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Abstract-Data compression techniques can improve information system performance by reducing the size of a 
database by as much as ninety percent. This paper is written to provide assistance to practitioners considering the 
use of data compression for the storage of a commercial database. It reviews a wealth of literature on data 
compression and presents facts and guidelines which will assist system designers in evaluating the costs and 
benefits of compression and in selecting techniques appropriate for their needs. 

1. INTRODUCTION 

Since compression techniques consistently reduce 
secondary storage requirements in commercial databases 
by 30-90%[4, 19, 39,711, it is surprising that they are not 
more widely used. Three facts help to explain this 
phenomenon: 

(1) Designers typically underestimate the amount of 
data compression which is possible for a given database, 
and the implications of this compression are not fully 
appreciated. 

(2) Data compression adds a layer of complexity to the 
design, implementation, and operation of an information 
system and designers are reluctant to accept additional 
complexity without clear and substantial benefits. 

(3) Much of the published literature narrowly ad- 
dresses individual compression techniques, surrounding 
them in a mathematical mystique. Practitioners under- 
standably avoid areas in which they feel uncomfortable. 

This paper distills a rich collection of literature on data 
compression and extracts from it facts which will assist 
database designers in evaluating the costs and benefits 
of compression and in selecting a technique appropriate 
for their needs. Specifically, it defines the nature of data 
redundancy; explains the compression techniques 
designed to reduce it; considers advantages and disad- 
vantages of each technique; and provides an index into 
literature relevant to a practitioner. 

2. COMMON FORMS OF REDUNDANCY AND BENEFITS OF 

COMPRESSION 

Data values are stored in a database as patterns of 
binary digits, Redundancy exists when portions of these 
patterns are predictable and therefore carry little or no 
“information.” Redundancy typically exists in one of 
three forms: 

-One or more data values occur with exceptionally 
high frequency. 

-Significant correlation exists between successive 
data values. 

-Data values range over a domain much smaller than 
can be represented with their storage format. 

While forms of redundancy such as parity bits and 
check digits[l, 551 serve a planned and useful purpose. 
most redundancy is unplanned and unnecessary. With no 
loss of informations space requirements for textual files 
can be reduced by 47% by representing commonly 
occurring characters with short variable length 
codes[24]. Coding of character combinations can reduce 
file size by 75%[31,59]. Computer programs stored in 
eighty-column card format can be compressed by 50- 
78% by removing blank characters[23,29, 501. 
Representation of successive telemetry readings as 
differences from previous readings can reduce trans- 
mission requirements by as much as 9S%[51]. 

Database compression may yield many benefits. 
Storage costs and buffer requirements can be reduced 
while data access and transfer speeds are increased. 
Telecommunication charges can also be reduced, while 
effective data transmission speed is increased. Scanning, 
merging, and sorting, as well as database backup and 
recovery operations, can be performed more rapidly on 
smaller files; and the collection of applications which are 
feasible in a constrained storage environment is enlarged. 

There are, as well, disadvantages. Additional process- 
ing time is required by compression and decompression 
operations. Some effective compression methods 
produce variable-length records which are more difficult 
to store and retrieve. Some compression techniques 
require bit manipulation, which is often difficult or 
inefficient to accomplish with higher-level programming 
languages. Added time for analyses, design, programming 
and testing are required during new system development. 
And finally, ongoing maintenance of encoding and deco- 
ding tables is sometimes needed as new data values are 
stored in a database. 

3. FUNDAMENTAL CONCEPTS, TERMINOLOGY, AND THEORY OF 

COMPRFSSION 

It is important to distinguish three related terms. 
Data Encoding is a process which maps from a col- 

lection of encoding units (i.e. one or more symbols is one 
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Table 1. A small example of a fixed-length code. 

THL 32 .27fl 

OF 24 ,170 

4Nn 32 ,131 

TO 24 ,099 

A 15 ,088 

IN 24 ,374 

THAT 40 ,052 

IS 24 ,043 

IT 24 ,940 

IIN 24 933 

LtNGTtl 

(II) 

f WBABILITY 

(PI) 

:ODE VALU 

0000 

oon1 

on10 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

data representation) to a collection of code values (i.e. 
one or more symbols is a second data representation). 
The relationship between encoding units and their cor- 
responding codes values is referred to as a code. If the 
code mapping is one-to-one then an inverse mapping 
exists and decoding refers to the reversing process. 

Data Compaction is a form of data encoding which 
reduces data size while preserving all information con- 
sidered relevant. 

Data Compression is a reversible data compaction- 
process. 

While closely related, these concepts are distinct. 
Some important nonreversible encodings generate 
effective database access keys with only incidental 
compaction (e.g. entry/title keys for bibliographic 
files[52,46] and phonetic name keys for customer 
files[22,74]). Encryption[27,21] is a reversible data 
encoding technique’ (designed to obscure the meaning of 
sensitive data) which generally yields no compaction. 
Abbreviation[l l] is a compaction technique which is 
sometimes nonreversible. This paper is concerned 
exclusively with reversible encodings designed 
specifically to reduce data storage requirements. 

A number of concepts fundamental to our discussion 
derive from the field of information theory[66,34, 1,5]. 
A binary digit or bit is defined as a basic measure of 
storage. Consider a database with M total occurrences of 
N different encoding units; let li denote the length in bits 
of the ith encoding unit, while pi denotes its occurrence 
probability. As in the small example of Table 1, one can 
always assign the binary numbers 0 to N - 1 to the 
encoding units and thereby construct a fixed-length code 
of length f, for i equal to the smallest integer greater than 
or equal to log, N (denoted i= [log, N]). The corn- 

E 

pression ratio of a code is the relative amount of storage 
saved by encoding. Since the original database has length 
i = M ZE’=, Lpi and the encoded database has length 
L = MZE, ipi; the compression ratio becomes (L - 
i)/L = XL, (11 - log2 N]/li)pi. Table 1 shows that a 
85.4% compression can be achieved for a database con- 
sisting of the ten most popular words in the English 
language (assuming that each word is originally ter- 
minated by a blank stored in g-bit character format). 

Encoding and decoding with fixed-length codes is 
straightforward[Q, 481. Encoding is performed as data 
are first entered into a database by matching values to be 
compressed against encoding units held in a main 
memory encoding table[76]. During this process the 
replacement code value is either read directly from the 
code table after the match or calculated as a by-product 
of the search process (e.g. the resulting value of a 
“DO-loop” index or binary search trace vector). Deco- 
ding is accomplished by using the code value to calculate 
the encoding unit’s displacement in the code table. By 
either designing codes which maintain order relationships 
for sorting operations[9, 261 or by searching for data 
using encoded values, decoding operations can some- 
times be avoided during data processing operations. 

While the 85.4% compression in our example is extra- 
ordinary, a variable length code, which assigns short 
code values to frequently occurring encoding units and 
longer values to the infrequent ones will achieve even 
greater compression[24]. Information theory establishes 
the fact that no code can have an average code value 
length less than I = - P EI pi log,( l/pi). 1 is referred to 
as the entropy of the database and takes on a maximum 
value of log, N when pi = l/N for all i. (In this event a 
fixed length code of length I is the fact optimal.) For our 
examples I = 3.01 and therefore the best code we can 
devise may have a compression ratio no greater than 
89%. A variable length code will therefore increase 
compression here by at most 3.6% over the simple 4-bit 
code. 

Whether or not it would be worth the effort in a real 
design situation, the most efficient variable length code is 
easily found. Specifically, Hufman codes [34,42,47] 
have been shown to yield minimum redundancy for a 
given collection encoding units with known and un- 
changing occurrence probabilities. One can construct a 
Huffman Code for any problem by building a binary tree, 
as follows [65]. Initially, encoding units are listed in order 
of their probability of occurrence. The two units with 
smallest probabilities are removed from the list; a O- 
branch is assigned to one and a l-branch to the other. 
Their probabilities are added and assigned to a new 
combined unit which is merged back into the diminished 
list so that it is again in order. The procedure is repeated 
until a single unit remains as the root of the binary tree 
just constructed. The code value for any original enco- 
ding unit can now be read by traversing the path from 
this root to that encoding unit. 

When the procedure is applied to our example, the 
binary tree shown in Fig. 1 results. The Huffman code 
defihed by this tree is shown in Table 2. Its expected 
code length of 3.05 is slightly greater than the Iimiting 
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CO& Va?ue Oil11 describes 
the path from tree root to 
ariqlnal encodinq unit ON 

Fig. 1. A Huffman code binary free for the small example. 

value I = 3.01.t Observe that for this code, as for 
Huffman codes in general, no code value is the prefix of 
another, and thus every encoding of a stream of enco- 

Table 2. A minimum redundacy Huff man code for the small example 

I NCOD I NG 
UNIT 

1 THE_ 

2 OF- 

3 AND_ 

4 TO- 

5 A- 

6 IN- 

7 THAT_ 

8 IS- 

9 IT- 

10 ON- 
- 

CODE 
VALUE 

jk5pyiT 

.270 

,170 

,131 

,099 

,088 

,074 

,052 

,043 

,040 

,033 

T- 

00 

010 

100 

101 

111 

0110 

1100 

1101 

01110 

01111 

2 

3 

3 

3 

3 

4 

4 

4 

5 

5 

N-10 R= 1,000,000 

EXPECTED CODE LENGTH = & Pi i, = 3.05 BITS 

CONPRESSED DATABASE LENGTH = i = M & Pt. it = 3,053,OOO BITS 

ORIGINAL DATABASE LENGTH = L = 27,336,OOO BITS 

COMPRESSION RATIO = (L-h/L = 88.8 PERCENT 

tCenerally, one can achieve #is limit only by encoding strings of 
encoding units with longer HuEman codes. 

ding units is uniquely decipherable; that is, given an 
encoded database, one can always distinguish successive 
code values without resorting to delimiters or length 
codes. Note, however, that with a database so encoded, 
the loss of a single bit may affect the decoding of all 
subsequent code values, unless decoding is resynch- 
ronized in some way [75,26]. 

The Huffman coding technique required knowledge of 
the encoding unit occurrence probabilities, pi, which for 
a commercial database can be readily estimated in a 
variety of ways[12,39]. When these probabilities are 
either unknown or change over time, as is the case for 
data messages arriving for transmission over com- 
munication equipment, the data compression problem 
becomes more complicated. A class of universal coding 
schemes [78,18] have been devised to compensate for 
this lack of knowledge. Basically, the techniques employ 
a memory buffer of some size to capture recent history 
of the data stream and encode a current data segment to 
be transmitted in terms of the buffer location and length 
of an equivalent prior segment. Ziv and Lempel[79, SO] 
provide an informative discussion of specific universal 
algo~~ms and show that they may achieve compression 
comparable to optimal codes with full a priori know- 
ledge. 

4. COMPARISON OF COMMON COMPRESSION METHODS 

With the basic concepts presented above, we now 
compare a wide variety of compression methods by 
dividing them into two categories. We first discuss com- 
pression techniques which view a database as a homo- 
geneous character string and reduce its size through 
substring encoding, null suppression or value differenc- 
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Bit positions 0 and 1 

Bit positions 
4.5.6 and 7 

Fig. 2. The extended binary coded decimal interchange code- -EDCDlC. 

0100 
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r 

ing. We later consider the compression improvements 
which are possible with these same techniques when the 
database is analyzed more carefully as a collection of 
formatted records whose data items are related via 
common value domains. 

4.1 Encoding methods for character strings 

Databases encoded as a stream of characters can be 
subdivided into substrings of arbitrary length. In general, 
encoding and decoding operations for short strings are 
faster and require less main memory for tables and 
algorithms, while codes for longer strings offer greater 
compression ratios. Since techniques which encode sin- 
gle characters are simplest, we analyze them first. 

An analysis of the popular I-bit fixed length EBCDIC 
code shown in Fig. 2, reveals that code values for all 
numerics and uppercase alphabetics begin with the bit 
combination “11.” Removal of these bits from four suc- 
cessive characters permit compression to three character 
positions. The shifting of bits required to accomplish this 
compression (and decompression) is easily programmed, 
inexpensively executed and yields a storage reduction of 
25%. If data are strictly alphabetic, then 5 bits are 
sufficient to represent a character; eight characters can 
be stored in five character positions; and 37% com- 
pression is achieved[47]. Numeric data affords an 
opportunity for 50% compression[l3,67] and can be 
accomplished with hardware instructions on some 
machines[35,3]. 

is appended to each value to distinguish code types. 

Maximum compression of character strings is achieved 
with variable-length codes. Heaps [31] describes a string 
compression method for characters in common English 
text which assigns 3-bit codes to the most frequent seven 
characters and 7-bit codes to the remainder. A prefix bit 

Bit 
positions 
2 and 3 

Since the seven most frequent characters account for 
65% of all occurrences[57], the expected code length for 
a textual database is 5.4 bits ( = 4 x 0.65 t 8 x 0.35), 32.5% 
less than an g-bit code. 

This compression can be improved by packing more of 
the frequent characters into 4 bits in the following man- 
ner: let the code values O-12 be the table displacements 
for the thirteen most frequently occurring characters 
while the code values 13-15 designate three tables for 
characters which are not members of the first thirteen. If 
the first 4 bits have the value 13, 14, or 15, the next 4 bits 
give a character displacement in three corresponding 
tables. Since the thirteen most frequently occurring 
characters comprise about 80% of all occurrences in 
English text, representing them with 4 bits reduces the 
average code length to 4.8 bits per character, for a 40% 
reduction. 

Huffman coding of single characters with the occur- 
rence frequencies of common English text produces the 
code shown in Fig. 3[24]. Its expected code length of 
4.12 bits yields a 48% compression. Martin[47] provides 
the Huffman code for a commercial database whose 
character frequency distribution is shown in Fig. 4. The 
expected code length of 2.91 bits provides compression 
of nearly 64%. Gottlieb[25] reports compression results 
of 50% or more on a variety of large insurance files that 
already had some numeric data in compact binary form. 

Ruth and Kreutzer[60] applied the Huffman coding to 
a 350-million-character Inventory Requisition File with 
known occurrence probabilities and found its perfor- 
mance to be “unacceptable.” However, by extending the 
set of character encoding units to include twelve com- 
monly occurring multicharacter patterns, a 61% com- 
pression was achieved. This was the best performance of 
twelve alternative codes evaluated. McCarthvl491 ,. - 
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LETTER PROBABILITV CODE VALUE 

F 
G 
H 

; 
K 

0.1859 
0.0642 
0.0127 
0.0218 
0.0317 
0.1031 
0.0208 
0.0152 
0.0467 
0.0575 
0.0008 
0.0049 
0.0321 
0.0198 
0.0574 
0.0632 
0.0152 
0.0008 
0.0484 
0.0514 
0.0796 
0.0228 
0.0083 
0.0175 
0.0013 
0.0164 
0.0005 

000 
0100 
011111 
11111 
01011 
101 
001100 
011101 
1110 
1000 
0111001110 
01110010 
OlOlO 
001101 
1001 
0110 
OllllO 
0111001i01 
1101 
1100 

Fig. 3. A Huffman code for characters in common english text. 

ENCODING UNTT PROBABILITY CODE VALUE 

0 .555 
,067 
.045 
.035 
.033 
.032 
.030 
.027 
,027 
,022 
.019 
.015 
,012 

0 
1000 
1100 
10010 
10100 
1OlOl 
10110 

2 
a 
3 
A 

F 
B 
Blank 
D 
E 
z 
P 

+ 

i 

# 
? 

cd 

,011 
.OlO 
.009 
.007 
.006 
.005 
.004 
.004 
,004 
,003 
.003 
.003 
.0025 
.0020 
.0015 
.0015 
.0013 
.0012 
.OOlO 
.OOlO 
.0006 
.0003 
.0003 
.0003 
.OOOl 

t 
<.00001 

Y 

11100 
11101 
11110 
loo110 
101110 
111110 
110110 
110100 
110101 
1011110 
1111110 
1101110 
~0011110 
10011100 
10011101 
10111110 
11111110 
11111111 
11011110 
100111110 
110111110 
110111111 
1001111110 
1001111111 
1011111100 
1011111101 
10111111100 
10111111101 
10111111110 
101111111110 
1011111111110000 
1011111111110001 
1011111111110010 
1011111111110011 
1011111111110100 
1011111111110101 
101111~111110110 
10111111~~1~0~11 
10111111111~1000 
1011111111111001 
1011111111111010 
1011111111111011 
1011111111111100 
1011111111111101 
1011111111111110 
1011111111111111 

Fig. 4. Huffman code for a specific commercial database. 
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Table 3. Digram encoding 

Master Combining 
Characters Characters Noncombining Characters Combined Pairs 

Base Hex Hex Hex Hex Hex Hi% 
jymbol Value Symbol Code Symbol Code Symbol Code Symbol Code Sylnbol Code Symbol Code 

I 

A 2; ! 

J 15 9 28 Al 60 

;; r 2C ; :: :: 
6E 

E 82 : 
: 

:: + 43 
I 97 

1: 
& 44 

1: 5A :: 6F 
5B AC 70 

0 AC : : " 2F 
N Cl 1A 

1B ; 
30 

$ 45 b0 5c 
46 

T D6 F a 31 * 47 
U EB G ;; b 1C X 32 ) EA 88 

H Y 33 ; :; 
: ;: 34 

:; 
; 35 ; :; 

M : 21 : 36 
, 

37 38 % :co 

P ;23 : 

s" 22: 6 5 :: 

; :: 

? 10 k 50 51 L)R :: T$ D'6 
T 

; 

;: 1 ;; 7 :: 
8 3D 

L! 52 1: 69 
u; ESB 

13 n 28 9 3E ’ :i z:: 
W 14 0 29 Q ;; = 55 UW 6C U: F+F 

P 2A II 56 
c 57 

An Example of Compression 

presents a systematic approach for selecting multi- 
character encoding units for a Huffman code, and reports 
the compression achieved on a variety of files: 40% 
compression on an object-module file, 57% on an English 
text file, 69% on a name-and-address file, and 82% on a 
COBOL source file. Guazzo[26] provides an insightful 
discussion of operational and complexity limitations of 
Huffman codes and describes more sophisticated al- 
gorithms with preferred characteristics for compression 
of strings of encoding units with correlated occurrence 
probabilities. 

These results suggest that one can increase com- 
pression by encoding strings with multiple characters. 
Encoding units with N characters are referred to as 
N-grams. In an early application of digram 
encoding [lo] (where N = 2), Synderman and Hunt [68], 
exploit the fact that data stored with an 8-bit code 
generally uses no more than 88 of the 256 possible code 
values leaving 168 code values to represent pairs of 
characters. Table 3 presents the 168 diagrams and code 
values (in a hexidecimal format) selected by those 
authors for compression. Also shown are eight “master” 
characters and twenty-one “combining” characters from 
which the 168 (= 8*21) diagrams are derived, as follows: 

If the initial character in a string to be compressed is 
not a master character then it is passed unchanged; 
else if the next string character is not a “combining” 
character, then again the first character is passed un- 
changed; else both characters are passed with the 
encoded value formed by adding the code value com- 
ponent of the master character to that of the combin- 
ing character. The process repeats with the remaining 
string. It is uniquely reversible. 

Inherently, compression with digram encoding is 
limited to 50%, which is achieved only when every 
character is paired into a diagram. Snyderman and Hunt 
achieved a 35% compression, reducing storage require- 
ments of an online file by 60 million characters. Schieber 
and Thomas[61] used a more systematic method to est- 
ablish an efficient set of digrams for a 21-million-charac- 
ter database; they achieved a 43.5% space reduction. 

While these compression ratios are not dramatically 
better than the 25% offered by the simple fixed-length 
6-bit code, the method is about as simple to implement. 
Since digrams can be encoded and decoded rapidly via 
indexing operations on small tables stored in main 
memory. Character-length code values eliminate the 
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synchronization problems associated with Huffman 
codes, and 43% compression compares favorably not 
only to that achieved with Huffman coding of individual 
characters but also to that of more complicated trigram 
and tetragram encodings [4,64]. 

Our example of digram encoding maps two characters 
into 8 bits. A more general numerical code]281 maps N 
characters into K bits. In a manner similar to digram 
encoding, code values are formed by reversibly combin- 
ing numerical representations for two or more characters 
into a single unique number.? Consider, for example, the 
ten characters A through .I. By establishing the cor- 
respondence (A = 0, B = 1,. . . , J = 9) with the base-10 
number system, the data sequence “CAB” can be 
represented by the number 20110 ( = 2*102 t O*lO’ t l* t 
109. Since the maximum code value in this example is 
99910, a machine with a lo-bit word (with value range 
2”’ = 1024) could store any 3-character sequence in each 
word. In the same way, if all alphabetics were possible, 
then “CAB” would become 201&2*26’+ 0*26’ t 1*269, 
or 676,,,. In this case, a 15-bit word would be required to 
hold three characters. 

Numerical codes are generally designed to make max- 
imum use of a given computer’s word size. Given a 
computer with a K-bit word, code efficiency is affected 
by the encoding base, B, and the number M of charac- 
ters combined. Clearly, as B increases, M decreases. For 
a machine with K = 32, Hahn[29] evaluates values of B 
between 14 and 73 and shows that five to eight characters 
can combine in a single number, giving 20-50% com- 
pression over as S-bit code. With B = 37 (for al- 
phanumeric data), compression is 20% and numerical 
coding is inappropriate, since the simpler 6-bit code 
offers 25% compression. 

Hahn improved numerical encoding by incorporating 
into it a form of variable-length code. He maintains code 
values in several encoding/decoding tables of size D - 1, 
where D is a value calculated to produce a good com- 
pression ratio for a specific machine. The D- 1 most 
frequent characters are placed in the first table, the next 
D-l most frequent are placed in the second table, and so 
on. Encoding values are M-digit, base-D numbers and 
representing from 1 to M characters. M is now the 
maximum number of characters which might be encoded 
in a single word. Any character being encoded which is 
not one of the first D-l symbols in the table is represen- 
ted by the “escape character,” 0, followed by the 
character’s position in the second table, or so on until the 
character is located. Obviously, maximum compression 
is achieved for the first D-l characters. The more 
skewed the character occurrence distribution, the smaller 
the optimum value of D and the larger the average 
number of characters which can be packed into a single 
word. For English text on a 32-bit machine, Hahn found 
that D = 21, M = 7 was an optimum combination. He 
combines this code with a null suppression technique 

tArithmetic coding is a significant extension of this fundamental 
idea recently offered by Rissanen and Langdon[SS] as a unifying 
theory for a large class of data encoding techniques. The mathema- 
tics of that theory are beyond the depth of this survey. 

(described later) to obtain an average code value length 
of 4.7 bits per character. This 41% reduction again com- 
pares favorably with Huffman coding of individual 
characters. 

Heaps [70,74] has experimented extensively with a 
similar variable-length, fixed-increment code which 
attempts to combine the ease of managing fixed-length 
codes and the maximum compression achieved with 
variable-length codes. His technique is particularly 
effective for words or terms in textual data. Here the 
number of distinct terms is typically quite large and their 
usage frequency has a Zipfran distribution[77,43,74] 
which is quite skewed. For this situation, fixed-length 
codes achieve relatively poor compression and their 
large encoding/decoding tables must be held in secon- 
dary memory where access times are several orders of 
magnitude greater than those in main memory. 

Heaps suggests the following coding scheme to relieve 
both problems[30,70]. For a vocabulary of N distinct 
terms, codes of lengths N, < Nz < . . < N, are used to 
index terms in tables of size 2N’-‘, 2N’m* 1...1 2N’mr. The 
most frequent terms are assigned codes with length N,. 
Codes for less frequent terms are built by appending 
code increments of length N, - N,, . , N, - N, ,. The 
first bit in any increment indicates code continuation; if it 
is zero, another increment follows. Heaps experimented 
with different values of N,, N2,. . , N,, and found that 
codes with lengths (3,6,9, 12,. . .) and (4,8, 12,16,. ) 
perform effectively and were easily adaptable to 
machines with 6- and g-bit characters, respectively. For 
large document databases, average code length has been 
found to be about one-fourth that of a fixed length code 
and within 8% of optimal. 

Information theory shows that to achieve maximum 
compression, an encoding unit with occurrence prob- 
ability p should have length logJl/p). The procedure 
above attempts to match variable length codes to a given 
set of frequencies. Alternatively, if one is committed to 
the use of simple, more manageable fixed length codes, 
then maximum compression will be achieved only if the 
encoding units have equal occurrence probabilities. 
Recognizing this fact, Schuegraf and Heaps[63] propose 
a means of generating equifrequent word fragments [ 141 
to be used as encoding units. A frequency count of all 
word fragments between two and eight characters in 
length is taken from the database to be encoded. All 
fragments having a frequency less than a selected 
threshold value are eliminated initially and left un- 
changed by the encoding process, since these infrequent 
fragments have least effect on total database com- 
pression and a substantial effect on the size of the 
encoding/decoding table required [32]. Further elimina- 
tion of encoding units is accomplished by subtracting the 
frequencies of longer fragments from the frequencies of 
shorter fragments contained within them and removing 
all which fall below the threshold. This favors the longer 
fragments which contribute most to compression. The 
number of fragments selected can be controlled with the 
threshold frequency and adjusted to the amount of main 
memory available for the encoding/decoding table. For 
any threshold, the final set of fragments have ap- 
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Fig. 5. Null suppression-run length. 

proximately equal frequencies, so that a fixed-length 
code is near optimal for the selected set of encoding 
units. Successful application of the procedure to the 
Library of Congress MARC tapes[44] is reported in [62]. 

For a variety of reasons, commercial databases often 
contain large numbers of blanks, zeroes, and other filler 
characters used for the padding of vacant or variable 
length data fields. With modest processing costs these 
“null” characters can be compressed to dramatically 
reduce storage requirements. 

A common method of null suppression is the run 
length technique@%] illustrated by Fig. 5. A special 
character is inserted to indicate the presence of a run of 
nulls and the run is replaced by a count indicating its 
length. Different types of runs can be distin~ished with 
differing special characters. The actual choice depends 

0 nieans sumression of zeroes 

1 means smression of blanks 

t 

These ~1': bits give length 
of the run of nulls 

- 0 means null sutwression 

Fig. 6. Null suppression with EBCIIIC. 

upon the frequency of character occurrences in the 
existing code. For example, the EBCDIC code in Fig. 2 
has a number of characters which may be selected since 
they are unused in most applications. If no such unused 
character exists, an infrequently used character can be 
selected and its occurrence doubled in the encoded 
stream whenever it appears as a datum. Overbeek and 
DeMaine[20,54] report such a use of null suppression to 
compress a variety of alphanumeric data files by 24-61%. 
Hill1331 reports an even more dramatic compression of 
census files by 63-750/o. 

Martin/471 describes a run suppression technique for 
EBCDIC data with no lowercase characters. Here the 
second code bit is always “1” (see Fig. 2) so that a 
setting of “0” can be used to designate the suppression 
of nulls. The remaining 7 bits can then represent both the 
type of null and the length of the run. If, as in Fig. 6, for 
example, only blanks and zeroes are suppressed, then a 
singie bit can distinguish between them, while 6 bits 
remain to designate run lengths as long as sixty-four 
characters. Code values here can be one half the length 
of those in the run Iength method above. 

If only a single null type is suppressed, there is no 
need to identify it explicitly. In message transmission, 
for example, it is common to truncate leading and trailing 
blanks from each fixed-length record. Counts of the 
number of leading blanks and the number of significant 
characters in the record are placed at the start of the 
record, followed by the significant characters of the 
record[29]. The technique is especially effective when 
applied to files containing computer source programs, 
where leading and trailing blanks are common. Fajman 
and Bargelt have used the technique quite successfully in 
the WYLBUR text editor system[23]. Data stored by 
WYLBUR is broken into segments consisting of a count- 
byte split into a 4-bit count of blanks and a 4-bit count of 
nonblanks, followed by as many as fifteen nonblank 
characters. These segments can be set up very rapidly 
through the use of a hardward instruction to seek out 
runs of blanks and nonblanks. Decoding is accomplished 
very simply by jumping from segment to segment, in- 
serting bianks where necessary. Compression of 50-70% 
has been achieved for many types of text. 

Since null suppression techniques are relatively simple 
and inexpensive in comparison to the more efficient 
Huff man code, one naturally wonders how much space is 
actually saved by the Huffman code’s additional com- 
plexity. For example, Huffman coding compressed the 
database in Fig. 4 by 64%; however, the high frequency 
(55.5%) of zeroes suggests that as much as 50% com- 
pression might be achieved via null suppression alone. 
Martin[47] addressed this question by applying both 
methods to three commercial databases obtaining the 
results shown in Table 4. Here Huffman coding provided 
12-28010 additional compression which may or may not be 
significant enough in a particular application to justify its 
additional complexity. If the savings is significant then a 
variable-length, fixed-increment code should also be 
considered for its relative simplicity and self-synch- 
ronization. 
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Table 4. Compression results for three commercial databases as reported in[42] 
, + 
I Original File I Reduction Using I Reduction Using I I , I Size I Suppression of I Huffman / 

(Bytes) I I / , Repeated I 
I 

Code ($) / 
/ I Characters ($) I 

59 

I / I I 
I 300,000 54 I 82 I 

, / 
I 

3 million 34 46 1 I I 
, 19 million 64 83 I , I I 
+- + 

4.3 Di$erential coding applied to character strings 
Differential coding involves the replacement of an 

encoding unit with a code value which defines a rela- 
tionship to either a previous encoding unit or a selected 
pattern value [25]. Ruth and Kruetzer [60] and Villers and 
Ruth[71] provide a ready index to literature on telemetry 
compression, which is the single most important ap- 
plication, of differential encoding. In telemetry ap- 
plications a sensing device records measurements at a 
remote station for storage and analysis. Because suc- 
cessive readings are of uniform size and tend to vary 
relatively slowly, they are efficiently represented by their 
difference from the prior reading. Compression is applied 
prior to transmission and can reduce the total amount of 
data transmitted by more than 98%[51]. 

Comparable relationships between successive data 
values rarely occur in business applications. Knuth[42] 
suggests a hypothetical application for which the prime 
numbers less than one million are required. Rather than 
storing the 78,498 different values directly, the suc- 
cessive differences between these primes are encoded. 
Since it can be shown that the difference between any 
two primes less than 1,357,201 does not exceed 63, these 
gaps can be encoded as fixed-length 6-bit values, reduc- 
ing table size by 70%. 

Date[l7] suggests another application in which sorted 
key values are stored and read sequentially. To achieve 
compression, the keys are read in sequence and all 
leading characters of a key value common to the preced- 
ing value are replaced by their count. For example, the 
series of names JOHNSON, JONAH, JONES, JOR- 
GENSON would become (0) JOHNSON, (2) NAH, (3) 
ES, (2) RGENSON. Decoding demands sequential read- 
ing so that the preceding key value is once more avail- 
able. The count of the key value to be decompressed 
provides the number of leading characters to be retained 
and the unencoded characters are then concatenated. 
Reghgabti[56] describes a related compaction technique 
where, prior to compression of leading characters, those 
trailing characters not required to distinguish a key from 
adjacent keys are truncated. 

Young and Liu[76] analyze the use of difference 
methods for reducing the main memory storage 
requirements of encoding/decoding tables themselves. 
By clustering encoding units based upon either their 
lexical order or a minimal-spanning-tree procedure des- 
cribed by Kang[41] it is possible to significantly reduce 

table storage requirements (i.e. by a factor of S-10) at 
some cost in loss of code efficiency and decompression 
speed. The tradeoffs among these factors are analyzed 
and results of a variety compression experiments are 
described. 

4.4 Compression enhancement with formatted database 
records 

For reasons of process efficiency, commercial 
databases are typically composed of formatted data 
records[ll, 451. Each data record is subdivided into data 
items (or fields) with specific boundaries, whose range of 
values and occurrence distributions often are known. 
Viewed narrowly, data item values are simply strings of 
characters and thus the compression methods described 
in the previous sections can be applied directly. However, 
special opportunities for increased compression are 
presented since particular data items may take on a 
relatively narrow range of values over an entire 
database, and data items often exhibit a recurring in- 
trarecord structure. The price paid to obtain this greater 
compression is an additional amount of main memory 
required for encoding and decoding tables now asso- 
ciated with individual data items rather than the entire 
database. 

The amount of compression achieved with the string 
encoding methods of Section 4.1 is increased with a 
formatted database because record data items naturally 
partition the database into character strings with like 
value characteristics. Values for a particular data item, 
for example, may be known a priori to be members of a 
specific set of alphabetic strings such as surnames, titles, 
cities, states, or possibly numeric quantities such as 
rates, dates, telephone numbers, or inventory levels. The 
specific value set and its occurrence distribution can be 
readily computed with the aid of a simple file analysis 
program [ 12,401. This knowledge substantially reduces 
the total number of value possibilities for character 
strings of a given length. As a result, the average code 
value length required to encode these strings can be 
significantly shorter. Martin[47] suggests, for example, 
that an g-bit code is sufficient to distinguish 256 sur- 
names, which account for more than 90% of all last names 
used in the United States. Walker[73] provides an algorithm 
which has achieved 76% compression on large samples 
of first names by generating I-bit codes for equifrequent 
word fragments. For all but the largest organizations, 16 
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Fig. 7. Null suppression-bit map. 

bits (65,536 code values) are ample to distinguish such 
data as customers, suppliers, employees, or inventory 
items. 

Data fields are frequently present in commercial 
databases and can be compressed substantially from the 
common 6-digit (MMDDYY) representation by using 
differential encoding. Selecting an appropriate date as a 
base point, compressed dates can be represented as a 
distance in days from that origin. January 1, 4713 B.C., 
for example, is the Julian date base point generally used 
to record astronomical phenomena, and 22-bit code 
values can represent dates through the year 6700 A.D. A 
shorter 16-bit code and a more recent base point can 
represent dates ranging over a period of 175 yr, which is 
sufficient for most business applications [2,47]. In 
records where a sequence of related dates is stored, each 
can be represented as its difference from the previous 
date with significantly fewer bits [25]. 

The compression achieved with null suppression 
techniques is also typically enhanced when compressing 
formatted data records. In fact, nuli suppression is so 
effective (sometimes achieving 60-70% compression) 
that it tends to be the only compression technique rou- 
tinely supplied with commercial data management 
systems[l(i, 36,39,69]. A number of methods for com- 
pressing null data item values have been described by 
Olle[53] and analyzed by Maxwell[48]. As illustrated in 
Fig. 7, the most common is a bit vector appended to the 
front of each record in which each bit is associated with 
a corresponding held. A bit value of 0 indicates presence 
of the null value which is dropped from the record during 
compression and reinserted during decompression. The 
same idea has been applied to groupings of data items in 
some data management systems (e.g. CICS[27], IMS[38]) 
which associate bits with record segments. Segments are 
collections of related data items which tend to occur 
either together or not at all (e.g. several items of data 
would be required to describe each customer claim that 
is filed against a particular insurance policy). By sup- 
pressing entire record segments rather than their in- 
dividual data items, both the amount of data compression 
and speed of decompression improve slightly. 

SUMhlARY 

One should not conclude from this paper that data 
compression is desirable for all business applications. 
The benefit associated with compression of a particular 
database is affected by many variables: the size of the 
database, the amount and type of redundancy it contains, 
the nature and frequency of retrieval and update 
requests serviced, the availability and cost of memory 
for both code tables and data, the efficiency and com- 
plexity of the data compression technique considered, 
and finally the availability and cost of processor time for 
execution of these techniques. What is clear nevertheless 
is that typical commercial databases can in fact be com- 
pacted by 3&90%, and that this should be of more 
applied interest than current usage of compression tech- 
niques would indicate. 

In practice one finds that the most common motivation 
for database compression is a storage constraint which 
otherwise precludes implementation of a particular ap- 
plication. Since a simple technique which affords the 
compression “necessary” for the application is often 
more highly prized than a more complex one which 
offers the “best” compression, some rather pragmatic 
observations summarize this survey. 

Four relatively simple compression techniques 
adequately address all problems of interest to most 
practitioners. Null suppression is easily implemented and 
often effective. Compression/decompression routines are 
commercially available[l5, 16,40,69] or easily 
developed. They execute quickly, require neither code 
tables nor record formats, and achieve compression of 
SO-70% on a wide variety of data files. For files which do 
not compact under null suppression, digram encoding 
offers similiar advantages, requires a relatively small 
code table and reliably achieves compression of 30-40%. 

Fixed-length codes are a third alternative. They are 
simple to implement and have the important advantage 
of providing fixed field and record boundaries, which 
facilitates direct record access, selective field com- 
pression/decompression, and data searching with com- 
pressed keys without need for data decompression. Code 
tables of even a few hundred entries may be held in main 
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memory and searched rapidly. For databases whose 
encoding units have a near uniform occurrence dis- 
tribution, fixed-length codes achieve near optimal com- 
pression. 

While Huffman codes in principle achieve optimal 
compression, their complexity and synchronization 
problems often make them unattractive. In situations 
where a skewed encoding unit occurrence distribution 
makes a Hu~man code substantially more effteient than a 
axed-len~h code, a variable-length fixed-increment code 
is an effective compromise. Speci~cally, these codes are 
relatively simpie, self-synchronizing, easily adapted to a 
machine of arbitrary word length, and provide near 
optimal compression. 
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