
A PRACTITIONER‘S GUIDE TO DATA BASE COMPRESSION

TUTORIAL

DENNIS G. SEVERANCE
The University of Michigan, Ann Arbor, MI 48109, UXA

(Receioed 26 February 1982)

Abstract-Data compression techniques can improve information system performance by reducing the size of a
database by as much as ninety percent. This paper is written to provide assistance to practitioners considering the
use of data compression for the storage of a commercial database. It reviews a wealth of literature on data
compression and presents facts and guidelines which will assist system designers in evaluating the costs and
benefits of compression and in selecting techniques appropriate for their needs.

1. INTRODUCTION

Since compression techniques consistently reduce
secondary storage requirements in commercial databases
by 30-90%[4, 19, 39,711, it is surprising that they are not
more widely used. Three facts help to explain this
phenomenon:

(1) Designers typically underestimate the amount of
data compression which is possible for a given database,
and the implications of this compression are not fully
appreciated.

(2) Data compression adds a layer of complexity to the
design, implementation, and operation of an information
system and designers are reluctant to accept additional
complexity without clear and substantial benefits.

(3) Much of the published literature narrowly ad-
dresses individual compression techniques, surrounding
them in a mathematical mystique. Practitioners under-
standably avoid areas in which they feel uncomfortable.

This paper distills a rich collection of literature on data
compression and extracts from it facts which will assist
database designers in evaluating the costs and benefits
of compression and in selecting a technique appropriate
for their needs. Specifically, it defines the nature of data
redundancy; explains the compression techniques
designed to reduce it; considers advantages and disad-
vantages of each technique; and provides an index into
literature relevant to a practitioner.

2. COMMON FORMS OF REDUNDANCY AND BENEFITS OF

COMPRESSION

Data values are stored in a database as patterns of
binary digits, Redundancy exists when portions of these
patterns are predictable and therefore carry little or no
“information.” Redundancy typically exists in one of
three forms:

-One or more data values occur with exceptionally
high frequency.

-Significant correlation exists between successive
data values.

-Data values range over a domain much smaller than
can be represented with their storage format.

While forms of redundancy such as parity bits and
check digits[l, 551 serve a planned and useful purpose.
most redundancy is unplanned and unnecessary. With no
loss of informations space requirements for textual files
can be reduced by 47% by representing commonly
occurring characters with short variable length
codes[24]. Coding of character combinations can reduce
file size by 75%[31,59]. Computer programs stored in
eighty-column card format can be compressed by 50-
78% by removing blank characters[23,29, 501.
Representation of successive telemetry readings as
differences from previous readings can reduce trans-
mission requirements by as much as 9S%[51].

Database compression may yield many benefits.
Storage costs and buffer requirements can be reduced
while data access and transfer speeds are increased.
Telecommunication charges can also be reduced, while
effective data transmission speed is increased. Scanning,
merging, and sorting, as well as database backup and
recovery operations, can be performed more rapidly on
smaller files; and the collection of applications which are
feasible in a constrained storage environment is enlarged.

There are, as well, disadvantages. Additional process-
ing time is required by compression and decompression
operations. Some effective compression methods
produce variable-length records which are more difficult
to store and retrieve. Some compression techniques
require bit manipulation, which is often difficult or
inefficient to accomplish with higher-level programming
languages. Added time for analyses, design, programming
and testing are required during new system development.
And finally, ongoing maintenance of encoding and deco-
ding tables is sometimes needed as new data values are
stored in a database.

3. FUNDAMENTAL CONCEPTS, TERMINOLOGY, AND THEORY OF

COMPRFSSION

It is important to distinguish three related terms.
Data Encoding is a process which maps from a col-

lection of encoding units (i.e. one or more symbols is one

51

52 DENNIS G. SEVERANCE

Table 1. A small example of a fixed-length code.

THL 32 .27fl

OF 24 ,170

4Nn 32 ,131

TO 24 ,099

A 15 ,088

IN 24 ,374

THAT 40 ,052

IS 24 ,043

IT 24 ,940

IIN 24 933

LtNGTtl

(II)

f WBABILITY

(PI)

:ODE VALU

0000

oon1

on10

0011

0100

0101

0110

0111

1000

1001

data representation) to a collection of code values (i.e.
one or more symbols is a second data representation).
The relationship between encoding units and their cor-
responding codes values is referred to as a code. If the
code mapping is one-to-one then an inverse mapping
exists and decoding refers to the reversing process.

Data Compaction is a form of data encoding which
reduces data size while preserving all information con-
sidered relevant.

Data Compression is a reversible data compaction-
process.

While closely related, these concepts are distinct.
Some important nonreversible encodings generate
effective database access keys with only incidental
compaction (e.g. entry/title keys for bibliographic
files[52,46] and phonetic name keys for customer
files[22,74]). Encryption[27,21] is a reversible data
encoding technique’ (designed to obscure the meaning of
sensitive data) which generally yields no compaction.
Abbreviation[l l] is a compaction technique which is
sometimes nonreversible. This paper is concerned
exclusively with reversible encodings designed
specifically to reduce data storage requirements.

A number of concepts fundamental to our discussion
derive from the field of information theory[66,34, 1,5].
A binary digit or bit is defined as a basic measure of
storage. Consider a database with M total occurrences of
N different encoding units; let li denote the length in bits
of the ith encoding unit, while pi denotes its occurrence
probability. As in the small example of Table 1, one can
always assign the binary numbers 0 to N - 1 to the
encoding units and thereby construct a fixed-length code
of length f, for i equal to the smallest integer greater than
or equal to log, N (denoted i= [log, N]). The corn-

E

pression ratio of a code is the relative amount of storage
saved by encoding. Since the original database has length
i = M ZE’=, Lpi and the encoded database has length
L = MZE, ipi; the compression ratio becomes (L -
i)/L = XL, (11 - log2 N]/li)pi. Table 1 shows that a
85.4% compression can be achieved for a database con-
sisting of the ten most popular words in the English
language (assuming that each word is originally ter-
minated by a blank stored in g-bit character format).

Encoding and decoding with fixed-length codes is
straightforward[Q, 481. Encoding is performed as data
are first entered into a database by matching values to be
compressed against encoding units held in a main
memory encoding table[76]. During this process the
replacement code value is either read directly from the
code table after the match or calculated as a by-product
of the search process (e.g. the resulting value of a
“DO-loop” index or binary search trace vector). Deco-
ding is accomplished by using the code value to calculate
the encoding unit’s displacement in the code table. By
either designing codes which maintain order relationships
for sorting operations[9, 261 or by searching for data
using encoded values, decoding operations can some-
times be avoided during data processing operations.

While the 85.4% compression in our example is extra-
ordinary, a variable length code, which assigns short
code values to frequently occurring encoding units and
longer values to the infrequent ones will achieve even
greater compression[24]. Information theory establishes
the fact that no code can have an average code value
length less than I = - P EI pi log,(l/pi). 1 is referred to
as the entropy of the database and takes on a maximum
value of log, N when pi = l/N for all i. (In this event a
fixed length code of length I is the fact optimal.) For our
examples I = 3.01 and therefore the best code we can
devise may have a compression ratio no greater than
89%. A variable length code will therefore increase
compression here by at most 3.6% over the simple 4-bit
code.

Whether or not it would be worth the effort in a real
design situation, the most efficient variable length code is
easily found. Specifically, Hufman codes [34,42,47]
have been shown to yield minimum redundancy for a
given collection encoding units with known and un-
changing occurrence probabilities. One can construct a
Huffman Code for any problem by building a binary tree,
as follows [65]. Initially, encoding units are listed in order
of their probability of occurrence. The two units with
smallest probabilities are removed from the list; a O-
branch is assigned to one and a l-branch to the other.
Their probabilities are added and assigned to a new
combined unit which is merged back into the diminished
list so that it is again in order. The procedure is repeated
until a single unit remains as the root of the binary tree
just constructed. The code value for any original enco-
ding unit can now be read by traversing the path from
this root to that encoding unit.

When the procedure is applied to our example, the
binary tree shown in Fig. 1 results. The Huffman code
defihed by this tree is shown in Table 2. Its expected
code length of 3.05 is slightly greater than the Iimiting

A practitioner’s guide to database compression

ii

CO& Va?ue Oil11 describes
the path from tree root to
ariqlnal encodinq unit ON

Fig. 1. A Huffman code binary free for the small example.

value I = 3.01.t Observe that for this code, as for
Huffman codes in general, no code value is the prefix of
another, and thus every encoding of a stream of enco-

Table 2. A minimum redundacy Huff man code for the small example

I NCOD I NG
UNIT

1 THE_

2 OF-

3 AND_

4 TO-

5 A-

6 IN-

7 THAT_

8 IS-

9 IT-

10 ON-
-

CODE
VALUE

jk5pyiT

.270

,170

,131

,099

,088

,074

,052

,043

,040

,033

T-

00

010

100

101

111

0110

1100

1101

01110

01111

2

3

3

3

3

4

4

4

5

5

N-10 R= 1,000,000

EXPECTED CODE LENGTH = & Pi i, = 3.05 BITS

CONPRESSED DATABASE LENGTH = i = M & Pt. it = 3,053,OOO BITS

ORIGINAL DATABASE LENGTH = L = 27,336,OOO BITS

COMPRESSION RATIO = (L-h/L = 88.8 PERCENT

tCenerally, one can achieve #is limit only by encoding strings of
encoding units with longer HuEman codes.

ding units is uniquely decipherable; that is, given an
encoded database, one can always distinguish successive
code values without resorting to delimiters or length
codes. Note, however, that with a database so encoded,
the loss of a single bit may affect the decoding of all
subsequent code values, unless decoding is resynch-
ronized in some way [75,26].

The Huffman coding technique required knowledge of
the encoding unit occurrence probabilities, pi, which for
a commercial database can be readily estimated in a
variety of ways[12,39]. When these probabilities are
either unknown or change over time, as is the case for
data messages arriving for transmission over com-
munication equipment, the data compression problem
becomes more complicated. A class of universal coding
schemes [78,18] have been devised to compensate for
this lack of knowledge. Basically, the techniques employ
a memory buffer of some size to capture recent history
of the data stream and encode a current data segment to
be transmitted in terms of the buffer location and length
of an equivalent prior segment. Ziv and Lempel[79, SO]
provide an informative discussion of specific universal
algo~~ms and show that they may achieve compression
comparable to optimal codes with full a priori know-
ledge.

4. COMPARISON OF COMMON COMPRESSION METHODS

With the basic concepts presented above, we now
compare a wide variety of compression methods by
dividing them into two categories. We first discuss com-
pression techniques which view a database as a homo-
geneous character string and reduce its size through
substring encoding, null suppression or value differenc-

DENNIS CL SEVERANCE

Bit positions 0 and 1

Bit positions
4.5.6 and 7

Fig. 2. The extended binary coded decimal interchange code- -EDCDlC.

0100

PIYI I

r

ing. We later consider the compression improvements
which are possible with these same techniques when the
database is analyzed more carefully as a collection of
formatted records whose data items are related via
common value domains.

4.1 Encoding methods for character strings

Databases encoded as a stream of characters can be
subdivided into substrings of arbitrary length. In general,
encoding and decoding operations for short strings are
faster and require less main memory for tables and
algorithms, while codes for longer strings offer greater
compression ratios. Since techniques which encode sin-
gle characters are simplest, we analyze them first.

An analysis of the popular I-bit fixed length EBCDIC
code shown in Fig. 2, reveals that code values for all
numerics and uppercase alphabetics begin with the bit
combination “11.” Removal of these bits from four suc-
cessive characters permit compression to three character
positions. The shifting of bits required to accomplish this
compression (and decompression) is easily programmed,
inexpensively executed and yields a storage reduction of
25%. If data are strictly alphabetic, then 5 bits are
sufficient to represent a character; eight characters can
be stored in five character positions; and 37% com-
pression is achieved[47]. Numeric data affords an
opportunity for 50% compression[l3,67] and can be
accomplished with hardware instructions on some
machines[35,3].

is appended to each value to distinguish code types.

Maximum compression of character strings is achieved
with variable-length codes. Heaps [31] describes a string
compression method for characters in common English
text which assigns 3-bit codes to the most frequent seven
characters and 7-bit codes to the remainder. A prefix bit

Bit
positions
2 and 3

Since the seven most frequent characters account for
65% of all occurrences[57], the expected code length for
a textual database is 5.4 bits (= 4 x 0.65 t 8 x 0.35), 32.5%
less than an g-bit code.

This compression can be improved by packing more of
the frequent characters into 4 bits in the following man-
ner: let the code values O-12 be the table displacements
for the thirteen most frequently occurring characters
while the code values 13-15 designate three tables for
characters which are not members of the first thirteen. If
the first 4 bits have the value 13, 14, or 15, the next 4 bits
give a character displacement in three corresponding
tables. Since the thirteen most frequently occurring
characters comprise about 80% of all occurrences in
English text, representing them with 4 bits reduces the
average code length to 4.8 bits per character, for a 40%
reduction.

Huffman coding of single characters with the occur-
rence frequencies of common English text produces the
code shown in Fig. 3[24]. Its expected code length of
4.12 bits yields a 48% compression. Martin[47] provides
the Huffman code for a commercial database whose
character frequency distribution is shown in Fig. 4. The
expected code length of 2.91 bits provides compression
of nearly 64%. Gottlieb[25] reports compression results
of 50% or more on a variety of large insurance files that
already had some numeric data in compact binary form.

Ruth and Kreutzer[60] applied the Huffman coding to
a 350-million-character Inventory Requisition File with
known occurrence probabilities and found its perfor-
mance to be “unacceptable.” However, by extending the
set of character encoding units to include twelve com-
monly occurring multicharacter patterns, a 61% com-
pression was achieved. This was the best performance of
twelve alternative codes evaluated. McCarthvl491 ,. -

A practitioner’s guide to database compression

LETTER PROBABILITV CODE VALUE

F
G
H

;
K

0.1859
0.0642
0.0127
0.0218
0.0317
0.1031
0.0208
0.0152
0.0467
0.0575
0.0008
0.0049
0.0321
0.0198
0.0574
0.0632
0.0152
0.0008
0.0484
0.0514
0.0796
0.0228
0.0083
0.0175
0.0013
0.0164
0.0005

000
0100
011111
11111
01011
101
001100
011101
1110
1000
0111001110
01110010
OlOlO
001101
1001
0110
OllllO
0111001i01
1101
1100

Fig. 3. A Huffman code for characters in common english text.

ENCODING UNTT PROBABILITY CODE VALUE

0 .555
,067
.045
.035
.033
.032
.030
.027
,027
,022
.019
.015
,012

0
1000
1100
10010
10100
1OlOl
10110

2
a
3
A

F
B
Blank
D
E
z
P

+

i

?

cd

,011
.OlO
.009
.007
.006
.005
.004
.004
,004
,003
.003
.003
.0025
.0020
.0015
.0015
.0013
.0012
.OOlO
.OOlO
.0006
.0003
.0003
.0003
.OOOl

t
<.00001

Y

11100
11101
11110
loo110
101110
111110
110110
110100
110101
1011110
1111110
1101110
~0011110
10011100
10011101
10111110
11111110
11111111
11011110
100111110
110111110
110111111
1001111110
1001111111
1011111100
1011111101
10111111100
10111111101
10111111110
101111111110
1011111111110000
1011111111110001
1011111111110010
1011111111110011
1011111111110100
1011111111110101
101111~111110110
10111111~~1~0~11
10111111111~1000
1011111111111001
1011111111111010
1011111111111011
1011111111111100
1011111111111101
1011111111111110
1011111111111111

Fig. 4. Huffman code for a specific commercial database.

56 DENNIS& SEVERANCE

Table 3. Digram encoding

Master Combining
Characters Characters Noncombining Characters Combined Pairs

Base Hex Hex Hex Hex Hex Hi%
jymbol Value Symbol Code Symbol Code Symbol Code Symbol Code Sylnbol Code Symbol Code

I

A 2; !

J 15 9 28 Al 60

;; r 2C ; :: ::
6E

E 82 :
:

:: + 43
I 97

1:
& 44

1: 5A :: 6F
5B AC 70

0 AC : : " 2F
N Cl 1A

1B ;
30

$ 45 b0 5c
46

T D6 F a 31 * 47
U EB G ;; b 1C X 32) EA 88

H Y 33 ; :;
: ;: 34

:;
; 35 ; :;

M : 21 : 36
,

37 38 % :co

P ;23 :

s" 22: 6 5 ::

; ::

? 10 k 50 51 L)R :: T$ D'6
T

;

;: 1 ;; 7 ::
8 3D

L! 52 1: 69
u; ESB

13 n 28 9 3E ’ :i z::
W 14 0 29 Q ;; = 55 UW 6C U: F+F

P 2A II 56
c 57

An Example of Compression

presents a systematic approach for selecting multi-
character encoding units for a Huffman code, and reports
the compression achieved on a variety of files: 40%
compression on an object-module file, 57% on an English
text file, 69% on a name-and-address file, and 82% on a
COBOL source file. Guazzo[26] provides an insightful
discussion of operational and complexity limitations of
Huffman codes and describes more sophisticated al-
gorithms with preferred characteristics for compression
of strings of encoding units with correlated occurrence
probabilities.

These results suggest that one can increase com-
pression by encoding strings with multiple characters.
Encoding units with N characters are referred to as
N-grams. In an early application of digram
encoding [lo] (where N = 2), Synderman and Hunt [68],
exploit the fact that data stored with an 8-bit code
generally uses no more than 88 of the 256 possible code
values leaving 168 code values to represent pairs of
characters. Table 3 presents the 168 diagrams and code
values (in a hexidecimal format) selected by those
authors for compression. Also shown are eight “master”
characters and twenty-one “combining” characters from
which the 168 (= 8*21) diagrams are derived, as follows:

If the initial character in a string to be compressed is
not a master character then it is passed unchanged;
else if the next string character is not a “combining”
character, then again the first character is passed un-
changed; else both characters are passed with the
encoded value formed by adding the code value com-
ponent of the master character to that of the combin-
ing character. The process repeats with the remaining
string. It is uniquely reversible.

Inherently, compression with digram encoding is
limited to 50%, which is achieved only when every
character is paired into a diagram. Snyderman and Hunt
achieved a 35% compression, reducing storage require-
ments of an online file by 60 million characters. Schieber
and Thomas[61] used a more systematic method to est-
ablish an efficient set of digrams for a 21-million-charac-
ter database; they achieved a 43.5% space reduction.

While these compression ratios are not dramatically
better than the 25% offered by the simple fixed-length
6-bit code, the method is about as simple to implement.
Since digrams can be encoded and decoded rapidly via
indexing operations on small tables stored in main
memory. Character-length code values eliminate the

A practitioner’s guide to database compression 57

synchronization problems associated with Huffman
codes, and 43% compression compares favorably not
only to that achieved with Huffman coding of individual
characters but also to that of more complicated trigram
and tetragram encodings [4,64].

Our example of digram encoding maps two characters
into 8 bits. A more general numerical code]281 maps N
characters into K bits. In a manner similar to digram
encoding, code values are formed by reversibly combin-
ing numerical representations for two or more characters
into a single unique number.? Consider, for example, the
ten characters A through .I. By establishing the cor-
respondence (A = 0, B = 1,. . . , J = 9) with the base-10
number system, the data sequence “CAB” can be
represented by the number 20110 (= 2*102 t O*lO’ t l* t
109. Since the maximum code value in this example is
99910, a machine with a lo-bit word (with value range
2”’ = 1024) could store any 3-character sequence in each
word. In the same way, if all alphabetics were possible,
then “CAB” would become 201&2*26’+ 0*26’ t 1*269,
or 676,,,. In this case, a 15-bit word would be required to
hold three characters.

Numerical codes are generally designed to make max-
imum use of a given computer’s word size. Given a
computer with a K-bit word, code efficiency is affected
by the encoding base, B, and the number M of charac-
ters combined. Clearly, as B increases, M decreases. For
a machine with K = 32, Hahn[29] evaluates values of B
between 14 and 73 and shows that five to eight characters
can combine in a single number, giving 20-50% com-
pression over as S-bit code. With B = 37 (for al-
phanumeric data), compression is 20% and numerical
coding is inappropriate, since the simpler 6-bit code
offers 25% compression.

Hahn improved numerical encoding by incorporating
into it a form of variable-length code. He maintains code
values in several encoding/decoding tables of size D - 1,
where D is a value calculated to produce a good com-
pression ratio for a specific machine. The D- 1 most
frequent characters are placed in the first table, the next
D-l most frequent are placed in the second table, and so
on. Encoding values are M-digit, base-D numbers and
representing from 1 to M characters. M is now the
maximum number of characters which might be encoded
in a single word. Any character being encoded which is
not one of the first D-l symbols in the table is represen-
ted by the “escape character,” 0, followed by the
character’s position in the second table, or so on until the
character is located. Obviously, maximum compression
is achieved for the first D-l characters. The more
skewed the character occurrence distribution, the smaller
the optimum value of D and the larger the average
number of characters which can be packed into a single
word. For English text on a 32-bit machine, Hahn found
that D = 21, M = 7 was an optimum combination. He
combines this code with a null suppression technique

tArithmetic coding is a significant extension of this fundamental
idea recently offered by Rissanen and Langdon[SS] as a unifying
theory for a large class of data encoding techniques. The mathema-
tics of that theory are beyond the depth of this survey.

(described later) to obtain an average code value length
of 4.7 bits per character. This 41% reduction again com-
pares favorably with Huffman coding of individual
characters.

Heaps [70,74] has experimented extensively with a
similar variable-length, fixed-increment code which
attempts to combine the ease of managing fixed-length
codes and the maximum compression achieved with
variable-length codes. His technique is particularly
effective for words or terms in textual data. Here the
number of distinct terms is typically quite large and their
usage frequency has a Zipfran distribution[77,43,74]
which is quite skewed. For this situation, fixed-length
codes achieve relatively poor compression and their
large encoding/decoding tables must be held in secon-
dary memory where access times are several orders of
magnitude greater than those in main memory.

Heaps suggests the following coding scheme to relieve
both problems[30,70]. For a vocabulary of N distinct
terms, codes of lengths N, < Nz < . . < N, are used to
index terms in tables of size 2N’-‘, 2N’m* 1...1 2N’mr. The
most frequent terms are assigned codes with length N,.
Codes for less frequent terms are built by appending
code increments of length N, - N,, . , N, - N, ,. The
first bit in any increment indicates code continuation; if it
is zero, another increment follows. Heaps experimented
with different values of N,, N2,. . , N,, and found that
codes with lengths (3,6,9, 12,. . .) and (4,8, 12,16,.)
perform effectively and were easily adaptable to
machines with 6- and g-bit characters, respectively. For
large document databases, average code length has been
found to be about one-fourth that of a fixed length code
and within 8% of optimal.

Information theory shows that to achieve maximum
compression, an encoding unit with occurrence prob-
ability p should have length logJl/p). The procedure
above attempts to match variable length codes to a given
set of frequencies. Alternatively, if one is committed to
the use of simple, more manageable fixed length codes,
then maximum compression will be achieved only if the
encoding units have equal occurrence probabilities.
Recognizing this fact, Schuegraf and Heaps[63] propose
a means of generating equifrequent word fragments [141
to be used as encoding units. A frequency count of all
word fragments between two and eight characters in
length is taken from the database to be encoded. All
fragments having a frequency less than a selected
threshold value are eliminated initially and left un-
changed by the encoding process, since these infrequent
fragments have least effect on total database com-
pression and a substantial effect on the size of the
encoding/decoding table required [32]. Further elimina-
tion of encoding units is accomplished by subtracting the
frequencies of longer fragments from the frequencies of
shorter fragments contained within them and removing
all which fall below the threshold. This favors the longer
fragments which contribute most to compression. The
number of fragments selected can be controlled with the
threshold frequency and adjusted to the amount of main
memory available for the encoding/decoding table. For
any threshold, the final set of fragments have ap-

58 DENNIS G. SEVERANCE

Fig. 5. Null suppression-run length.

proximately equal frequencies, so that a fixed-length
code is near optimal for the selected set of encoding
units. Successful application of the procedure to the
Library of Congress MARC tapes[44] is reported in [62].

For a variety of reasons, commercial databases often
contain large numbers of blanks, zeroes, and other filler
characters used for the padding of vacant or variable
length data fields. With modest processing costs these
“null” characters can be compressed to dramatically
reduce storage requirements.

A common method of null suppression is the run
length technique@%] illustrated by Fig. 5. A special
character is inserted to indicate the presence of a run of
nulls and the run is replaced by a count indicating its
length. Different types of runs can be distin~ished with
differing special characters. The actual choice depends

0 nieans sumression of zeroes

1 means smression of blanks

t

These ~1': bits give length
of the run of nulls

- 0 means null sutwression

Fig. 6. Null suppression with EBCIIIC.

upon the frequency of character occurrences in the
existing code. For example, the EBCDIC code in Fig. 2
has a number of characters which may be selected since
they are unused in most applications. If no such unused
character exists, an infrequently used character can be
selected and its occurrence doubled in the encoded
stream whenever it appears as a datum. Overbeek and
DeMaine[20,54] report such a use of null suppression to
compress a variety of alphanumeric data files by 24-61%.
Hill1331 reports an even more dramatic compression of
census files by 63-750/o.

Martin/471 describes a run suppression technique for
EBCDIC data with no lowercase characters. Here the
second code bit is always “1” (see Fig. 2) so that a
setting of “0” can be used to designate the suppression
of nulls. The remaining 7 bits can then represent both the
type of null and the length of the run. If, as in Fig. 6, for
example, only blanks and zeroes are suppressed, then a
singie bit can distinguish between them, while 6 bits
remain to designate run lengths as long as sixty-four
characters. Code values here can be one half the length
of those in the run Iength method above.

If only a single null type is suppressed, there is no
need to identify it explicitly. In message transmission,
for example, it is common to truncate leading and trailing
blanks from each fixed-length record. Counts of the
number of leading blanks and the number of significant
characters in the record are placed at the start of the
record, followed by the significant characters of the
record[29]. The technique is especially effective when
applied to files containing computer source programs,
where leading and trailing blanks are common. Fajman
and Bargelt have used the technique quite successfully in
the WYLBUR text editor system[23]. Data stored by
WYLBUR is broken into segments consisting of a count-
byte split into a 4-bit count of blanks and a 4-bit count of
nonblanks, followed by as many as fifteen nonblank
characters. These segments can be set up very rapidly
through the use of a hardward instruction to seek out
runs of blanks and nonblanks. Decoding is accomplished
very simply by jumping from segment to segment, in-
serting bianks where necessary. Compression of 50-70%
has been achieved for many types of text.

Since null suppression techniques are relatively simple
and inexpensive in comparison to the more efficient
Huff man code, one naturally wonders how much space is
actually saved by the Huffman code’s additional com-
plexity. For example, Huffman coding compressed the
database in Fig. 4 by 64%; however, the high frequency
(55.5%) of zeroes suggests that as much as 50% com-
pression might be achieved via null suppression alone.
Martin[47] addressed this question by applying both
methods to three commercial databases obtaining the
results shown in Table 4. Here Huffman coding provided
12-28010 additional compression which may or may not be
significant enough in a particular application to justify its
additional complexity. If the savings is significant then a
variable-length, fixed-increment code should also be
considered for its relative simplicity and self-synch-
ronization.

A practitioner’s guide to database compression

Table 4. Compression results for three commercial databases as reported in[42]
, +
I Original File I Reduction Using I Reduction Using I I , I Size I Suppression of I Huffman /

(Bytes) I I / , Repeated I
I

Code ($) /
/ I Characters ($) I

59

I / I I
I 300,000 54 I 82 I

, /
I

3 million 34 46 1 I I
, 19 million 64 83 I , I I
+- +

4.3 Di$erential coding applied to character strings
Differential coding involves the replacement of an

encoding unit with a code value which defines a rela-
tionship to either a previous encoding unit or a selected
pattern value [25]. Ruth and Kruetzer [60] and Villers and
Ruth[71] provide a ready index to literature on telemetry
compression, which is the single most important ap-
plication, of differential encoding. In telemetry ap-
plications a sensing device records measurements at a
remote station for storage and analysis. Because suc-
cessive readings are of uniform size and tend to vary
relatively slowly, they are efficiently represented by their
difference from the prior reading. Compression is applied
prior to transmission and can reduce the total amount of
data transmitted by more than 98%[51].

Comparable relationships between successive data
values rarely occur in business applications. Knuth[42]
suggests a hypothetical application for which the prime
numbers less than one million are required. Rather than
storing the 78,498 different values directly, the suc-
cessive differences between these primes are encoded.
Since it can be shown that the difference between any
two primes less than 1,357,201 does not exceed 63, these
gaps can be encoded as fixed-length 6-bit values, reduc-
ing table size by 70%.

Date[l7] suggests another application in which sorted
key values are stored and read sequentially. To achieve
compression, the keys are read in sequence and all
leading characters of a key value common to the preced-
ing value are replaced by their count. For example, the
series of names JOHNSON, JONAH, JONES, JOR-
GENSON would become (0) JOHNSON, (2) NAH, (3)
ES, (2) RGENSON. Decoding demands sequential read-
ing so that the preceding key value is once more avail-
able. The count of the key value to be decompressed
provides the number of leading characters to be retained
and the unencoded characters are then concatenated.
Reghgabti[56] describes a related compaction technique
where, prior to compression of leading characters, those
trailing characters not required to distinguish a key from
adjacent keys are truncated.

Young and Liu[76] analyze the use of difference
methods for reducing the main memory storage
requirements of encoding/decoding tables themselves.
By clustering encoding units based upon either their
lexical order or a minimal-spanning-tree procedure des-
cribed by Kang[41] it is possible to significantly reduce

table storage requirements (i.e. by a factor of S-10) at
some cost in loss of code efficiency and decompression
speed. The tradeoffs among these factors are analyzed
and results of a variety compression experiments are
described.

4.4 Compression enhancement with formatted database
records

For reasons of process efficiency, commercial
databases are typically composed of formatted data
records[ll, 451. Each data record is subdivided into data
items (or fields) with specific boundaries, whose range of
values and occurrence distributions often are known.
Viewed narrowly, data item values are simply strings of
characters and thus the compression methods described
in the previous sections can be applied directly. However,
special opportunities for increased compression are
presented since particular data items may take on a
relatively narrow range of values over an entire
database, and data items often exhibit a recurring in-
trarecord structure. The price paid to obtain this greater
compression is an additional amount of main memory
required for encoding and decoding tables now asso-
ciated with individual data items rather than the entire
database.

The amount of compression achieved with the string
encoding methods of Section 4.1 is increased with a
formatted database because record data items naturally
partition the database into character strings with like
value characteristics. Values for a particular data item,
for example, may be known a priori to be members of a
specific set of alphabetic strings such as surnames, titles,
cities, states, or possibly numeric quantities such as
rates, dates, telephone numbers, or inventory levels. The
specific value set and its occurrence distribution can be
readily computed with the aid of a simple file analysis
program [12,401. This knowledge substantially reduces
the total number of value possibilities for character
strings of a given length. As a result, the average code
value length required to encode these strings can be
significantly shorter. Martin[47] suggests, for example,
that an g-bit code is sufficient to distinguish 256 sur-
names, which account for more than 90% of all last names
used in the United States. Walker[73] provides an algorithm
which has achieved 76% compression on large samples
of first names by generating I-bit codes for equifrequent
word fragments. For all but the largest organizations, 16

DENNIS G. SEVERANCE

DATA DATA DATA DATA DAlA DATA

ITEM ITEM ITEY ITEM ITEM ITEM

Yl #2 c4 #4 #5 #6 -

\ y J

NULL NULL

I
I I

mm DATA DATA DATA DATA

ITEP? ITE'i ITEM ITEP

EiT NiAP

Fig. 7. Null suppression-bit map.

bits (65,536 code values) are ample to distinguish such
data as customers, suppliers, employees, or inventory
items.

Data fields are frequently present in commercial
databases and can be compressed substantially from the
common 6-digit (MMDDYY) representation by using
differential encoding. Selecting an appropriate date as a
base point, compressed dates can be represented as a
distance in days from that origin. January 1, 4713 B.C.,
for example, is the Julian date base point generally used
to record astronomical phenomena, and 22-bit code
values can represent dates through the year 6700 A.D. A
shorter 16-bit code and a more recent base point can
represent dates ranging over a period of 175 yr, which is
sufficient for most business applications [2,47]. In
records where a sequence of related dates is stored, each
can be represented as its difference from the previous
date with significantly fewer bits [25].

The compression achieved with null suppression
techniques is also typically enhanced when compressing
formatted data records. In fact, nuli suppression is so
effective (sometimes achieving 60-70% compression)
that it tends to be the only compression technique rou-
tinely supplied with commercial data management
systems[l(i, 36,39,69]. A number of methods for com-
pressing null data item values have been described by
Olle[53] and analyzed by Maxwell[48]. As illustrated in
Fig. 7, the most common is a bit vector appended to the
front of each record in which each bit is associated with
a corresponding held. A bit value of 0 indicates presence
of the null value which is dropped from the record during
compression and reinserted during decompression. The
same idea has been applied to groupings of data items in
some data management systems (e.g. CICS[27], IMS[38])
which associate bits with record segments. Segments are
collections of related data items which tend to occur
either together or not at all (e.g. several items of data
would be required to describe each customer claim that
is filed against a particular insurance policy). By sup-
pressing entire record segments rather than their in-
dividual data items, both the amount of data compression
and speed of decompression improve slightly.

SUMhlARY

One should not conclude from this paper that data
compression is desirable for all business applications.
The benefit associated with compression of a particular
database is affected by many variables: the size of the
database, the amount and type of redundancy it contains,
the nature and frequency of retrieval and update
requests serviced, the availability and cost of memory
for both code tables and data, the efficiency and com-
plexity of the data compression technique considered,
and finally the availability and cost of processor time for
execution of these techniques. What is clear nevertheless
is that typical commercial databases can in fact be com-
pacted by 3&90%, and that this should be of more
applied interest than current usage of compression tech-
niques would indicate.

In practice one finds that the most common motivation
for database compression is a storage constraint which
otherwise precludes implementation of a particular ap-
plication. Since a simple technique which affords the
compression “necessary” for the application is often
more highly prized than a more complex one which
offers the “best” compression, some rather pragmatic
observations summarize this survey.

Four relatively simple compression techniques
adequately address all problems of interest to most
practitioners. Null suppression is easily implemented and
often effective. Compression/decompression routines are
commercially available[l5, 16,40,69] or easily
developed. They execute quickly, require neither code
tables nor record formats, and achieve compression of
SO-70% on a wide variety of data files. For files which do
not compact under null suppression, digram encoding
offers similiar advantages, requires a relatively small
code table and reliably achieves compression of 30-40%.

Fixed-length codes are a third alternative. They are
simple to implement and have the important advantage
of providing fixed field and record boundaries, which
facilitates direct record access, selective field com-
pression/decompression, and data searching with com-
pressed keys without need for data decompression. Code
tables of even a few hundred entries may be held in main

A practitioner’s guide to database compression 61

memory and searched rapidly. For databases whose
encoding units have a near uniform occurrence dis-
tribution, fixed-length codes achieve near optimal com-
pression.

While Huffman codes in principle achieve optimal
compression, their complexity and synchronization
problems often make them unattractive. In situations
where a skewed encoding unit occurrence distribution
makes a Hu~man code substantially more effteient than a
axed-len~h code, a variable-length fixed-increment code
is an effective compromise. Speci~cally, these codes are
relatively simpie, self-synchronizing, easily adapted to a
machine of arbitrary word length, and provide near
optimal compression.

Acknowledgments-I am endebted to Dean Wilder, Pat Lung and
Jim McKeen, for valued assistance in the preparation of this
paper.

REFERENCES

[l] N. Abramson: J~~o~a~ion Theory and Coding. McGraw-
Hill. New York (1963).

[2] P. A. &berg: Space and time savings through large data
base compression and dynamic restructuring. Proc. IEEE,
63, 1114-1122 (1975).

[3] AMDAHL Corporation, AMDAHL/470 V8 computing sys-
tem machine reference manual, Rep. G1014, @-OlA, Sunny-
vale, CA (Aug. 1979).

[4] J. Aronson: Data Comparison-A Compression of Methods,
39 pp. National Bureau of Standards, special publication
500-12 (June 1977).

[S] R. Ash: Information Theory, Interscience, New York (1965).
[6] I. J. Barton, S. E. Creasey, M. F. Lynch and M. J. Shell: An

information-theoretic approach to text searching in direct
access systems. Comm. ACM 17, 345-350 (1974).

f7] F. H. Benner: On designing generalized file records for
management information systems. Proc. FJCC, pp. 145-156
(1968).

[S] E. R. Berlekamp (Ed.): Key Papers in the Development of
Coding Theory, 296 p. IEEE Press, Piscataway, New Jersey
(1974).

[9] M. W. Blasgen, R. G. Casey and K. P. Eswaran: An enco-
ding method for multifield sorting and indexing. Comm.
ACM 20,874-878 (1977).

[lo] A. Bookstein and G. Fouty: A mathematical model for
estimating the effectiveness of bigram coding. Int. Proc.
~anag. 12, 111-116 (1976).

[ll] C. P. Bourne and D. F. Ford: A study of methods for
systematically abbreviating english words and names. J.
ACM 8,538-552 (1961).

[I21 0. Bray and D. G. Severance: Field encoding analysis
routine: User’s manual and system documentation. MISRC
Techn. Rep. 77-20, 77-21, GSBA, University of Minnesota
(1977).

[13] C. Chen and I. T. Ho: Storage-efficient representation of
decimal data. &mm. ACM l&49-52 (1975).

[14] A. G. Glare, G. M. Cook and M. F. Lynch: The
identification of variable-length, equi-frequency character
strings in a natural language data base. Compaq. J. 15, (1972).

[15] T. Corey: File compression proves viable alternative.
Cornp~fer~~or~d SRS-SRI0 (1980).

[16] Cullinane Corporation JAMS Concepts and Facilities Order
No. DOOI, Wellesley Mass. (1977).

[17] C. J. Date: An Introduction to Data Base Systems, Addison
Wesley, New York (1975). Chap. 2.4, pp. 34-35.

[18] L. D. Davisson: Universal noiseless coding. IEEE Trans.
Injormation Theory 19,783-795 (1973).

[19] L. D. Davisson and R. M. Gray (Eds.): Data Compression
(benchmark papers in EIectricaf Engineering and Computer
Science, Vol. 14), Dowden. Hutchinson, Ross, Inc..

(201 P.A.D. DeMaine: The integral family of reversible com-
pressors. J. JAG, (IFIPS, Amsterdam) 3,207-219 (1971).

[21] W. Diffie and M. E. Helleiman: Exhaustive cryptanalysis of
the NBS data encrytion standard. Comput, IEEE, 74 (1977).

[22] J. L. Dolby: An algorithm for variable-length proper name
compression. .J. Library Automation 257 (1970).

[23] R. Fajman and J. Borgelt, WYLBUR: An interactive text
editor and remote job entry system. Comm. ACM 16, 314
(1973).

[24] E. N. Gilbert and E. F. Moore: Variable-length binary
encodings. Bdl System Tech. J. 933 (1959).

[25] D. S. A. Gottlieb. P. G. Hagerth. H. Lehot and H. S. -
Rubinowtiz: A classification o? compression methods and
their usefulness for a large data processing center. Proc.
1975 Nat. Comput. Conf., AFIPS, Vol. 44. pp. 453-458
(1975).

1261

[271

[281

1291

M. Guazzo: A general minimum-redundancy source-coding
algorithms. IEEE, Trans. Information Theory 26, 15-25
(1980).
E. Gudes, H. S. Koch and F. A. Stahl: The application of
cryptography for database security. Proc. 1976 Nat. Com-
put. Co+. pp. 97-107 (1976).
W. D. Hagamen, D. J. Linden, H. S. Long and J. C. Weber:
Encoding verbal i~ormation as unique numbers. IBM Sys-
tems J. 11,278 (1972).
B. Hahn: A new technique for compression and storage of
data. &mm. ACM 17,434 (1974).

[30] H. S. Heaps and L. H. Thiel: Optimization procedures for
economic information retrieval. Information Storage
Refrieual 6, 137-153 (1970).

[31] H. S. Heaps: Storage analysis of a compression coding for
document data base. INFOR 10,47-61 (1972).

[32] H. S. Heaps: Compression of databases for information

[331

[341

1351

[361

[371

P81

[391

[401

retrieval and management information systems. Working
Paper, Computer Science Department, Sir George Williams
University, Montreal.
G. L. HiIl: Maximizing computer access to public data files.
Proc. Cornpat. Sci. Conf. ACM-SJGCSE (1975).
D. A. Huffman: A method for the construction of minimum-
redundancy codes. Proc. 1.R.E. 40, 1098-1101 (1952).
IBM Corporation: IBM Svstem/370 Model 165 Functional
Characteiistics, Technical Newsletter, No. GN22-0401 (July
1971).
IBM Corporation: Utility Reducing Subroutines for Suys-
lem/360/370, Program Number 5798 AZW (1974).
IBM Corporation: Customer Information Confrol Sys-
tem/Virtual Storage (CJCS/VS) Application Programmer’s
Reference Manual, pp. 402-403. SH20-9003-O. Palo Alto, CA
(1974).
IBM Coloration: l~S/ VS, Sys~e~r~App~~ca[ion Design
G&de. SH20-9025-6.11978).
Informatics, Inc.: ‘+&RiNK/Z User Reference Manual.
Order number 561, Canoga Parck, CA (1978).
Informatics, Inc.: MARK IV Reference Manual, Version B,
Canoga Park, CA (1979).

[41] A. N. C. Kang, R. C. T. Lee, C. L. Chang and S. K. Chang,
Storage reduction through minimal spanning trees and
spanning forests. IEEE Trans. Comput. 425-434 (1977).

[42] D. E. Knuth: The Art of Computer Programming. Vol. 3,
Chapter 6.1, Addison Wesley, New York (1973).

[43] M. E. Lesk: Compressed text storage. Compuf~ag Science
Techn. Rep. 3, Bell Telephone ~boratories (1970).

1441 Library of Congress: A MARC Foray: Specj~cation~ of
Magnetic Tapes Containing Monographic Catalog Records
in MARC II Format, Information Systems Otlice, Washing-
ton, D.C. (1970).

[45] H. Liu: A file management system for a large corporate
information system data bank. Proc. FJCC 145-156 (1968).

[46] M. F. Lynch: Compression of bibliographic files using an
adaption of run-length coding. Inf. Stor. Retr. 9, 207-214
(1972).

[47] J. Martin: Data compaction. In Computer Data-base
Organization, 2nd Edn., Chap. 32, pp. 572-587. Prentice-

Stroudsburg, PA. (1976). Hall, Englewood Cliffs, New Jersey (1977).

62 DENNISG. SEVERANCE

[48] W. L. Maxwell and D. G. Severance: Comparison of alter-
natives for the representation of data items values in an
information system. Data Base, 5, SMIS Special Rep.
(1973).

[49] J. P. M~C~hy: Automatic file compression. Int. Comput.
Symp. pp. 51 l-516. North-HolIand, Amsterdam (1973).

[SO] J. F. Mulford and R. K. Ridall: Data compression tech-
niques for economic processing of large commercial files.
ACM Proc. Symp. Injortnation Storage Retrieval, 207-215
(1971).

[Sl] W. Myers, M. Townsend and T. Townsend: Data com-
pression by hardware or software. Datamation 39-43 (1966).

[52] W. L. Newman and E. J. Buchinski: Entry/title compression
code access to machine readable bibiio~aphic files. .f.
Library A~forn~tio~ 2 (1971).

1.531 T. W. Ofle: Data structures and storage structures for
generalized fiie processing. Proceedings of the FILE 68 Jnt.
Seminar on File Organization, Copenhagen, pp. 285-294.

[54] R. A. Overbeek and P. A. D. DeMaine: The integral family
of reversible compressors. The SOLID System Rep. 2, Corn.
Sci. Dept, Pennsylvania State University (1972).

[SS] W. W. Peterson and E. J. Weldon: Error Correcting Codes.
MIT Press, Cambridge, Mass. (1972).

[S6] H. K. Reghbati: An overview of data compression tech-
niques. Compaq. 14,71-75 (1981).

[57] F. M. Reza: An In~rod~ct~o~ to Jnjo~a~~on Theory, Chap.
4. McGraw-Hiff, New York (1961).

[SS] J. Rissanen and G. G. Langdon: Arithmetic coding. IBM .I.
Res. Development 23, 149-162 (1979).

[59] F. Rubin: Experiments in text tile compression. Comm.
ACM 19, (1976).

(601 S. S. Ruth and P. J. Kreutzer: Data compression for large
business file. Datamation 62 (1962).

[61] W. S. Schieber, and G. W. Thomas: An algorithm for the
compaction of ~phanumeric data. .I. ~~~ra~ A~fornnt~~~ 4,
198-206 (1971).

1621 E. J. Schuegraf and H. S. Heaps: Sefection of equifrequent
word fragments for information retrieval. Inform. Star. Retr.
9, 697-711 (1973).

[63] E. J. Schuegraf and H. S. Heaps: A comparison of algorithms
for data base compression by the use of fragments as language
elements. Injor. Stor. Retr. 10, 309-319 (1974)

WI

1651

1661

1671

w31

[691

I701

1711

[721

[731

I741

E. S. Schwartz: Dictionary for minimum redundancy enco-
ding. J. ACM 10,413-439 (1963).
E. S. Schwartz aqd B. Kaliick, Generating a canonical prefix
encoding. Comm. ACM 7, 166 (1964).
C. E. Shannon: A mathematical theory of communication. Belt
Syst. Tech. J, 27 (1948).
A. J. Smith: Comments on a paper by T. C. Chen and 1. T. Ho.
Comm. ACM 18,463 (1975).
M. Snyderman and B. Hunt: The myriad virtues of text
compaction. Datamation 36 (1970).
Software AG ADABAS DBA Reference Manual, Software
AG of North America, Reston, VA (1981).
L. H. Thiel and H. S. Heaps: Program design for retrospective
searches on large data base. Jform. Star. Retr. 8, I-20 (1972).
J. J. Villers and S. R. Ruth: Bib~iogrnphy of Data Compaction
a~dDafu Compressjon ~jterature aide Abstracrs Government
Clearing House Study AD 723525 (1971).
R. A. Wagner: Common phrases and minimum-space text
storage. Comm. ACM 16, 148-152 (1973).
V. R. Walker: Compaction of names by X-grams, Proc. Am.
Sot. Inform. Sri. 6, 129-135 (1969).
G. Weiderhold: Database Design. McGraw-Hill, New York ..^__.
(lY77).

[75] M. Wells: Fiie compression using variable-length encodings.
Comp~f. J. 15.308-313 (1972).

[76] T. Y: Young and P. S. Liu: Overhead storage considerations
and a Multilinear method for data file compression. JEEE
Trans. Software Engng 6, (1980).

[77] K. G. Zipf: Human Behavior and the Principle of Lenst
Eflort, An Introduction to Human Ecology. Addison-
Wesley, Reading. MA (1949).

[78] J. Ziv: Coding of sources with unknown statistics-part I.
Probability of encoding error. IEEE Trans. Jnjorm. Theory
384-394 (1972).

1791 J. Ziv and A. Lempel: A universal ~go~thm for sequential
data compression. IEEE Trans. info~. Theory 23, 337-343
(1977).

[80] J. Ziv and A. Lempel: Compression of individual sequences
via variable-rate coding. IEEE Trans. Inform. Theory 24,
530-536 (1978).

