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1. INTRODUCTION 

A. 

This paper is concerned with the existence of periodic travelling wave 
solutions of reactiondiffusion equations, which arise as models of 
predator-prey interactions in mathematical ecology. The relevant equations 
are somewhat similar to the Fitz-Hugh-Nagumo equations, and our results 
apply to this latter system as well. 

In studying the Fitz-Hugh-Nagumo equations, Conley ([ 3 I), initiated a 
new topological approach to this problem. His method depends on the 
construction of an isolating neighborhood (cf. Section 2A) about a 
“singular” periodic solution. Associated with such a neighborhood is a 
topological invariant, the Conley Index, which, when nontrivial, implies the 
existence of a smooth solution near the singular one. 

The new aspects of the present discussion are in the method used to 
construct the isolating neighborhood (in IFi4), and in the computation of the 
index. With regard to the isolating neighborhood, our construction is global 
in that a parameter taken to be small in Conley’s equations, is now allowed 
to assume large values. In order to compute the index, we “continue” our 
equations to those studied by Conley. Actually, we go one step further and 
continue Conley’s equations to the Van der Pol equations crossed with a pair 
of linear equations admitting a repelling critical point. The index for this 
latter system is easily computed and turns out to be non-trivial. It follows 
from the invariance of the index under continuation (21, that the desired 
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periodic solution exists. (It is worth noting that the global continuation of 
periodic orbits is a subject of independent interest, c.f. [ 1 I.) 

We assume our equations to be of a rather general form, and our 
hypotheses are made only to ensure that the “singular” solution exists for 
sufficiently small wave speeds; see hypotheses (H,)--(H,) in Section 2D. 
below. and the discussion therein. 

Related problems have been studied by a number of investigators. In 
particular. Fife ]5 ]. and Mimura et al. 161, have applied classical pertur- 
bation theory to obtain existence theorems for boundary-value problems. 
Their equations also contain another parameter which they require to be 
small; we show that our hypothesis (H,), which we obtain from phase plane 
considerations, is actually a weaker condition than theirs. 

In the remainder of this section, we shall describe the problem and the 
main result. In Section 2 we discuss the existence of the singular solution. It 
is obtained from the singularly perturbed equations, which turn out to be a 
mixed algebraic-differential system. The algebraic equation is of the form 
uJ(u, U) = 0, and the condition f(u, c) = 0 is equivalent to the equation 
u = P(o) in the relevant region. Thus u “jumps” from the surface u = 0 to the 
surface u = P(v). Associated to each of these surfaces is a phase plane for 
the (L’, L”) equations. We obtain the singular solution by suitably “glueing” 
these two phase planes together. Our hypotheses are such as to imply that 
the discontinuity in u is approximable by a transition layer for the unper- 
turbed equations. The actual existence of the singular solution is via a 
continuity method together with estimates on certain geometric quantities in 
the (glued!) phase plane. 

In Section 3 we construct a family N, of shrinking isolating neighborhoods 
containing the singular solution. Each N, is homeomorphic to the product of 
a circle with a three-cell and is the union of four tubular regions in m4. This 
construction is highly intuitive, but the actual verification that it indeed is an 
isolating neighborhood, is a little involved, and requires the checking of 
several cases. This is done in Section 4, where we also show that the orbits 
which stay interior to N, must traverse the tubes in a precise order, and 
cannot “turn around.” 

In Section 5 we continue the equations to simpler ones so as to be able to 
compute the index. This is done in three stages. In the first stage we 
introduce an “artificial viscosity” parameter p into the equations, and under 
suitable changes of variables, we show that the equations are continuable to 
the (simpler) system obtained by setting p = 0. We next deform the nonlinear 
functions to those which appear in the Van der Pol equations. In the last 
stage, we introduce a second “artificial viscosity” parameter v, and we again 
continue the equations to the case v = 0. These final equations are of the 
desired form; namely, the Van der Pol equations crossed with “a repelling 
critical point.” All of these changes require modifications of the earlier 
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constructed isolating neighborhoods, and we prove that at each stage in the 
continuation, the relevant isolated invariant sets have the same index. 

In Section 6 we compute the index of the isolated invariant set. It turns 
out to be 2’ V Z3, the wedge product of a pointed two-sphere with a pointed 
three-sphere. This means that our original isolating neighborhood N, 
contains a complete orbit in its interior. The fact that this orbit must cycle 
the union of tubes implies that a Poincare map is well-defined in some 
neighborhood of the orbit. The proof is concluded by computing the degree 
of the Poincare map, using the homotopy invariance of the degree. 

B. The Equations 

The equations have the form 

EU, = E2U,, + uf(u, v), 

u1= u,, + %(U, u>; 
(1) 

here u and u are the population densities of a prey and predator species, 
respectively, and f and g are their growth rates. We take E to be a small 
positive parameter. It will be assumed that 

aj-/au < 0 and aglat4 > 0, (Ho) 

and for definiteness we assume that the zero sets off and g are as indicated 
in Fig. 0. Our model is an example of the modified Rosenzweig-MacArthur 
equations (see [4]). 

C. Travelling Waves 

We seek solutions of (1) which depend on the single variable < = x - Ot, 
where 0 is a constant, called the wave-speed. Substituting in (1) leads to a 
system of first-order ordinary differential equations in IR4; namely, 

ti = w, d = z, 

e2ti = Eew - uf(u, u), i = -8z - og(u, u). 
m 

Here the “dot” represents d/de. We shall use the notation U = (u, w) and 
v = (u, z). g=o 

“l----a- “‘P+hl 
” 

FIGURE 0 
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It will be convenient to change to a slow time scale by introducing the 
variable q = et. With this change of variables, (2), becomes 

C’ = $, v” = z; 

6’ = -4% - ziy(f(u’, q, 2’ = --Et?? - ATg(V; UT, 
(3), 

where the “prime” is d/dy. We shall use the notation o= (U; G), P= (v’, ~3. 
Note that zi = U, G = EW, v’= z) and Z= EZ. If R is a region in U (resp. V) 
space, Z? will denote the corresponding region in 0 (resp. p) space, and vice 
versa. Similarly, N and fl will be used to denote corresponding regions in 
(U, V) and (0, v) space, respectively. 

D. Hypotheses 

Equations (2)0 admit solutions in which u jumps from u = 0 to u = P+(u), 
the right-hand branch of the “parabola” in Fig. 1. There are, of course, many 
such solutions; however, the only ones which represent “realistic” behavior 
are those which can be recovered as limits of solutions of (2), as E tends to 
zero. In order to locate such solutions, we make the following reasonable 
hypotheses. 

There exists a unique value u,, > 0 such that P,) 

i 

P+(uo) 
uf(u, 0,) du = 0. 

0 

The v-component of the rest point P in Fig. 0 is larger than co. (H,) 

For each 8, -1 < B < 0, there exist unique values ui = ai( 
i = 1, 2, such that 0 < u, < u. < u2, and the equations W,! 

u” = $‘, d’ = 4% - zif(f(t7, a,), (4)i 

admit bounded solutions which, for (4), connect (0,O) at v = -a, to 
(P+(u,), 0) at q = + co, and which for (4), connect (P+(u,), 0) at v = -co 
to (0,O) at q=+co. 

A few words are in order concerning these hypotheses. Condition (Hi) is 

(A) D = cr, ’ (6) u=u* 

FIGURE 1 



PERIODIC TRAVELLING WAVE SOLUTIONS 137 

really a condition on the parameterised family of equations z’Z’ = $, 
+’ = $(U; a); it states that there is a unique u = u0 such that there is a 
heteroclinic orbit connecting the two critical points (0,O) and (P+(u,J, 0), 
i.e., u0 determines a unique “equal-area” function. Condition (H,) ensures us 
that the projection 6 of the critical point P(ti, 5) of (2),, on the v-axis, lies in 
the region v > u,,. Finally (H3) implies that the equations ~7’ = 6, 
$’ = 4% - u;T(zi, uJ have phase planes as depicted in Fig. 1. 

These hypotheses ensure that a discontinuity in ZJ for Eqs. (2),, can be 
approximated by a transition layer in ZJ for Eqs. (2),, for small E; intuitively, 
u must ride across from P+(v) to u = 0, and back, via the connecting orbits 
described in (H3); cf. Fig. 1, and also Fig. 2, where the “singular” orbit is 
depicted. For example, if f(u, u) = -ZJ - (u - l)(u - 3), and g(u, v) = 
-v + m(u - y), m > 0, 1 < y < 3, then we find P+(u) = 2 - \/i-u, 
u0 = 5/9, and one easily checks by elementary phase plane methods, that 
hypotheses (H,)-(H,) are valid, for a suitable range of m and y. 

We require one additional hypothesis, whose relevance cannot be seen 
until the next section. We must first introduce some notation. 

Let 

g-(v) = qT(O, v), g+(v) = vg(P+(v)9 v>, 
and note that g+(u,) < 0 < g+(u,). Next, let 

W)=/“g,Od~, z-l=-- 0 !” 
+(%I) 

sfh q,> ds, 0 
(5) 

H,(u) = !” h,(s) ds. 0 
Observe that Z: > 0, G-(u,) < 0 and that HJu) < 0, 0 < ZJ < P+(u,). Next, 
let 

P, = 1;’ j/m ds, p, = ,(;+‘““’ dm ds. (6) 

Now consider the equations d = z, i = -8.~ - vg-(v). We consider the 
solution y which passes through (0, 0), and we let (u,, e) be the point on y " 01 ---- -)-_-__ (ii,3 m 

g=o 
a, -- ---_-- _-_ " f=O 

FIGURE 2 
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which passes through the line v = 0,. Observe too that on y we have, at 
v =o(), z* + 2G,(o,) = 0. Our last condition is to require 

p, - 2eC Ap, > 0, G-L) 

where A is evaluated along y, e is as in Figure 5, and 

A = Idz/d~[~,,~= -ez-g*(ao) = -/j- 
Z i I 

We note that A is nothing more than the largest slope of y on the interval 
0 < v < err. This condition may appear diffkult to understand, but we shall 
see in Section 2C that it is really quite natural, and it is obtained from 
elementary phase-plane considerations. 

Finally, we call attention to the fact that if we modify Eqs. (1) by 
replacing the term ug by Ivg, then (H4) will hold for suffkiently small ,I. To 
see this, note that the “new” quantities are 

Al= &PUT e'= c j/x+ O(8), c > 0, ii= o(lel + &). 

Thus, for these quantities, (H4) becomes 

jmP" - 2(c + 0(@)W@l+ v%Pul, 

which is positive, if A and 0 are small. 
Thus, for the modified equations, (HJ is valid if L and 8 are small. This 

mod&cation of the equations by the addition of the parameter ;1 is the actual 
form of the equations considered in [5,6]. It is required there that I be 
suffkiently small. The methods of [5, 61 are analytical, and their condition is 
used in order to apply the implicit function theorem.We shall see below in 
Section 2C that our condition is obtained from phase plane considerations. 

E. The Main Theorem 

Under hypotheses (H&o-,), the following theorem will be proved. 

THEOREM A. Suppose that 0 < -8 < 1. Then there exists a (singular) 
periodic solution of (2),, in which the u-component satisJies alternatively 
u = 0 or u = P+(v), and admits discontinuities according to the following 
rule: u jumps from 0 to P,(a,) whenever v = u, and v’ > 0, and u jumps 
from P,(a,) to 0, whenever v = a2 and v’ < 0. The (v, v’) components of this 
solution are continuous. 

B. For sufficiently small E > 0, there exists a periodic solution of (2),, 
“near” the singular solution described in A. More precisely, there are 
periodic solutions of (2), which converge to the singular solution of (2), as 
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E + 0. This convergence is uniform on compact <-intervals which are disjoint 
from those ( values in which the singular solution is discontinuous. 

2. SOLUTIONS WITH DISCONTINUITIES 

A. The Singular Flow 

The u-component of (2)0 must satisfy the algebraic equation uf = 0, 
whenever the v component satisfies 

.r yrn (v$ - B#v + vg(u, v)#) d( = 0, 

for every test function 4(r). It follows easily from this, that (v, ti) is 
continuous, even though u may not be. 

Now consider the equations 

ti = z, i = -8z - g*(v), (7)* 

where g,(v) are defined in Section 1D. The phase planes for (7), are 
depicted in Fig. 3. Suppose now that u admits discontinuities according to 
the rule described in part A of the theorem stated in Section 1E. We may 
then “glue” the above two phase planes together as indicated in Fig. 4. (We 
have assumed for definiteness that the orbit OR meets an orbit in the (+) 
plane when u = (pi which lies below that orbit in the (+) plane which tends to 
the rest point on the positive v-axis. This assumption can be reversed without 
significantly altering the proof.) 

& i I 

FIGURE 3 
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B. Construction of a Periodic Solution 

Assume for a moment that the orbit segments PORQ and GHIJ have the 
form indicated in Fig. 4. Then the orbit segment PORQ exits u > 0, and 
never again reaches v = u1 , with v’ > 0. Also, the orbit segment GHIJ never 
reaches v = or after it reaches J, and at subsequent values of <, the orbit 
enters, and remains in the positive quadrant. It is now easily seen from the 
continuity of the (v, v’) flow that these two orbits are separated by a periodic 
solution. 

It is clear by changing G (or J) in an appropriate manner that an orbit 
such as GHIJ must always exist. However, it is not always the case that “Q” 
lies below “P” on the orbit PORQ; clearly this property is essential to the 
above argument. It is here where we shall use (HJ. 

C. Behavior of PORQ for Small 0 

We shall compare the solutions of (7), with those of the equations 

tit g*(v)=O. (8) 

The former equations are gradient-like, while the latter are Hamiltonian. The 
relevant solutions are depicted in Fig. 5, where the dotted curves are 
solutions of (8), while the heavy curves are solutions of (7), with 0 < 0. 

If E,(v, ti) = d2/2 + G,(v), where G; = g,, then J!?* = 0 along solutions 
of (8) and l?* = -Bti’ > 0 along solutions of (7), with 0 < 0. This implies 
that the solid curves cross the dotted ones transversally, in the manner 
indicated in Fig, 5. 

The z-coordinate of the various points along the lines v = 6, or v = uz are 
indicated by the letters a-e and A, B, C respectively. Our goal will be to 
show that A > C. This will be the case if e > b, since then, the orbit through 
S,, S, , S, will start above the orbit (with 0 = 0) through S, , S,, S, , and by 
the remark in the previous paragraph the former orbit can never cross the 
latter. 

FIGURE 4 
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FIGURE 5 

We begin by estimating e - c and A - B. Now E- (a,, c) = 
e2/2 + G_(o,) = e2/2 - c2/2, so 

(e2 -c2)/2=E-( o,,~)-E~(O,O)=-8~~~ti(~)~d~, 

where u(r,) = u,. Since v is montone for --a3 < < < <, , we can invert 
u = v(r), as r = r(v), with t = l/c. Thus 

(e’ - c2)/2 = -8 1:’ C(v) dv. 

Now if 8 is small, c(v) = dm + O(e). Also, since e > c, (e + c)/2 < e. 
Thus, with pU as in (6), it follows that 

e-c>l(8/e-‘p,+0(02). (9) 

Clearly a similar estimate holds for A - B, with an even larger p,. 
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We next obtain an estimate for u,, -0,. To this end, we consider the 
equation 

-eu” = 22” + h,(C), (10) 

where, we recall, h,(zi) = @(zZ, a). Now let A(& ~7) = (C/)*/2 + H,(C) (see 
(5)). Then if (zi,, 2;) is the solution of (10) with u = u, , which connects 0 to 
P+(o,) (cf. (H3)), we have that 

Let Z(u) = H#+(u)). Then by definition of u,, (see (Hi), QcJ,) = 0. 
Moreover, 

WI> = W,) -quo) = r’(u*>(u, - %), 

for some c7*, u, < u* < uO. Since f(P+(u), a) = 0, and f, < 0, we have 
T’(o) = I;+‘“’ sf&, a) ds < 0. Thus, 

Now we invert zi= u’,(g), to get ?I = q,(C). If (u’,(q), zi;(q)) is the orbit which 
connects 0 to P, (a,,) when 8 = 0 (see (H3)), we can also write u’= z&(v) as 
r = rO(zZ). Hence, there exists a K > 0 such that 

Thus 

where the last inequality follows from (1 l), Since C&(zi) = v’m, we 
have that 

where p,, is as in (HJ. Similarly, we can show Iu2 - uo( < Z (81 p, + O(@), 
and thus we obtain 
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We can now show that c > a. Since solutions of (7) with 0 = 0 are 
symmetric about u = 0, we have A - B = d - a. This, combined with (9) and 
( 12) yields 

d-c,<nla,-a2~~2A~e~p,+O(eZ), 

and 

d - a = A - B > e ‘pI, 101 + O(0’). 

From these we obtain 

c--a>18/@,,em’ - 2ACp,) + O(t?‘). 

It follows from (H,), that c - a > 0 for small 13. 
We shall now show that e > b to complete the proof. First, 

b 6 a + A (u, - u21. and from (9), 

e - a = (e - C) + (C - a) 2 e - c > Iel e ‘p,, + o(e2). 

Using (12), we get 

Combining these last two inequalities gives 

e - b > 101 (e IpI. - 2ACpJ + O(e’). 

Thus (H4) implies that e - b > 0 for small 8. 

3. THE PERTURBED FLOW 

We shall’construct a neighborhood N,, in the phase space of (2),, “near” 
the discontinuous solution of (2),, which we have just obtained. For each 
c > 0. N, will be compact: however, the w coordinate will grow without 
bound as E tends to zero, since the u-component of the limiting solution has 
jump discontinuities. 

N, will consist of the union of four tubular regions in FiJ; these will be 
denoted by Ti, 1 < i < 4. In regions T, and T,, the flow will closely aporox- 
imate the flows of (7)- and (7), , respectively. In regions T, and T,, c 
remains near a, and u2, respectively. and u undergoes a rapid transition. N, 
will be homeomorphic to S’ x D3. 

A. The Conley Index 

Suppose there is given a flow on a compact space X. Let N be a compact 
neighborhood in X, and let S(N) denote all those points on solution curves 
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which stay in N for all time. If S(N) c int(N), then N is called an isolating 
neighborhood, and S(N) is an isolated invariant set. 

A homotopy invariant can be associated with S(N) as follows (see [2] for 
details): There exist compact subsets N, and N, of N such that 

(i) Ni is positively invariant relative to N, i = 1, 2. 

(ii) S(N) c N,\N,. 

(iii) Any orbit in N, which leaves N in positive time meets N,. 

Then (N,, NJ is called an index pair and the homotopy type of N,/N, is 
called the Conley Index of S(N), and is denoted by h(S(N)). h(S(N)) is 
independent of the pair (N,, N2), and it is invariant under deformations of 
both the flow, and N, provided that S(N) remains interior to N throughout 
the deformation. If S(N) is empty, then N, = N = N, determines an index 
pair, so that the index is the homotopy type of a (pointed) point which we 
denote by 0. Thus, if h(S(N)) # 0 then S(N) # 0. 

In Section 5 we shall show that S, = S(N,) has index C2 V Z3, the 
topological sum of a pointed two-sphere and a pointed three-sphere. Thus 
S, # 0; this will imply the existence of the desired periodic solution. 

B. Construction of T, 

When E = 0 and u = 0, the (u, z) plane is depicted in Fig. 3(-). We shall 
use this to construct T,. Let 59 be the rectangle in (u, v) spaced depicted in 
Fig. 6a. The point v, should be close enough to 0 so that the orbit of the 
singular flow (Fig. 3) through (v,, 0) remains near the curve ORQ and 
therefore exits v > 0 near L. v2 should be so large that the orbit segment RQ 
is contained in 9. 

Let A, be the “diamond” indicated in Fig. 6b. It can easily be shown that 
for small 101, and any E > 0, such an A, can be constructed; that is, the flow 
of the (u, w) components of (2), through any point with (v, z) E 9 and 

g- ‘: 8 
,’ ,’ ‘-.. \ 

l+iss 

/ ‘; 0 \. “1 I “2 --- -----p; --- --- I’ ‘. ,,’ Q 
L 

I “‘C, “=a2 
(a) 

-Y 

FIGURE 6 



PERIODIC TRAVELLING WAVE SOLUTIONS 145 

(u, w) E aA,, are indicated. Indeed, A, is mapped into a similar diamond i,, 
in the (zi, I;‘) plane, with vertices (0, + 1) on the G-axis. It is easily checked 
that (0,O) is a hyperbolic rest point of the (ri, a) flow of (3),, and that if ) 01 
is small, the flow is always transverse to the edges of the diamond. Hence 
this property holds for (3), for small c > 0, and the (u, iv) components of (2), 
cross &I, as indicated. 

The flow of (2),, with u = 0 through any face of a.8 (with the exception of 
c = L.,) is either transvese to 6.8 or is externally tangent to it. If 6 > 0 in 
Fig. 6b is small enough, a similar remark can be applied to the (r. z) 
components of (2),, provided (u, w) E A,,. 

Now we set T, = A, x .‘tl. The only points on i;T, which may have 
internal tangencies are those with L’ = L’, . This will be discussed in 
Section 4B. 

C. Construelion of Tz 

We now assume that when E = 0, the u coordinate is restricted to lie on 
P. (L’). The (u. z) flow of (2)0 is as in Fig. 3(+). If u = P, (v) were a vertical 
line beneath the rest point P in Fig. 2, then the construction of T, = A + x .d 
(see Fig. 6) would be analogous to that of T,, since in this case u = P + (0) is 
constant. If u = P, (0) is non-constant (as in Fig. l), T, is modified as 
follows. For each 0, C, < z?< c2, let .9(V) = ((u, z) E .%‘: 1: = L’}. and let 
A + (i’) be the diamond in Fig. 6b centered at P, (~7). We set 

T, is homeomorphic to a four-cell, but it is no longer the product of 2 two- 
cells. Note that T, n T, = 0. 

The discussion of the flow (2), through points on ZT, will be discussed in 
Section 4. 

D. Construction of T, and T, 

When the (u, w) components of (2), are in transition from u = 0 to 
u = P+(c), it is reasonable to expect that the (C, 6) components of (3), 
remain near the connecting solution of (4),. Let .‘$ be the compact 
neighborhood of this orbit as depicted in Fig. 7a, when the top boundary 
is an orbit of the equations u” = G’, 6 = - iif(U; a,,). Let .# be the 
corresponding region in (u, w) space. We assume that A,, is interior to ,#. If 
C is constant, then solutions of (3)0 either cross 8-g transversally, or they are 
externally tangent to ~3.2. Since I’ = EL is of order E, it follows that solutions 
of (3), whose (u’. 6,) components meet a.,$ also exit .$ in at least one time 
direction. 

We let T, = .Y x D, where D is the region depicted in Fig. 7b. We note 
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FIGURE 7 

that D E .B and the top (resp. bottom) of D lies above the orbit OR (resp. 
below the orbit HI); these being orbits of (7) ; see Fig. 4. Note too that 
z > 0 in D, and that u lies within p of u,, where p is chosen smaller than 
00 - 0,/2. 

In a similar manner, we set T4 = .Y x E, where p and E are depicted in 
Fig. 8. Note that z < 0 in E. We also required u to stay within p of 02. From 
this we see that T3 n T,, = 0. 

4. AN ISOLATING NEIGHBORHOOD 

We let NE=C),CiC4 Ti, and set S,= S(N,). We shall show that 
S, n cYN, = pI for sufftciently small E > 0; this will imply that N, is an 
isolating neighborhood for (2),. 

Let p = (u,, w,,) X (v,, z,,) E aNE; there are several cases to be checked; 
namely, 

(i) pEaT,UaT*, 

(ii) p E 8T, U aT,, 

(iii) p lies in at least two of the Tts. (Since T, n T, = 0 = T, ~7 T4, 
we only need check the points in Ti n Tj, i = 1, 2; j = 3,4.) 

A. Two Lemmas 

We will now show that the (v, z) components of any solution in S, closely 
approximate the singular flow in Fig. 4. This will imply that internal 

FIGURE 8 
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tangencies in N,, such as the one depicted in Fig. 6a through (II,, 0), do not 
lie in S,, since points in the singular flow exit .iip in finite time. 

LEMMA I. If E > 0 is suflciently small, then solution cumes in S, 
traverse N, through the cycle of tubes in the order T, , T,, T,. T,, T,, in the 
positice direction, without “turning around.” 

Proof. First, it is easy to see that a solution in S, cannot remain in any 
one of the Ti’s for all time. Thus, if such a solution stayed in T, or T, this 
would force u to be near 0 or P+.(C), t’, < ti < c2, respectively, for all time. 
and so the (c, z) components would then approximate the singular solution 
flows in (7). or (7) + . But such solutions eventually exit N, in the positive 
(resp. negative) time direction if they are in T, (resp. T,). On the other hand, 
if such a solution remained in T, or T4 for all time, c would have to stay 
near u, or u2. Hence the corresponding solution in the slow coordinates (3), 
would remain near solutions of (3),,, as long as the (u’, 6) components stayed 
bounded away from the two rest points in the (zi, a) plane. Since any such 
solution is carried out of the region :g (in Fig. 7a) in finite time, the 
corresponding orbit in S, would leave N,,. This is impossible. Thus, solutions 
in S, ultimately enter T, and T,. 

Suppose that a solution curve starting in T, enters T,\T,. We claim that 
this must occur in backwards time. To see this, first note that the solution 
curve must meet T, n i?T,. Since T, = A, x ,2, T, = .%’ x D, and A,, c .1, 
this must occur at a point (U, V) in (A,,, 8D). For such points (U, V), ti = z 
and i = -Bz - vg(U) are both positive. Thus, if the orbit entered T, and 
exited 7’, in forward time, V would lie in the “top” or “right” side of D 
(Fig. 7b). From the above equations for ti and i, is clear that the components 
of V continue to increase in forward time, as long as u is constrained to lie 
in a small neighborhood of zero. Since V will now lie increasingly above and 
to the right of D, the solution can never get back to T, (the orbit must leave 
7’, in forward time, and can only do this via entering T,). Thus the orbit 
goes from T, to T, in positive time. The order of the flow in the remaining 
cases, from T, to Tz to T, to T,, is proved in a similar manner. The proof is 
complete. 

Now suppose that S, = 0 for all sufftciently small E > 0. Then of course, 
all these N, are isolating neighborhoods. Thus, assume S, # 0 for a 
sequence E, tending to zero, and let y,,(t) = (U,,(r), V,(r)) be a solution curve 
in S,,. From Lemma 1, we know that r,(t) passes through all four of the 
tubes T,, and so it must meet a point in T, with z, = 0. We re-parametrize y, 
so that z,(O) = 0. 

Since I v,(r)1 is uniformly bounded, (V,(c)} has a convergent subsequence, 
which converges to a limit V,(r), uniformly on compact c-intervals. 
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LEMMA 2. V,(r) consists of solution segments of (7)- and (7)+. The 
transitionfrom (7)- to (7)+ occurs when u,(r) = u1 and z,(r) < 0. 

Proof: Since V,(O) E 3\D, we have that U,(O) E A,, so that i,(O) > 0, 
and z,(r) > 0, at least until v, = cri (since z, > 0 when V,, E 0). Thus, v,,(r) 
is also strictly increasing until ZIP = 0,. Let <, > 0 be the smallest < > 0 for 
which v,,(r) = (T, . 

We claim that V,(c) is a solution of (7)) for 0 < r < r,. This will be 
immediate if we show that lim u,(r) = 0 as n -+ co, uniformly on compact 
subsets of [O,$,). 

First, let r E (0, r,) be such that V,(<) @ D. Then V,(c) @ D for n 
suffkiently large, and for 0 <l< < We shall first show that u,(r) --t 0, 
pointwise if r E [0, f]. If this were false, then there would exist l* E [0, r], 
and a subsequence of U,(r*) (again denoted by UJr*)), such that 
lim u”((*) = a # 0. Note that 0 < ]a] < 6 (cf. Fig. 6b), since U,(r*) E A, for 
all n. Let v = (< - r*)s, and let (o”,(r), p”(v)) be the solution of (3), . 
corresponding to r,,(r). Since 1 &(a)] and IF;(v)] are both uniformly 
bounded, some subsequence, again denoted by (U,, p,J, converges uniformly 
to a limit (UO(v), VO(q)), on compact q-intervals. It follows that p0 = (C,,, 0), 
where Co is a constant, Go < u,, and that (I?~(v), ~J~)) is a solution of (3)0. 
Since z&(O) = u,({*) = CI, and z?,, < ui, ]J(v)] must assume values greater 
than -6 at some finite time, in at least one time direction. This can be seen 
from Fig. 9. Since solutions of (3), remain near solutions of (3)0 on-finite q- 
intervals, it follows that the o,, components exit the projection of N, in the 
U-plane, in finite time, and so the solution curves cannot lie in S,. This 
contradiction proves the pointwise convergence of u,(l) to zero, 0 < < < <. 

We now show that the convergence is uniform. From what we have just 
shown, given any ,U > 0, there is an N such that n > N implies that I u,(<)] < ,U 
if r = 0 or < = z Note that since U,(r) E A,, 0 < < < c, I u,(r)] < 6. If the 
convergence were non-uniform, then for each ,u, there would exist n > N and 
4 E (0, r> such that /u,(r)] > ,u. Thus, at some <* E (0, r>, U, would assume 
either a positive local maximum, or a negative local minimum. In the former 

FIGURE 9 
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case, at this point U: = VA = -s;$,f(U,,) > 0, and in the latter case, U: < 0. 
Both of these are impossible so that the convergence is uniform. 

Now suppose that EE (0, r,), and that V,,(z) E D. We know that 
u,(r) < u, and u,(c) < u1 for large n. If U,(f) E A, for all large n, then as 
before, U, -+O uniformly on IO, f]. But it is also a priori possible that 
U,,(r) E ZP\A,, for n large. We shall show that this is actually impossible to 
complete the proof. 

By Lemma 1, any solution with U,,(c) E g\p,, and V,(r) ED must enter 
T, in backwards time, and so there exists r, < r such that U,(&,) E &I,,. Let 
r = (<- &)E; if (on(q), P,(q)) is the associated solution of (3),,, then 
gn(0) E 8i0 for all n. Again since ] 0; / and ( I$ j are uniformly bounded, a 
subsequence converges to a solution (O,,(V), V,(q)) of (3),, uniformly on 
compact q-intervals. Thus, o,,(O) E aJo, and Co < u, . Again from Fig. 9, it is 
evident that this solution exits the projection of flEfl in o-space, and thus such 
a solution of (3),, cannot be in S,,. Thus u, + 0 uniformly on compact 
subsets of [O, c,). 

From Lemma 1, we see that solutions in S, eventually enter T, ; in order 
to get from T, to T,, z”(C) must cross zero while the solution curve is in T, ; 
let cZ > 5,) be the smallest such value of <. An argument analogous to the 
above shows that V,,(c) is a solution of (7)+ for <E (rl, t,]. Finally, it is 
clear from the symmetric character of N,, that this procedure can be 
continued for all <. The proof of the lemma is complete. 

B. Points on the Boundary of T, 

Suppose that p E 3T,; we shall show that p @ S, for all sufficiently small 
F. In Section 3A, it was shown that every solution through such p leaves T, 
in at least one time direction, with the exception of points which lie on the 
face u = t’r of 3. Suppose then, that there are solutions in S, passing 
through such points p E 8T, for a sequence of E tending to zero. If 
p, = (U,, V,), then from Fig. 6b, it is evident that I’, = (u, , 0). From 
Lemma 2, we see that a subsequence of V,(r) converges to a limit V,,(@, the 
components of which are solution segments of (7)) and (7)+, with tran- 
sitional behavior as in Fig. 4. Now V,(r) passes through (u,, 0), and this 
point is close to the orbit PURQ in Fig. 6a. Since PORQ exits the projection 
of N, in V-space in finite time, the same is true of the orbit through (u,, 0). 
Thus V,(T) exits this region of V-space in finite time for all sufficiently small 
E; this solution cannot lie in S,. 

C. Points on the Boundary of T2 

If p = (U,, V,), and U, lies in the interior of A + (uO), then U lies interior to 
A + (uO) for all (U, V) near enough to (U,, I’,). Thus, if I’, is interior to 2, p 
is an interior point. If I’,, E Z8, then the orbit eventually leaves N,; the 
proof is similar to what we have done in Section 3B above. 
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Suppose then that U,, E aA + (u,,); in the slow variables, I!?~ E 3x+(5,,). The 
problem here is that A + (6) changes as 6 changes. We resolve this by noting 
that 1 t?(q)\ < KE for some K > 0, so that A+(v’(v)) changes at a rate O(E). 
Moreover, o,, E aA +(fi,,), and therefore o0 changes at a rate O(l), for small 
E, since o0 lies at a distance at least 6 from the critical point (P+(z?,), 0) of 
(3),. Since the U-components of solutions of (3)0 are externally tangent or 
transverse to i?A + (z?,,), it follows that the U-components of such solutions of 
(3), leave A +W)) in at least one time direction. 

D. Points on aT, or aT, 

We consider only the case p = (U,, I’,) E aT, ; the other case is treated in 
a similar manner. If U, E 39, it has been noted in Section 3C that the 
solution leaves N,. 

Now suppose that V, lies in the “top” or “bottom” of aD. The argument 
above in Section 3B shows that the I/ components of the solution through p 
closely approximate orbit segments of (7), as in Fig. 4. Since the top (resp. 
bottom) of aD is above PORQ (resp. below GHJ), it follows that the 
solution exits N,, and thus p 65 S,. 

If, on the other hand, V, lies in the “left” or “right” edge of aD, then since 
z0 > 0, we must have that U, E A, or U, E A+(v,) (otherwise V immediately 
leaves D in one time direction while U remains exterior to A, or A+ (v,)). 
Such solutions therefore exit N,. If U, is interior to A, or A +(uO), then p is 
an interior point, while if U,, lies on the boundary of one of these sets, then 
p E aT, n aT, or p E aT, n aT, ; this case is treated in Section 3E below. 

E. Points in aTi n ari 

We shall only check the points in aT, n aT, ; the other cases are similar. 
First recall that D is interior to J8 and A, is interior to .%?. It follows, 

then, that 

Let (U,, V,,) E &t, x aD; if V, lies in the “top” or “bottom” of 80, the 
solution exits N, (c.f. Section 3D above). Suppose then that I’,, lies in a 
vertical edge of D, say, u = u, - p (the other case is similar). As a first 
approximation of the flaw of (3), through to,, PO), we set E = 0, so that 
PO = (a, --, 0). The flow of (3)0 in U-space is then as in Fig. 9, and so U 
leaves the projection of !?‘, in U-space in finite time. Now since the flow (3), 
is an O(E) perturbation from the flow (3),, it follows that such solutions of 
(3) also exit N, in finite time, for sufficiently small 6. 

We have thus proved that S, n aN, = 0, for sufficiently small E. Thus N, 
is an isolating neighborhood for the Bow (2),. It follows too that 
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s’,naN’, = 0, where g,= S(E,). Since (2), and (31, are the same flows 
modulo a change in time scale, it is clear that S, and S,E have the same index. 
In the sequel, it will be more convenient to work with S,. 

5. CONTINUATION TOTHE VAN DER POL EQUATIONS 

As we have explained earlier, we must show h(S,) # 0 in order to 
conclude that S, # 0. It is difficult to compute this index directly. Instead, 
we exploit the homotopy invariance of the index. by suitably deforming the 
equations. This will be done by introducing some new parameters. As we 
deform the equations, the sets N, will also have to be modified. At the end of 
the homotopy, we will be left with the Van der Pol equations crossed with a 
“two-dimensional repelling critical point.” 

A. A Preliminary Lemma 

We modify Eqs. (1) by replacing the K,, term by ,u’D~~, where 0 < p ,< 1. 
The i and z” equations in (2), and (3), now become 

p2i = -ez - ug(u, u), 

,23 = -etf - &%g(c, u’). 
(13) 

Concerning these equations, we have the following lemma. 

LEMMA 3. Zf (HJ holds with ,a = 1, then it also holds for all ,a, 
0 c p < 1, for suflcienrly small ( 81 (e < 0). 

ProoJ Let Z,,(U) be the orbit segment OS, of (6) in Fig. 5, where the 
parameter p appears as in (12). If z,,,(u) and z,,~(u) are two such curves with 
puz > p, which pass through the same point (u, z), then from (13) COZY, = 
p;z;,(tl) (here “prime” means d/du), so that Z;,(U)> z:,(v). Since both 
curves pass through the origin, it follows that z,,,(v) > z,,~(u) for v > 0. 

The parameters pr, and A of Section ID, and (Fig. 5) will now depend on 
,u; these expression now become 

A,, = \/-2G _ (a,)/,4 

Note that when p = 1, p,. = .I’:1 62G. (s) ds, and this latter quantity is 
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within O(e) of szl z,(s) ds. Thus, when ,U = 1, we can use either of the two 
expressions for p,(l). Now we have 

and if e,, , c,, etc., are the quantities in Fig. 5 with p < 1 (analogous to those 
with ,u = l), we have 

/lye; - c3/2 = -ep,(u>. 

Thus 

and similarly 

A, - B, = d,, - e, > -Bp&)/p2e,, . 

Now note that 

A@) = Idzld4,=,, =A/P. 

Thus d,, - c, < 2CAp, It?l/~, and 

c, - % > 2 [P&I - 2~A01*e,)p,/~l + O(@‘). (15) 

Now for fixed p, if the quantity in backets in (15) is positive, then 
c, - a, > 0 for small 8. In a similar manner, e, > b,, and this is the desired 
condition. However, care must be taken to ensure that if a 8 works for ,U = 1, 
the same 19 works for ~1 < 1. We proceed first to show that the quantity in 
backets in (15) is positive. 

Thus, from (14), we have (when z=e,, u =u,) ,u’e, =p[2(--BP,@)- 
Gh)N”‘~ so the quantity in brackets in (15) is 

Q@,ol>>-P,C~)--~P,A dW9~,Cu)-G-h)). 

As a function of p, Q@) has the form depicted in Fig. 10. Thus, since p,(u) 
increases as ,U decreases, it follows that Q@,(U)) > Q@,( 1)) for all ,D < 1. 

Finally, we check that a 8 which works in (15) for ,U = 1 also works for all 
,U < 1. The quantity in brackets in (15) is of the form 

g [P,cu>- Cl dw9P"w+ cdl + o(e’>T Y 
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FIGURE 10 

where c, and c2 are positive constants. But since ,u*e,, =p dw%7”W + c,), 
with c3 a positive constant, we want that 

Since the graph of the function Q@)(-0~ + c3)- “* = Q@) is as depicted 
in Fig. 11, where Q@) is bounded away from zero for p 2 p,(l), we see that 
if the quantity in brackets in (15) is positive for some B when P = 1, it is also 
positive for that 6 when p < 1. 

B. The Artificial Viscosi&y Equations 

It follows from this lemma, that an isolating neighborhood fl,@) for (3), 
(modified via (13)), can be constructed for 0 < p0 < ,u < 1, and all 
sufficiently small E (depending on P,,), for some p, > 0. The construction 
proceeds exactly as in the case p = 1. 

Next, we introduce a new variable 

n(q) = -~fX(v) - c*G, where G(u’, v’) = Cg(U; 6). 

Then b*?’ = II and 

7t' =-&of -E*dG. (a,~7 

= -~fh/p* - E* dG . (J?,, n/&b’ - &G/B). 

ij(Pl 

I,.,:, P,(l) 
P 

FIGURE 11 
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Finally, let 

P(V) = dP2vw; (16) 

then 

PI = E-Q+&ep/,d - s,ple + O(E~)J 

= F[-e-j2G,/e]p +p20(i) 

= &-‘cp +/PO(l). (17) 

Now -8 > 0, and 0 is small. However, the smallness of 101 (used in Section 2 
to obtain the behavior of the singular flow) was taken relative to the quantity 
Q@,@)). In Lemma 3, we saw that this quantity increases as p decreases, 
and thus, a value of 0 < 0 which was admissible for p = 1 is also admissible 
for every p E (0, 11. 

Since G, is uniformly bounded, there exists p,, > 0 so small that the coef- 
ficient c in (17) is positive and uniformly bounded away from zero. Thus for 
large 1 p 1, the equation for p’ represents (essentially) a repelling critical point. 
Under the change of variables z”+ p in (3),, the p equations become 

3 = --Ee-Yi(O) - e&p@-2q), 

p’ = E-ICp +$0(l). 
(18) 

For each (U, v), let Z(U, v) = {z: (U, u, z) E N&p,,)}. If U lies in A, or 
A +(v), then Z is an interval of the form 1 z I< K for some (large) K > 0. If U 
is outside of these regions, then Z is an interval of the form k < z <K or 
-K < z < -k, for some k > 0. We must now extend the regions D and E in 
Figs. 7b and 8b so that Z is always an interval of the form IzJ <K. When this 
is the case, then we can make the change of variables .5-+ p (see (16)) and 
the projection on the p-axis would always contain an interval of the form 
I pi < K, , for some K, > 0. It would then be possible to let p tend to zero 
independently of E, since when ,u = 0, the bounded solutions of (18), lie on 
p = 0. Therefore these points must lie in our isolating neighborhood; see the 
discussion following the proof the next lemma. 

LEMMA 4. Let 

and let IV: = NC@,,) U (9 x D*) U (9 x E*). Then S(NF) = S(N&,)); the 
latter set being taken with respect to the equations (2),. 
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Proof. Suppose that an orbit of (2), passes through a point (U,, I’,) E 
(2 x D*)\N,, when r = 0. It follows that U, is exterior to A,, and A_+(v). If 
this orbit remains in N,*, U must enter A+(v(<)) in positive time { = O(E). 
Since z = U’ is bounded, u(t) is within O(E) of v(O), and hence, u(t) < uz -p 
for small E. Since the “base” of D was assumed to be near the v-axis, it 
follows that every solution of (7)+ starting in (or near) D*\D remains 
outside of E* at all future times. The behavior of the perturbed equations 
will therefore be similar; in particular the solution, having entered T, can 
never reach T4, and V(l) will closely approximate the flow of (7)+ for all 
< > 4. It follows that V(r) eventually exits the region L?? in Fig. 6a, and thus 
the orbit cannot lie in S(N,*); (Fig. 12). 

From the lemma, it follows that N,(,u,) can be continuously deformed to 
N$ without changing the maximal invariant set; the index therefore remains 
unchanged throughout the homotopy. Note too that a similar remark applies, 
of course, to the associated neighborhood fl,*. 

Observe that @ is the product of a set c in (0, v’) space, with an interval 
J, = (5: IfI < EK}, and fi is independent of E. Since p = 4% -‘f - G, it 
follows that for large K, K, = --OK - max 1 G] > 0, where the maximum is 
taken over the projection of fi on the (u’, 5) plane. Thus, under the change of 
variables z’-, p, Nf is mapped into a region it? x JK,, where 
JI(, = (p: 1 pi < K,}. (The actual projection on the p-axis may be larger than 
JK,, but this will not be important.) 

The equations are now 

ii’ = w, 17’ = -8-‘cG(u; 4 + O(q))), 

6’ = -8~ - zq-(u; u’), p’ = &-1(-e + O($))p + O(.u’). 
(19)e 

Since the critical points in A? x JK, are repellors, we see that any solution of 
(19) in A? X JK, along which Ipi = K, leaves A? x JK, in positive time; a 
similar remark applies to solutions of (3), in Nz along which 151 = K. It 
follows that the index of S(A? x JKI) with respect to (19),, equals the index 
of S(N,*) with respect to (3),. 

We now claim that fi X JK, is an isolating neighborhood for (19), for each 
,u E [O,,U,], and for all small E > 0. The (0, v’) flow of (19) can be closely 

FIGURE I2 
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FIGURE 13 

approximated by setting p = E = 0. In this case, there exists a singular 
“periodic” solution which consists of two curves of critical points along 
zi = r? = 0, and along @ = 0, f = 0, together with the two connecting orbits 
of (H,) when v = o, or u2 (see Fig. 13). It is easily seen that it? is a compact 
neighborhood of this singular solution. Moreover, it follows, with minor 
modifications from Conley’s construction ([3]), that d x Jk, is an isolating 
neighborhood for (19), when p = 0, for all sufficiently small E > 0. Since 
isolating neighborhoods persist under perturbation, it follows that M X JK, is 
an isolating neighborhood for (19), for all small E and for all ~1 E [0, ,u, 1, for 
some .D, > 0. Now replace cl0 by min@,,p,) in the above arguments. We 
conclude that the index of S(fiz), with respect to (3),, equals that of 
S(fi x JK,) with respect to (19),, when ,U = 0. The equations have now been 
continued to 

C’ = 6, l.7 = -e-‘&Vg(zi, v’), 

3 = 4% - zzf(tz, 277, p’ = -BE - ‘p. 
(2% 

C. Deformation off and g 

Next we deform L!!(u’, ~7) and t7g(& 5) = G as indicated in Fig. 14. In 
particular, u’= 0 and f = 0 are pulled apart (when they meet at R in Fig. 13) 
into two components. The upper component is deformed into a cubic; care 
must be taken to ensure that the equal area point, v’= (T,, remains positive 
and unique. At the same time, g = 0 is deformed into a vertical line and 
pushed to the left, so that it meets f = 0 along the branch with positive slope, 
as indicated in the third picture in Fig. 14. Also, the horizontal line v’= 0 (in 

FIGURE 14 
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G = 0) is pushed down into the region v’ < 0. Finally, the nonlinear functions 
are translated so that the middle critical point occurs at the origin. Since the 
other portions of the curves f = 0 and g = 0 are far away from the region in 
which the desired solution is to lie, they can be ignored. We denote the final 
nonlinear functions by 7 and g; they can be written as 

s =u’-u’3-u, 1’;; 

that is, they are the functions appearing in the Van der Pol equation. 
As the functions f and g change, we must modify the region fi. Using 

Conley’s construction (/3)), it is easily seen that a suitable ,6? can be found 
at each step. This follows since the crucial properties ofJaud g needed here 
are that (i) f = 0 is qualitatively like a cubic; (ii) g < 0 along the left branch 
of f = 0, and g > 0 along the right branch off = 0; and (iii) hypotheses 
analogous to (Hi)-(H,) hold at each stage of the deformation. We omit these 
details. 

D. The Second Artzgkial Viscosity Equations 

The last step in the homotopy is the introduction of another parameter 
v E (0, 11, as follows. The equations we look at are 

$ Yzz $, c’ = -e- ICC, 

VlT = -f% - f(u; IT), p’ = --E-‘6p. 
(211, 

We also introduce a new variable 

r(q) = v6’(uq). (22) 

As before, we find that r’ = (-0 f U(V))~ + U(V), and in these new variables, 
(21), becames 

u’f = -e-y(u; 6) -e-5-, 

rf = c-e + 0+)p + O(V), 

~1 = -ep1,5c, 

p’ = 4lep. P-J), 

The isolating neighborhood for the old equations wili have to be modified as 
v varies, to a neighborhood II?, x JK,. In particular, as v + 0, the value 6 = u, 
(resp. Us), where c goes into transition moves upward (resp. downward) 
towards 0; (resp. a;); see Fig. 14. Let v, be so small that -0 + 0(-v,), the 
coefficient of r in the r’ equation in (23),, is positive. The region Mu0 will 
consist of two tubes in (zi, @, 6) space about the left and right branches of 

s(zK c) = 0, 6 = 0, together with two neighborhoods in the ~7 plane of the 
connecting orbits of the singular equations (as in Figs. 7a, ga), crossed with 
small neighborhoods of v’= u1 and 6 = u2. The neighborhood Mu0 x JK, will 
be isolating for (23), for sufficiently small E, depending on vg. 
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As v tends to zero, the left and middle critical points move together in 
Fig. 7a, and the middle and right critical points move together in Fig. 8a, 
since ui approaches o;, i = 1,2. As a result, E will have to decrease to zero 
along with V, in order that fi, X JK, remain an isolating neighborhood. In 
order to avoid this problem, we fix v = V, as above, and we enlarge fi,,” in a 
suitable manner, which we shall soon describe. In the variables (23),, the 
enlarged neighborhood will remain isolating for all v E [O, v,), independently 
of e. In particular, QVO will be enlarged so that under the change of variables 
B + r, the projection of the image of AU0 on the r-axis always contains an 
interval of the form J,, = {I rl < K2}, for some K, > 0. This is not the case 
with n;iUO; e.g., at the middle critical point in Fig. 7a, 6 =f(zZ, u,) = 0, so 
that r=O; however (~~,O,U~)CE~~,. 

LEMMA 5. Let the regions & and 9 (where 9 and Y are in Fig. la 
and 8a, respectively) be replaced by the rectangle 

where C and K are large and positive. Let z consist of those points in if?,,O, 
together with the points in F x (1 u’ - ai( ( p}, i = I, 2. Then the maximal 
invariant set of (21), in z x JK, coincides with that of (21), in fi,0 X JK,, 
when v = vO, and for suflciently small E > 0, say 0 < E < Q,. 

Proof The (U; G) flow of (21), when t? = cri is as in Fig. 15. Let 
0’ c {zi < 0) be a compact neighborhood of the middle critical point, disjoint 
from the other two critical points and from their connecting orbit; see 
Fig. 15. Since the middle critical point is a repellor, any orbit of (21), for 
which (zi, a) E 86 exits 0’ in positive time, and enters 0’ in negative time. If 
E > 0 is small, the 0 components of (21), must also have the same behavior, 
if 0 lies on 30’. Thus, if a complete solution curve of (21), passed through a 
point at which 0 E 6 (say at q = 0), it follows that o(r) E 0” for all q < 0. 
Since d lies in u’ < 0, 6’ = EC is negative and bounded away from zero for all 
ye < 0. Hence t?(q) must decrease and eventually v’ exits the interval 
1 z? - u, ) < p. The solution therefore exits L’ x JK, in negative time. 

FIGURE 15 
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Now suppose that the @component passed through a point in 
i\@ U b). When E = 0, the 0 component either exits z in finite time, or 
enters 0” in backward time. Since z\(& U d) contains no critical points, 
solutions of (21), have similar behavior for small E > 0. From the previous 
paragraph, we see that every such solution exits z x JK, in at least one time 
direction. 

The case in which ) ~7 - c2( <p is treated in a similar fashion. This 
completes the proof. 

We can now continuously deform the regions 5? and 9 to F without 
changing the maximal invariant set of (21),. The index therefore remains 
invariant throughout the homotopy. 

Next, consider the flow of (21), in L’ x JR,, with v = v0 and small E > 0. 
We choose K > 0 so large that 

K, = (-0 + O(v,))K - max 171 > 0, 

where the maximum is taken over the projection of L” on the o-plane. Then 
under the change of variables G + Y, the region 2 X JK, is mapped onto a 
region whose projection on the r-axis contains the interval JK, = (Irl < K,}; 
its projection on the (z?, ~7) plane is an annular region A about the origin. If v, 
is small, then oi will be within p/4 of of, i = 1,2. For such vO, the annulus 
will have the form indicated in Fig. 14. 

Consider the flow of (23), with v = 0. This is seen to be the Van der Pol 
equations, crossed with a “two-dimensional repelling critical point.” It is well 
known that the Van der Pol equations admit a unique attracting limit cycle. 
For sufficiently small E, say 0 < E < E,, this orbit will lie interior to the 
annulus of Fig. 13; indeed, the annulus in an attractor block for the periodic 
orbit. If we now let v > 0 be small, we find that Ir\ = O(v) along any 
complete solution of (23), in A x JK, x JK,, since if 1 rl > kv, r’ > 0 so the 
orbit does not stay in the neighborhood. Furthermore, we see that this latter 
set perturbs to an isolating neighborhood for (23), for 0 < v < vi, and 
O<E<Eo. Finally, if we replace v0 by v2 = min(v,, vi), in the above 
arguments, we obtain that A X JK, x JR7 is an isolating neighborhood for 
0 < v < v2 and 0 < E < min(e,, &i). Moreover, the index of S(A X JK, X JKZ) 
with respect to (21), is the same as that of S(z x JKI) with respect to (20),, 
since any point for which III= K, or ( G 1 = K, is an exit point under the 
respective flows. 

The construction of the homotopy is now complete. 
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6. EXISTENCE OF A PERIODIC ORBIT 

A. Computation of the Index 

It follows from our constructions in Sections 4 and 5 that the index of 
S,= S(N,) with respect to Eqs. (2), (and of S(fi,) with respect to (3),) 
equals the index of S(A x JK, x JKJ with respect to the equations 

u’ = f(zi, v’), p’ = -BE-‘p 9 

6’ = Eli, r’ = -er, 
(24) 

where f(& 6) = u’- G3 - ~7. As we have noted above, the (zi, ~7) equations are 
precisely the Van der Pol equations, and they admit a unique attracting 
periodic orbit lying in the projection of A x JK, x JK, onto ~7, t? space. 

The index of a hyperbolic periodic orbit with n positive Floquet exponents 
is .X” V Z”+‘, where Ck denotes a pointed k-sphere, and “V” is the “wedge 
product” of pointed spaces (see [2 I). S ince the (p, r) equations have index 
zz, we obtain 

where A denotes the “smash product;” see [2]. It follows that h($,) # 6; 
whence g6 = S(#,) f 0. 

B. Existence of a Periodic Solution 

At each step of the above constructed homotopy, the isolating 
neighborhoods are all homeomorphic to S’ x D3, where D3 is a three-cell. 
Let 2 denote the homotopy parameter, and let NA denote the corresponding 
isolating neighborhood. Now orbits in S(N,) cannot “turn around,” and in 
particular, if D, is a section of N,, which is homeomorphic to D3, then the 
Poincare map (the “first return” map), T,, under the positive flow, is well- 
defined on the set S(N,) f7 D,. (Indeed, for the original equations (3),, this 
follows from Lemma 1 of Section 4; for the Van der Pol equations, it is 
obvious, while for the flows generated in (19),, it follows from Conley’s 
construction in 131.) Thus T, is well-defined at all points sufficiently close to 

W,)nD,. 
Let 0, c D, be a small open neighborhood of S(N,) f7 D, in D, such that 

TA is defined on GA. Then T, has no fixed points on aO,, since N,, is an 
isolating neighborhood, Thus the degree, deg(Z - T,, , 0,) 0), is well-defined 
and is independent of A. If the flow with 1= 0 is the flow generated by (24), 
then the degree of I- To is (-1)’ = 1, since the periodic orbit has no 
positive Floquet exponents. 

Now consider the two changes of variables G + r and f-+ p. It is easily 
checked that the transformations (zi, 6, 6, z7 -+ (ri, G, V; p) and (U; 6’,5, p) + 
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(U; r, d, p) are both orientation-preserving diffeomorphisms of R4. It follows 
then, that the degrees of the associated flows are all the same. Thus, the 
degree of I - T,, where T, is the first return map for the original equations 
(3),, is +l. It follows that (3), admits a periodic solution. This completes the 
proof of the theorem, (cf. Section 1E). 
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