulse train shown in Fig. 4. The per- 
formance of these controllers is shown in Runs 20 to 34 of Table II. Also 
the open-loop response caused by this disturbance input is shown in Run 19 
and Fig. 10. Table II shows that  for sampling intervals of  1 hour or less, all 
three control algorithms provide substantial improvement over the open-loop 
response. At sampling intervals greater than 1 hour, however, the control gains 
become so low that  very little improvement is seen and in some cases the 
response is worse with control. This result is as expected from the sampling 
theorem (Takahashi et al., 1972) which states that a digital control system 
can handle a continuous signal with frequencies up to 0.5IT. Since the fre- 
quency of the disturbances is often 1/8 h in the pulse train used for this 
analysis, the control system is at its limit when sampling interval, T, is 4 hours. 

Although all three control algorithms with sampling intervals of 30 minutes 
or less provide quite adeqate control for most purposes, PID-control with a 
sampling interval of 15 minutes seems to provide the best performance as 
shown in Run 30 of Table II and Fig.11. P-control with the same sampling 
interval, however, also provides reasonable control and is easier to implement. 
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Fig. 10. Open loop response to pulse train disturbance input  (run no. 19). 
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Fig. 11. PID-control with 15-minute sampling interval tuned by the modified Ziegler- 
Nichols rules (run no. 30). 

% 

* - 2  

! ! 

4 7 

| 

20 4h "" ,~b :~ ,do 
t ,  hours 

Fig. 12. P-control with 15-minute sampling interval tuned by the modified Ziegler-Nichols 
rules (run no. 20). 
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The P-control response is shown in Fig. 12. Once again, the offset is evident 
under P-control and may ultimately make the PID-control algorithm more 
desirable if disturbances are not  very frequent. For frequent  disturbances, 
however, the less oscillatory nature of  P-control may make it more desirable. 
Thus, the use of pre-mix and post-mix tanks to smooth out  disturbances 
(Sastry and Wakeman, 1980) may ultimately provide the best control by 
allowing one to use the better  response provided by the PID algorithm. 

SUMMARY AND CONCLUSIONS 

In this paper, the design of traditional feedback control systems for an 
open-circuit regrinding mill has been discussed. The analysis has been based 
on the process model equations developed by  Sastry and Wakeman (1980), 
the final-value theorem for determining steady-state error, the Routh  test 
for determining stability, and the Ziegler-Nichols and modified Ziegler-Nichols 
rules for tuning the control parameters. The concepts and methods used in 
the present study are quite general and can be effectively applied to other 
problems in mineral process control. 

In addition to the recommendation that pre-mix and post-mix tanks be 
included in regrinding circuits to smooth out  the effects of process distur- 
bances, we can state that: 

(1) A traditional feedback control system such as P- or PID-control which 
manipulates the feed rate to the mill based on measurement of  the product  
fineness will be very effective in improving regrinding mill circuit performance 
(for a low frequency of disturbance pulses, integral action should be included}. 

(2) The design of the control system can be based on ensuring stable per- 
formance, eliminating steady-state errors, requiring that the control effort  
not be excessive, and that the time delay due to sampling and analysis of  the 
mill product  be properly taken into account. 

(3) The sampling and analysis time should be minimized for best control 
system performance. This can be achieved by employing automatic sampling 
procedures and the use of  on-line particle size analyzers. 

As indicated in the introduction, this paper is intended to demonstrate 
the applicability of  a few of the control theory techniques to mineral process 
control problems by using the regrind mill case as an example. Areas for 
further study could be the effectiveness of  feed forward strategies based on 
measurements of  feed surface area and grindability, the implementation of  a 
digital control scheme, the use of  advanced control strategies such as optimal 
or adaptive control, and the practical aspects of the control system hardware. 
The usefulness of adapting the simple model equations (equations 1 and 2) 
for carrying out  the design and stability analysis of  the control system in a 
rapid, cost-effective manner should be self-evident. 
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NOMENCLATURE 

a 

A 
b 
B 
C 
C 
D 
E 

F 
f 
fe 
Ge 
Gp 
Go 
O~ 
go 
go* 
goe 
gi 

gie 
ge 
H 
ko 
ki 
kp 
L 
N 
P 
R 
R* 
S 
So 
Si 
So 
So* 
Soe 
Si 
Sie 
t 
T 
U 
V 

a constant ( t i m e - ' )  
A-matrix 
a constant (area/mass:)  
B-matrix 
a constant (power/mass) 
C-matrix 
D-matrix 
error input 
time-averaged error (area/msss) 
mass feed rate of solids (mass/time) 
deviation of mass feed rate from equilibrium (mass/time) 
equilibrium mass feed rate (mass/time) 
control transfer function 
plant (regrind mill) transfer function 
grindability of  solids in feed [(area/mass)/(energy/mass)] 
grindability of solids in mill and product  [(area/mass)/(energy/mass)] 
deviation of feed grindability from equilibrium [(area/mass)/(energy/mass)] 
magnitude of a step change in go [(area/mass)/(energy/mass)] 
equilibrium feed grindability [ (area/mass)/(energy/mass) ] 
deviation of mill and product  grindability from equilibrium [(area/mass)/(energy/ 
mass)] 
equilibrium mill and product  grindability [(area/mass)/(energy/mass)] 
equilibrium grindability [(area/mass)/(energy/mass) ] 
mass holdup of  solids in mill (mass) 
derivative gain 
integral gain 
proport ional  gain 
analysis time lag (time) 
disturbance matrix transfer function 
power input to the grinding mill (power) 
Ziegler-Nichols tuning parameter 
reference input 
Laplace operator 
feed fineness (area/mass) 
mill and product  fineness (area/mass) 
deviation of feed fineness from equilibrium (area/mass) 
magnitude of  a step change in s o (area/mass) 
equilibrium feed fineness (area/mass) 
deviation of mill and product  fineness from equilibrium (area/mass) 
equilibrium mill and product  fineness (area/mass) 
time 
sampling interval (time) 
input vector 
disturbance vector 
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V! 

02 
X 
Y 
Z 
T 

disturbance input transfer function 
disturbance input transfer function 
state vector 
output  vector 
Z-operator 
an integration representation of time (time) 
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