A NOTE ON ABEL POLYNOMIALS AND ROOTED LABELED FORESTS

Bruce E. SAGAN*
University of Michigan, Ann Arbor, MI 48109, USA

Received 21 December 1981
Revised 21 May 1982

Abstract

A special case of the Abel polynomials counts rooted labeled forests. This interpretation is used to obtain a combinatorial procf of the formula expressing x^{n} as a sum of these polynomials.

Dedicated to Frank Harary and his exceptional intuition

Various polynomials can be associated with combinatorial structures. For example, one instance of the Abel polynomials is the generating function for forests of labeled rooted trees. Specifically, if $A_{n}(a, x):=x(x-a n)^{n-7}$ is the nth Abel polynomial, then

$$
\begin{equation*}
A_{n}(x):=A_{n}(-1, x)=\sum_{k=0}^{n} t_{n k} x^{k} \tag{1}
\end{equation*}
$$

where $t_{n k}$ is the number of forests on n labeled vertices consisting of k rooted trees. This is equivalent to the statement that $t_{n k}=\binom{n-1}{k-1} n^{n-k}$ which has been proved by various people, e.g., [3,5]. Mullin and Rota [6] asked if (1) could be demonstrated combinatorially and this was done by Françon [1]. However such a proof for the inverse formula:

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n}\binom{n}{k}(-k)^{n-k} A_{k}(x) \tag{2}
\end{equation*}
$$

was still lacking.
$\mathrm{In}[4]$ we showed that identities like (1) and (2) can be proved in a combinatorial manner by associating with the given polynomials a partially ordered set (poset). One identity follows by summing over the poset and the other by Möbius inversion. The purpose of this note is to describe such a poset for the Abel polynomials and hence provide a combinatorial proof of (2).
Let \mathscr{F}_{n} be the set of all forests on n vertices consisting of labeled rooted trees. To describe a pantial order on \mathscr{F}_{n} we need only specify which forests cover a given $F \in \mathscr{F}_{n}$ (in a poset, x covers y if $x>y$ and there is no z with $x>z>y$). Lei $E(F)$ * Research supported in part by NSF Grant MCS80-03027

0012-365X/83/0000-0000/\$03.00 © 1983 North-Holland
be the set of edges of F and $R(F)$ be the set of roots of F. For every pair $v_{1}, v_{2} \in R(F)$ there are two forests, F_{1} and F_{2}, covering F. This pair of forests is defined by $E\left(F_{i}\right)=E(F) \cup\left\{v_{1} v_{2}\right\}$ and $R\left(F_{i}\right)=R(F)-\left\{v_{i}\right\} ; i=1,2$. The Hasse diagram for the poset \mathscr{F}_{3} is displayed in Fig. 1.

Define two functions $f, g: \mathscr{F}_{n} \rightarrow Q[x]$ by $f(F)=A_{k(F)}(x)$ and $g(F)=x^{k(F)}$ where $k(F)$ is the number of components of F. If $\hat{0} \in \mathscr{F}_{n}$ is the unique forest with no edges, then

$$
A_{n}(x)=\sum_{k=0} t_{n k} x^{k}=\sum_{k} \sum_{\substack{F \in \mathscr{F}_{\boldsymbol{F}} \\ k(F)=k}} x^{k}=\sum_{F \in \mathscr{F}_{n}} x^{k(F)}
$$

or

$$
\begin{equation*}
f(\hat{0})=\sum_{F \in \mathscr{F}_{n}} g(F) \tag{3}
\end{equation*}
$$

Since the ideal $I_{F}=\left\{F_{1} \in \mathscr{F}_{n} \mid F_{1} \geqslant F\right\}$ is isomorphic to $\mathscr{F}_{k(F)},(.3)$ implies that for all $F \in \mathscr{F}_{n}$,

$$
f(F)=\sum_{\substack{F, \geqslant F \\ F_{1} \in \mathcal{F}_{n}}} g\left(F_{1}\right)
$$

Hence by Möbius inversion,

$$
\begin{equation*}
x^{n}=\mathrm{g}(\hat{0})=\sum_{x \in \mathscr{F}_{n}} \mu(\hat{0}, F) f(F)=\sum_{F \in \mathscr{F}_{n}} \mu(\hat{0}, F) A_{k(F)}(x), \tag{4}
\end{equation*}
$$

where $\mu(\hat{0} . F)$ is defined inductively by $\mu(\hat{0}, \hat{0})=1, \mu(\hat{0}, F)=-\sum_{F^{\prime}<F} \mu\left(\hat{0}, F^{\prime}\right)$ (see Rota [7] for details about Möbius functions). By way of example, the value of $\mu(\hat{0}, F)$ is indicated next to F itself in Fig. 1.

To simplify (4), we must evaluate the Möbius functions for the poset \mathscr{F}_{n}. If $F \in \mathscr{F}_{n}$ is composed of rooted trees $T_{1}, T_{2}, \ldots, T_{k}$, then the interval $[\hat{0}, F]$ is isomorphic to the direct product $\left[\hat{0}, T_{1}\right] \times\left[\hat{0}, T_{2}\right] \times \cdots \times\left[\hat{0}, T_{k}\right]$ in the natural way and $\mu(\hat{0}, F)=\mu\left(\hat{0}, T_{1}\right) \mu\left(\hat{0}, T_{2}\right) \cdots \mu\left(\hat{0}, T_{k}\right)$. Hence it suffices to calculate $\mu(\hat{0}, T)$ where T is a single rooted tree. First we must describe the elements of $[\hat{0}, T]$.

Given a tree T and vertices v, w in T, we let $v-w$ denote the unique path from v to w in T. Let T have root r. The depth of a vertex v, depth v, is the length of $r-v($ depth $r=0)$. We will always measure depth with respect to the maximal tree T of $[\hat{0}, T]$. If u is on $v-w$ we write $v-u-w$. The subtree corresponding to v in T. $T(v)$, is the subtree induced by all vertices w in T such that $r-v-w$.

Lemma 1. Given $F_{1} \in[\hat{0}, T]$, consider any tree $T_{1} \subseteq F_{1}$ with root r_{1}, and any $v \neq r_{1}$ in T_{1}, then
(a) depth $r_{1}<$ depth v,
(b) $T_{1}(v)=T(v)$.

Fig. 1. \mathscr{F}_{3} and its Möbius function. Roots are circied and $\mu(F)$ is directly to the right of F.

Proof. (a) Assume that depth $v \leqslant$ depth r_{1}. Without loss of generality we may assume that depth v is minimal among all $v \in T_{1}$. Hence $r-v-r_{1}$ since stherwise $v-r_{y}$ contains other vertices of T_{1} of smaller depth.

If $v=r$, then r is not a root in F_{1}. But $R\left(F_{1}\right) \supseteq R(T)$ so that r is not a root in T, a contradiction. If $v \neq r$, then the minimality of depth v guarantees that $r-v$ contains an edge $I v \in E(T)-E\left(T_{1}\right)$. However we can only add an edge to F_{1} if it connects two roots and v is not a root. Hence we will never be able to add $u v$ to F_{1} in order to create T, another contradiction.
(b) Since $T_{1} \subseteq T$ we have $T_{1}(v) \subseteq T(v)$. As both $T_{1}(v)$ and $T(v)$ are connected, to prove $T_{1}(v)=T(v)$ we need only show that both trees have the same vertex set. So suppose that $w \in T(v)-T_{1}(v)$ and consider $v-w$. Following this path from v to w, let $x y$ be the first edge in $T(v)$ that is not in $T_{1}(v)$. Hence $x \in T_{1}$ and $y \notin T_{1}$. But x is not the root of T_{1} so, as before, we will never be able to add the edge $x y$ to F_{1}.

Note that condition (a) implies that $R\left(F_{1}\right)$ is completely determined by $E\left(F_{1}\right)$ since each tree $T_{1} \subseteq F_{1}$ is rooted at the vertex of minimal depth in Γ. Hence to specify a forest in $[\hat{0}, T]$ we need only specify its edge set.

Corollary 2. Given $F_{1}, F_{2} \in[\hat{0}, T]$, then $F_{1} \leqslant F_{2}$ if and only if $E\left(F_{1}\right) \subseteq E\left(F_{2}\right)$.
Proof. The 'only if' part of the corollary follows immediately from the definition of the covering relation in \mathscr{F}_{n}. For the other implication we need only show that we can connect pairs of roots in F_{1} to obtain the rest of the edges in F_{2}, i.e. for every $u v \in E\left(F_{2}\right)-E\left(F_{1}\right)$ we must show that $u, v \in R\left(F_{1}\right)$.

Without loss of generality, let depth $u=$ depth $v-1$ so that $r-u-v$. If $u \notin R\left(F_{1}\right)$, then $T(u) \subseteq F_{1}$ by Lemma $1(b)$. This implies that $u v \in E\left(F_{1}\right)$, contrary to our assumption. However, if $v \notin R\left(F_{1}\right)$, then the tree of F_{1} containing v has root r_{1} with depth $r_{1}<$ depth v by Lemma 1(a). Hence $u v$ lies on $r_{1}-v$ anJ is thus in $E\left(F_{1}\right)$, another contradiction.

Coroliary 3. The interval $[\hat{0}, T]$ is a lattice with, for all $F_{1}, F_{2} \in[\hat{0}, T]$,
$F_{1} \vee F_{2}=$ the forest in $[\hat{0}, \mathrm{~T}]$ with edge set $E\left(F_{1}\right) \cup E\left(F_{2}\right)$,
$F_{1} \wedge F_{2}=$ the forest in $[\hat{0}, T]$ with edge set $E\left(F_{1}\right) \cap E\left(F_{2}\right)$.
Proof. This result follows from Corollary 2 and the fact that U and \cap are the meet and join for subsets of a set. The details are similar to what we have proved in full above and are omitted.

We are now in a position to calculate $\mu(\hat{0}, T)$ for any tree $T \in \mathscr{F}_{n}$. In what follows an endpoint is a vertex of degree one, an endline is an edge incident with an endpoint, and a bush is a tree all of whose edges are endlines containing the root.

Proposition 4. For any $T \in \mathscr{F}_{n}$,

$$
\mu(\hat{0}, T)=\left\{\begin{array}{cl}
(-1)^{n-1} & \text { if } T \text { is a bush, } \\
0 & \text { otherwise. }
\end{array}\right.
$$

Proof. Consider first the case where T is a bush with root r. Given any subset $S \subseteq E(T)$ there is a forest $F_{1} \in[\hat{0}, T]$ with $E\left(F_{1}\right)=S$. Merely root the tree determined by S at r. Since all the isolated points must be roots, we can add edges to F_{1} until we obtain T.
In fact these are the only elements of $[\hat{0}, T]$ since given $F_{1} \in[\hat{0}, T]$ we have $E\left(F_{1}\right) \subseteq E(T)$ and, by Lemma $1($ a), r must be a root since deptil $v=1$ for $v \neq r$. Hence there is a bijection between $[\hat{0}, T]$ and the boolean algebra on $|E(T)|$ elements. By Corollaries 2 and 3 this bijection is an isomorphism of lattices, and so in this case

$$
\mu(\hat{0}, T)=(-1)^{|E(T)|}=(-1)^{n-1} .
$$

If T is not a bush, consider the atoms (eiements covering $\hat{0}$) of $[\hat{0}, T]$. Each atom, F_{1}, consists of $n-1$ isolated roots and a single edge which wee claim mnust be an endline $r_{1} v$ with endpoint v. Clearly any such forest can be completed to T by adding edges. Conversely, if $F_{1} \in[\hat{0}, T]$ with unique edge $r_{1} v$, then depth $r_{1}<$ depth v. Thus $T_{1}(v)=v=T(v)$ so v must be an endpoint.

Now if T is not a bush, then some edge of T is not an endline. It follows that this edge is not in any atom and, by Corollary 3 , that T is not the join of the atoms of $[\hat{0}, T]$. Invoking Hall's theorem $[2: 7 \mathrm{p} .349]$ we see that $\mu(\hat{0}, F)=0$.

Corollary 5. For all $F \in \mathscr{F}_{r}$,

$$
\mu(\hat{0}, F)=\left\{\begin{array}{cl}
(-1)^{n-k(F)} & \text { if } F \text { is a forest of bushes, } \\
0 & \text { otherwise. }
\end{array}\right.
$$

Appiying this last result to (4), we see that x^{n} is expressible as:

$$
x^{n}=\sum_{k=0}^{n} \sum_{\substack{k(F)=k \\ F \text { a forss of bushes }}}(-1)^{n-k} A_{k}(x) .
$$

But the number of forests on n vertices consisting of k bushes is easily seen to be $\binom{n}{k} k^{n-k}$. The number of choices for the roois is $\binom{n}{k}$ and k^{n-k} counts the nuraber of ways to connect the remaining $n-k$ vertices to those roots. Equation (2) follows at once.

Note added in proof

David Reiner [8] has also discovered the poset \mathscr{F}_{n}. The computation of its Möbius function in this note is new.

References

[1] J. Françon, Preuves combinatories des identités d'Abel, Discretc Math. 8 (1974) 331-343.
[2] P. Hall, A Contribution to the theory of groups of prime power order, Proc. London Math. Soc. 36 (1932) 39-95.
[3] F. Harary and E.M. Palmer, On the number of forests, Mat. Casopis 19 (1969) 110-112.
[4] S.A. Joni, G.-C. Rota, and B. Sagan, From sets to functions: three elementary examples, Discrete Math. 37 (1981) 193-202.
[5] J.W. Moon, Counting Labeled Trees, Canadian Mathematical Monographs No. 1 (William Clowes and Sons, London, 1970).
[6] R. Mullin and G.-C. Rota, On the foundations of combinatorial theory III: Theory of binomial enumeration, in: Graph Theory and Its Applications (Academic Press, New York, 1970) 168-213.
[7] G.-C. Rota, On the foundations of combinatorial theory I: Theory of Möbius unctions, \mathbf{Z}. Wahrsch. Verw. Gebiete 2 (1964) 340-368.
[8] D.L. Reiner, The combinatorics of polynomial sequences, Stud. Appl. Math. 58 (1078) 95-117.

