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Abstract--This paper deals with techniques for improving the recognition rate of a cursive script word 
recognition system. Closed-loop preprocessing techniques have been designed and implemented to achieve 
this objective on a limited vocabulary but with no restrictions on handwriting style. This paper discusses the 
details of such a system and its performance on samples from several authors. Results obtained from this 
study are promising and suggest that closed-loop verification is a potentially more useful technique than 
previous open-loop processing approaches. 

Cursive script Word recognition Feature set Preprocessing Closed-loop Author-independent 
Processing time Recognition accuracy 

I. I N T R O D U C T I O N  

Considerable attention has been paid to the cursive 
script recognition (CSR) problem, starting around 
1960 with the work of Frishkopf and Harmon ~11 at Bell 
Telephone Laboratories. Frishkopf tackled the prob- 
lem of recognizing entire words, i.e. the word was 
treated as a single complex symbol. Harmon, on the 
other hand, attacked the problem by segmenting the 
component characters and performing character by 
character recognition. In 1962, Earnest ~z) reported 
work on a word recognition system capable of rec- 
ognizing about 10,000 words with only six features. 
At the same time Eden ~3~ described a syntactic rec- 
ognition technique termed "analysis by synthesis". It 
consisted of a method of describing the script by a set 
of stroke primitives, using syntax rules to determine 
the proper sequences for various words. Serious in- 
terest continued until about 1965, ~2~) at which time 
many of the CSR researchers turned to speech rec- 
ognition. Many of these researchers were using 
cursive script as a simpler medium for studying the 
(phoneme) segmentation problem. An excellent review 
of the early work in this area was given by Lindgren ~'~ 
in 1965. 

* To whom correspondence should be addressed at : Room 
4E618, Computer Systems Research Laboratory, Bell 
Telephone Laboratories, Holmdel, NJ 07733, U.S.A. 
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For the next 15 years interest in CSR was not 
intense. Sayre t5) reports some very interesting results 
with "static" recognition of cursive script, i.e. no 
information concerning the time order of strokes is 
given to the recognizer. Ehrich and Koehler 16J report 
some experiments in contextual studies with cursive 
script in 1975. More recent interest was shown by 
Farag ~7~ in 1979 and Hayes ~s~ in 1980. Further work in 
the area was done by Brown and Ganapathy ~9.1°~ in 
1980, certain aspects of which are presented here. 
Reviews and references in the field are given by 
HarmonY11~ and Rosenfeld. 1~2-14~ 

Cursive script recognition has recently started to 
receive renewed attention from a number of re- 
searchers. Much of the current revival in CSR research 
that the authors are aware of is being promoted by 
proprietary concerns. Consequently, little of this ac- 
tivity shows up in the literature. Increasing interest in 
CSR, as well as speech recognition, is aimed at 
alleviating many of the problems associated with 
man-machine communication. Such capability is 
becoming increasingly attractive because of the de- 
velopment of relatively cheap processing power in the 
form of microprocessor systems. 

Our goal was to develop a recognition system that 
was author-independent and placed no unreasonable 
constraints on the handwriting. Preprocessing elim- 
inates much of the initial variability of the handwriting 
data which causes author-sensitivity problems during 
recognition. Indeed, a perfect preprocessing system 
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Table 1 

*l No. of central threshold crossings 
*2 No. of upper crossings 
*3 No. of lower crossings 
*4 No. of Y maxima 
*5 No. of Y minima 
*6 No. of cusps below center threshold 
*7 No. of cusps above center threshold 
8 No. of T's 
9 No. of I's 

10 No. of X's 
l l No. of closures 

"12 No. of openings right 
"13 No. of openings up 
"14 No. of openings left 
"15 No. of openings down 

would make the characters so uniform that recog- 
nition would become trivial. 

Section 2 of this paper will discuss an implemen- 
tation of a CSR system. A fundamental overview is 
given to aid in understanding the requirements of the 
preprocessing system, although knowledge of the 
recognition algorithm is not required to understand 
the function of the preprocessor. Section 3 will in- 
troduce the fundamental processes of open-loop pre- 
processing and describe the techniques used to nor- 
malize cursive script. Section 4 will discuss the closed- 
loop implementation of the preprocessor. Experimen- 
tal results and a comparison of performance with 
open-loop preprocessing are given in Section 5. 

2. SYSTEM IMPLEMENTATION 

Samples of handwritten script were taken using a 
Tektronix graphics tablet and Tektronix 4010 gra- 
phics terminal coupled to an Amdahl 470 system via 
telephone lines. The graphics tablet supplies the com- 
puter with X and Y coordinates (10 bits per coor- 
dinate) in a chronological sequence at 4800 Baud or 
approximately 96 coordinates per second, Experimen- 
tation has shown that a maximum handwriting rate of 
about four characters per second will not normally be 
exceeded. At this rate about 24 points per character are 
taken. This resolution is sufficient for the feature 
extraction algorithms used here. 

The script data is stored in the Amdahl 470 in the 
form of X and Y integer vectors. The length (number of 
dimensions) of the vectors depends upon the amount 
of script stored. A typical word of four to six letter 
length may be represented by 200-300 coordinates. A 
user is prompted for script input and can take as much 
as about five seconds or as little time as desired to write 
a cursive script word. The only other restrictions on the 
user are that the writing be true (not printed charac- 
ters) and that the script be roughly horizontal (within 
+ / -  30 degrees) and right side up. The data thus 
collected is referred to as the "pattern vector". 

The unnormalized pattern vector represents the 
input script completely, including all of the variability 
due to the writer's individuality. The main purpose of 
preprocessing is to remove as much of this indi- 

viduality as possible, leaving normalized author- 
independent script. The resulting data, called the 
normalized pattern vector, is ready for feature extrac- 
tion and classification. 

In order to gain a better appreciation of the 
requirements for preprocessing, a description of the 
feature set is useful. Feature extraction is performed by 
computer algorithms on the Amdah1470. Features are 
detected from the normalized pattern vector directly. 
Individual routines are used for each different type of 
feature. The complete feature set consists of 183 
features, 15 of which are global (extracted from all 
parts of the word) and 168 are local measurements on 
the pattern vector (taken from isolated regions of the 
word). There are 15 feature types (the 15 global 
features) and local measurements of these feature types 
are made so that information about individual script 
characters within the word is extracted. The global 
value for each feature type is a combination of the 
values obtained for the corresponding local measure- 
ments. Thus, there is some redundancy in the feature 
space, but the localized measurements add new infor- 
mation to the space. This technique allows us to avoid 
the segmentation problem by providing character level 
information. 

The 15 feature types are listed in Table 1. Details of 
the local features are not critical to the understanding 
of the preprocessing techniques and will be discussed 
only briefly. For more details on feature space the 
reader is referred to the doctoral dissertation by 
Brown. ~m It should be clear that the features being 
presented at this point are those used for recognition 
purposes. Another set of features, to be described later, 
will be used for the actual preprocessing and will be 
described in detail. 

The first class of feature types listed are the threshold 
crossings (features 1, 2 and 3). As the names imply, a 
horizontal threshold is established above, below and 
through the center of the normalized script. The 
number of times that the script crosses a threshold 
becomes the value of that feature. The obvious intent is 
that upper loops in the script (such as for the letters b, 
d, f, h, k and I) be detected by the upper threshold and 
similarly for the lower loops (f, g, j, p, q, y and z) and 
lower threshold. For this method to work the height of 
the script, the script location and the orientation must 
be known. There are two options in the implemen- 
tation of this method: (a) normalize the script height, 
location and orientation to pre-establish values or (b) 
compute the location and orientation of the threshold 
to fit the script. For several reasons the former 
approach was taken. The predominant reason for 
choosing this preprocessing method is that script 
orientation need only be performed once, whereas in 
the latter method a transformation would have to be 
computed for each feature type that is dependent upon 
these script features. Features listed in Table 1 that are 
dependent upon script scale (X or Y), location or 
orientation are indicated with an asterisk (no. 1, 2, 3, 4, 
5, 6, 7, 12, 13, 14 and 15). 
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These errors are sent to the recognition system and 
recognition accuracy suffers as a result. As is found in 
control systems, it will be seen later that a closed-loop 
preprocessing technique provides more accuracy and 
reliability. 

The techniques that are presented in this paper are 
newly developed. This is partly due to the particular 
requirements of the available hardware and partly due 
to the general lack of significant reports in the 
literature. In the authors' opinion, preprocessing for 
recognition purposes has been given much less atten- 
tion than it deserves. 
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SLANT 
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DESKEWING) 

Fig. 1. Open-loop preprocessing diagram. 

The 168 local features are obtained by measuring 
the 15 feature types on windowed regions of the word. 
By a process referred to as "pseudo-segmentation" the 
script word is divided into overlapping segments upon 
which feature extraction is performed. These features 
provide the necessary character level information to 
yield high recognition accuracy. Further details of the 
recognition system and the features will be addressed 
in a separate paper. 

3. PREPROCESSING TECHNIQUES FOR CURSIVE SCRIPT 

3.1. Introduction 

As is true with any type of data acquisition system 
that must interface with real world phenomena, noise 
errors and data variations will occur on input. The role 
of the preprocessor is to eliminate the noise as much as 
possible and to reduce data variation to a minimum. 
Typical operations performed by the cursive script 
preprocessor include coordinate translation, rotation 
and scaling, curve smoothing and character deskew- 
ing. Figure l shows how a general open-loop prepro- 
cessor might handle cursive script. 

Open-loop preprocessing refers to a single pass 
processor which does not verify that the data modifi- 
cation has been performed as anticipated. Experience 
has shown that unexpected preprocessing errors often 
occur due to special circumstances in the input data. 

3.2. Coordinate system 

The hardware used in this investigation has a fixed 
coordinate system in which the X and Y values may 
range from 0 to 1023 (10 bits per coordinate). The 
origin is at the lower left corner of the tablet and 
terminal screen. The units of X and Y will be referred 
to as picture elements or "pixels". Because of the aspect 
ratio of the terminal screen, only 767 pixels in the 
vertical direction may be displayed. Thus, the operat- 
ing range of Y has been limited to 0-700 in this 
implementation. Physically, 100pixels is equivalent to 
one inch of pen travel on the graphics tablet. 

Cursive script words are normalized during prepro- 
cessing so that their baseline is at Y = 300 and the 
strokes begin at X = 100. The average height of the 
main body of the script is adjusted to 700 pixels. The 
average character spacing is set to 100 pixels. These 
figures were chosen primarily for readability of the 
computer graphics display and are not critical to 
recognition. However, once these display parameters 
are chosen, the recognition parameters become fixed 
as well. 

The pattern vector, which contains the script image 
information, is stored as a 3 × N array, where N is the 
number of sample points taken for the cursive script 
word. The 3 dimensions of the array are: (a) X 
coordinate, (bl Y coordinate and (c) visibility. The 
script image is reconstructed by drawing lines from the 
previous coordinate to the following coordinate in 
sequence. The visibility information tells whether the 
line drawn should be visible (draw) or invisible (move). 
In this way the script can be accurately reproduced, 
including lifting of the pen to dot an "i" or cross a "t". 
The first coordinate of the pattern vector is always a 
move. 

Two-dimensional linear transformations can be 
performed on this pattern vector by the use of "homo- 
geneous coordinate transformation matrices". This 
procedure involves augmenting the pattern array with 
a fourth dimension containing a scale factor, in this 
case equal to one. Thus, the pattern vector becomes a 4 
x N augmented array upon which linear transfor- 

mations can be performed by post-multiplication of 3 
x 3 matrices. The visibility information is carried 

along with the coordinates but does not enter into the 
calculation. The process is illuatrated in Fig. 2. Trans- 
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Fig. 2. Coordinate transformation. 

formations can be accumulated from several 3 x 3 
matrices into one composite 3 x 3 transformation 
matrix by multiplying the matrices together in the 
proper order, thus allowing the several pattern trans- 
formations to be processed as one. The reader is 
referred to any good text on computer graphics for a 
complete discussion of homogeneous coordinate 
transformations (e.g. Rogers and Adams(iS)). 

In order to perform linear processes such as trans- 
lation, rotation, etc., some measure of the current state 
of the cursive script is necessary. This orientation, size 
and shape information is obtained by extracting 
various features from the pattern vector. This infor- 
mation is analyzed and the results used to calculate 
entires of the transformation matrices which are in 

turn used to generate the composite transformation 
matrix. 

The features used for preprocessing analysis are not 
necessarily the same as those used later for recognition 
purposes. Special features to be described next are 
extracted to find the cursive script baseline, vertical 
extent of the characters, measure the approximate 
number of characters in a word and determine the 
predominant character slant. This part of preprocess- 
ing is fundamental to the system and is used in both 
open-loop and closed-loop preprocessing. 

3.3. Translation and rotation 

The first tranformation operations performed on the 
cursive script are translation and rotation of the 
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Fig. 4. Word images in preprocessing. 

baseline to a fized location. The current location of the 
baseline is found by first detecting all local Y minima in 
the script. Figure 3 shows a sequence of word images 
which result from the various stages of preprocessing 
that are discussed in Sections 3.3 through 3.6. Figure 4 
shows a corresponding set of images for the English 
word "multiply". Any minima that occur on retro- 
grade strokes, dots and crossbars above the script 
or at cusp locations are eliminated, since these points 
are usually not on the baseline of the script. Using the 
remaining points, which we will call critical points, all 
possible lines interconnecting any two points are 
generated and the maximum likelihood slope and 
associated baseline are determined. Other techniques, 
such as average slope, were tested and found not to 
perform as well. Figure 3b illustrates critical points 
extracted from a four letter word. 

Once the baseline slope is determined, the critical 
point which lies closest to this baseline slope is selected 
as the center of rotation and is used for Y translation. 
The word is translated to the origin, rotated until the 
baseline is horizontal and retranslated back into the 
display screen space so that the baseline lies at Y = 
300. These operations can be accumulated into one 
transformation matrix. This completes the open-loop 
normalization of the baseline slope. 

After rotation is performed, a translation to a 
normalized X coordinate is computed by determining 
the global minimum X coordinate for the script and 
translating the script so that minimum X lies at X = 
100. This operation is performed after baseline slope 
adjustment, since extraction of the true beginning of 
the script becomes a trivial matter. Position and 
orientation normalization by the open-loop method is 
now complete. 

3.4. Scalin 9 

In order to properly scale the script, a measure of the 
height of the central body of the script must be found. 
Upper and lower loops and dots and crossbars on t's 
must be ignored. Since we know that, statistically, the 
majority of script Y coordinates will lie in the region of 
the central script body, the relative height of the script 
may be determined by looking at the probability 
density of the Y coordinates. This density function 
should possess low flat tails representing the coor- 
dinates of the upper and lower loops, with a rather 
abrupt plateau in the center representing the central 
body of script. This density function is determined in 
histogram form by placing horizontal thresholds over 
the script at predetermined intervals and counting the 
number of times the script crosses each threshold. This 
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operation is depicted in Fig. 5. Note that the threshold 
and histogram estimate of the probability density thus 
obtained is not biased by the actual density of the 
sample points, which is dependent upon the amount of 
time the writer spent at each point in the script. The 
central body of the script is scaled in the Y dimension 
about the baseline so that the plateau of the histogram 
is 70 pixels wide. 

Scaling in the X dimension is dependent upon the 
number of characters in the word. The number of 
characters in the word can be estimated by counting 
the number of penstrokes crossing a horizontal 
threshold in the center of the script. Using monogram 
character probabilities of English characters and 
analyzing the possible variants in the formation of the 
script characters, we have found that about 2.65 
threshold crossings per character will occur in a typical 
English word. Recall also that in performing the Y 
scaling, the threshold crossings needed were used to 

. . . .  . . . . . . . .  
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Fig. 6. Curve smoothing. 

determine the histogram. Hence, the amplitude of the 
histogram becomes a measure of the number of 
characters in the word. In this way we have a complete 
characterization of the X and Y scale of the script in 
the previously determined histogram. The X dimen- 
sion scaling is performed about X = 100 so that a 
character is about 100 pixels wide. 

3.5. Curve smoothing 

Curve smoothing eliminates errors due to erratic 
hand motion during writing of the script and reduces 
the amount of storage required for the pattern. The 
basic process being performed is that of a moving 
linear interpolater with special attention paid to 
abrupt changes in script slopes. Curve smoothing has 
been tested at various points in the preprocessing flow, 
but was ultimately placed after the scaling operation 
because some of its functions are dependent upon 
script scale and orientation. The orientation and 
scaling algorithms were designed to be sufficiently 
noise insensitive for this reason. Curve smoothing 
generally reduces the number of sample points needed 
to represent the script, thus improving efficiency in 
both the remaining preprocessing steps and in the 
feature extraction phase during recognition. 

The first operation performed by the smoothing 
algorithm is to identify and remove a leading upstroke 
if it starts below the lower loop detection threshold, as 
illustrated in Fig. 6. This is done because such strokes 
are not typical of a lower loop but generally arise out of 
stylistic variation. 

The second function performed is the elimination of 
redundant points in the pattern vector. This operation 
is necessary for the proper functioning of the cusp 
extraction algorithm to be described later. This is a 
trivially implemented operation that looks sequen- 
tially through the points in the pattern vector and 
reduces each successive string of identical points to a 
single point. 

The final stage of curve smoothing again scans the 
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pattern vector, determining the distance from each 
point to the next point in the script. As described 
earlier, the stroke interconnecting these points may be 
"'visible" or "invisible." If the interconnecting stroke is 
invisible and its length is less than 10 pixels (which is 
relatively short), then it is probably due to erratic pen 
motion which temporarily caused the pen to be lifted. 
Such strokes are made visible, lfthe original stroke was 
visible and if the succeeding point is less than 10 pixels 
away from the current point, the succeeding point is 
replaced by a point that is approximately 10 pixels 
away. The procedure is to move progressively along 
the script path from a given starting point until a 
second point is found at a distance of about 10 pixels. 
Linear interpolation is used to determine the path 
between actual sample points. The second point thus 
determined becomes the new starting point and the 
procedure is repeated. In this way, interpoint stroke 
lengths become more uniform and a large number of 
unnecessary points are removed. 

The interpolation procedure must be interrupted at 
stroke end points and at cusps so that these features 
are not smoothed out. Stroke endpoints are found 
when an invisible stroke is encountered which is 
greater in length than l 0 pixels. The last visible sample 
point is retained so that the original end of the stroke is 
maintained. Dots on the characters i and j which were 
not previously reduced to single points during re- 
dundant point elimination are often reduced to a pair 
of points (one short visible line) in this manner. 

Cusps are detected by looking for abrupt changes in 
stroke direction. Such abrupt changes are readily 
identified by determining the dot product of inter- 
connecting stroke segments at each sample point, as 

illustrated in Fig. 6. Ordinarily, when a cusp has not 
been detected the direction vectors of the interconnect- 
ing stroke segments will point in nearly the same 
direction. Hence, the dot product will typically be 
positive until an abrupt change in direction (more than 
90 degrees) occurs. Since normalized direction vectors 
are used, the dot product can be used directly as an 
indicator of the abrupt angular change. If the dot 
product becomes less than about 0.6 then a cusp is 
detected and the sample point is not modified, thus 
retaining the shape of the cusp. The path scanning and 
interpolation resumes starting with the succeeding 
sample point. 

3.6. Deskewin 9 

The last operation performed is the deskewing 
process. This operation removes the slant variation 
typically found in cursive script. A measurement of the 
script slant is obtained by placing two horizontal 
thresholds through the center of the script, as shown in 
Fig. 3e. Crossover points where the script crosses the 
thresholds are determined and an associated slope (or 
in order to avoid infinite slopes, the reciprocal slope) is 
determined from the crossover coordinates. The aver- 
age of these slopes is used as the measure of script slant. 

The script is deskewed, based on this measured 
slant, by translating sample points in the X dimension 
only. Sample points at the baseline do not move. 
Points away from the baseline move horizontally in 
proportion to their distance from the baseline and the 
measured amount of original script slant. This is a 
linear transformation which can be described by a 
3 x 3 matrix. This transformation normalizes the 
script slant so that the characters appear to be 
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vertically oriented. 
At this point the open-loop preprocessing is com- 

plete. The operations described have been tested on a 
variety of words of varying lengths, sizes, orientations 
and slants. In the majority of cases (typically more 
than 80~) the operations described are capable of 
properly orienting and scaling the script. The deskew- 
ing process is quite robust when words are longer than 
two characters and seldom causes problems. 

Problems do arise, however, in the orientation and 
scaling of the script. Orientation problems sometimes 
occur when the critical baseline points selected do not 
all lie on the true baseline of the word. This is 
particularly problematic when the number of critical 
points is low. Such an orientation failure is shown in 
Fig. 3c. A solution to this problem will be addressed in 
the next section which describes techniques for perfor- 
ming cloud-loop operations. 

4. C L O S E D - L O O P  PREPROCESSING 

4.1. Introduction 

In the same way that a closed-loop control system 
reduces internal process error by the application of 
negative feedback, a closed-loop preprocessing system 
can reduce error by applying verification and infor- 
mation feedback. Since it is usually easy to verify the 
location and orientation of the word this procedure 

simplifies the measurement algorithms which are then 
likely to yield more consistent results. Verification, in 
this case, involves a position and orientation measure- 
ment which indicates, approximately, the amount of 
positional or rotational error. Since the measurement 
is approximate, a transformation based upon this 
measurement may still have some error present. The 
measurement technique, however, must be such that 
the amount of measurement error diminishes as the 
word becomes properly normalized. Although un- 
likely, it is possible that the original data will not 
require some of the normalization operations. In this 
event, since verification is performed before the first 
application of a transformation (in order to obtain the 
first transformation estimate), some of the transfor- 
mation operations can be avoided, thus saving process- 
ing time. 

The sequence of operations in the closed-loop 
system is similar to that of the previously described 
open-loop system. A block diagram of the closed-loop 
preprocessor is shown in Fig. 7. The diagram shows the 
verification and transformation processes in expanded 
form. The scaling and deskewing operations are also of 
a closed-loop nature but are shown as single blocks for 
conciseness. In order to minimize the number of 
operations in closed-loop preprocessing a partial 
open-loop process is executed before entering the 
closed-loop preprocessor. This open-loop phase nor- 
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Fig. 9. Closed-loop scaling. 

malizes the word position and rotation in a manner 
identical to open-loop preprocessing. Then, the closed- 
loop orientation system is entered, followed by a 
closed-loop scaling and closed-loop deskewing oper- 
ations. The open-loop curve smoothing operation is 
performed between scaling and deskewing, as shown in 
Fig. 7. 

4.2. Closed-loop orientation 

A flow diagram of the closed-loop orientation 
procedure is shown in Fig. 8. This operation makes use 
of characteristics of the Y coordinate probability 
density function which was described earlier in Section 
3.4. The objective is to minimize the width of the center 
plateau of the probability density function. This mini- 
mum condition should coincide with an increase in 
the slopes of the sides of the density function (see Fig. 
8b) which indicates that the central body of the script is 
oriented perpendicularly with respect to the Y axis (i.e. 
the script is oriented horizontally). This is accom- 
plished by computing the histogram using a set of 
thresholds as was done previously and then perfor- 
ming a trial rotation and recalculating the histogram. 
The two histograms thus obtained are compared to 
determine which has the narrowest plateau. If an 
improvement has occurred after rotation then the 
word is rotated again by the same angular change. The 
process is repeated until no improvement is obtained. 
The angular change is reduced to one half of its value 
and the trial rotations are tested again. In this way, by 
successively reducing the amount of the trial angular 
change, the word can be properly oriented to within 
0.05 radians. 

The characteristics of the histogram are tested by 

identifying the top of the center plateau, removing this 
part of the function, and integrating the remaining tails 
of the histogram. Thus, if the sides of the histogram are 
not steep a relatively large integral value will be 
obtained. This procedure was developed after finding 
that simpler techniques, such as placing a dynamic 
threshold across the histogram, yielded poor results in 
many cases. The integration procedure was found to be 
considerably more robust with few failures. At this 
stage failures that did occur were the result of gross 
errors in the preliminary orientation. The closed-loop 
procedure was unable to recover from such cata- 
strophic failures. 

Closed-loop scalin 9 

Closed-loop scaling is performed in a manner 
similar to open-loop scaling except that the histogram 
is recalculated after each transformation to determine 
the results of the transformation (see Section 3.3). A 
flow chart of the process is shown in Fig. 9. In both the 
closed-loop scaling and deskewing procedures the 
verification step is performed before the first transfor- 
mation. Thus, the transformation is performed only if 
it is necessary. Both the closed-loop scaling and closed- 
loop deskewing processes take advantage of the fact 
that measurement errors are minimum when the word 
is properly normalized. It has been found by experim- 
entation that three loops through the scaling flow is 
always adequate for properly scaled words (two passes 
is typical). If more than three passes are needed then it 
is generally due to an improper word orientation and 
scaling cannot be done. Under these circumstances the 
entire process must be aborted and the word rejected. 

4.4. Closed-loop deskewing 

Like the closed-loop scaling operation, closed-loop 
deskewing is based on the open-loop skewing tech- 
nique (see Section 3.6). The process flow is identical to 
that for scaling (Fig. 9) with the word "scale" replaced 
by "slant." This flow is very similar to that for closed- 
loop scaling. The procedure is to verify the script slant 
by the use of two centrally located horizontal 
thresholds and determine if a transformation is 
needed. If the transformation is performed then the 
verification is performed again. As the word becomes 
less skewed the script slant measurement approaches 
zero and the measurement error becomes low. The 
number of deskewing passes is limited to three. Again, 
failures to deskew in three passes are generally due to 
orientation errors and cannot be recovered. 

5. RESULTS 

Preprocessing performance can probably best be 
measured by its effect on recognition accuracy. Two 
cursive script testing sets were studied. One set con- 
tained words selected by a separate computer study of 
the recognition feature space. The words of this set 
were found to be very difficult to distinguish from one 
another by using the recognition algorithms. This 
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Table 2. Testing set of computer selected words with 
recognition error rates 

Recognition error 
Word Open-loop Closed-loop 

1. rxxi 10% 0% 
2. xxxi 9.1% 9.1% 
3. rxxr 33.3% 0~o 
4. exxi 20% 10% 
5. xrxi 30~o 40% 
6. xxxr 0% 0% 
7. rxxe 22.2~o 30% 
8. rxxx 0% 0% 
9. cxxi 20~o 20% 

10. ixxi 20% 0Yo 
11. rxri 22.2% 0% 
12. exxr 40% 50% 
13. xxri 40% 10% 
14. rixx 20% 20% 
15. xrxx 50% 30'30 
16. rexx 6070 10% 
17. rxxs 0% 0% 
18. rxre 0% 0Yo 
19. exxe 20% 20 ~,,; 
20. exri 30% 10% 
21. xxxe 20~o 07o 

Table 3. Testing set of English words with recognition error 
rates 

Recognition error 
Word Open -loop Closed-loop 

1. move 22.2~o 10% 
2. scale 0~0 20% 
3. rotate 30~ 10~o 
4. reflect 10~o 10°'o 
5. erase 10G 20~0 
6. draw 40% 20".~ 
7. read 40% 207o 
8. write 0% 10~0 
9. add 10% 30% 

10. subtract 30% 0~o 
11. multiply 0% 0~'o 
12. divide 10% 0% 
13. paragraph 10~o 10% 
14. indent 0% 070 
15. title 0~o 0~0 
16. page 0% 0~, 
17. quote 0~o 10% 
18. number 10~o 0~.~, 
19. footnote 0~o 18.27o 
20. word 20~o 10% 
21. image 0% 0~0 
22. feature 10~o 10~0 

testing set is shown in Table 2 along with correspond- 
ing error rates. Ten handwritten samples each of the 21 
four letter words (or a total of 210 handwritten words) 
were used for training and testing. 

The philosophy behind the choice of these words 
arises from a concept of class density in the feature 
space. The more densely packed the classes are in the 
feature space then the more difficult it will be to 
distinguish between them. The computer selection 
algorithm chose a subset of 21 words from the set of all 
four letter words which yielded the greatest density 
measurement using our recognition metric. 

The second testing set consisted of the 22 randomly 
selected English words shown in Table 3. These words 
were selected for a vocabulary that might be used in an 
interactive computer graphics system with graphics 
tablet. The words range in length from 3 to 9 charac- 
ters and contain most of the letters of the English 
alphabet. 

The recognition system was trained with each of the 
word sets, first using the open-loop preprocessing 
method. The total recognition error rates are shown in 
Table 4. The recognition system was retrained and 
retested using the same data with the closed-loop 
preprocessing method. As the results of Table 4 show, a 
significant improvement in performance was obtained. 
Note that vocabulary (a), which was chosen for 
difficult discrimination, yields a much higher error rate 
than the random vocabulary (b). For vocabulary (a) 
the error dropped nearly half. An improvement of 
about 17% was obtained for vocabulary (b). These 
improvements indicate that a significant number of 
words that were poorly preprocessed by the open-loop 
method were properly handled by the closed-loop 
method. 

A closer look at Table 2 shows that of the 21 
computer selected words, 10 showed improvement 
with closed-loop preprocessing, 8 were unchanged and 
3 declined in recognition accuracy. For Table 3 the 
results show that 8 improved, 8 were unchanged and 6 
declined. Although the majority of words either im- 
proved or remained unchanged, the question of why 
any words declined in performance is of particular 
interest. 

Visual inspection of the words that failed to improve 
showed that the majority suffered from incorrect Y 
scaling. In these cases the scaling algorithm locked on 
to the wrong part of the scaling histogram and the 
resulting transformation was unrecoverable. This fail- 
ure mode could probably be reduced by the use of a 

Table 4 

Test set Recognition error Change 
Open-loop Closed-loop 

(a) Computer selected 22.1~o 12.4~, - 43.9'!.,, 
(b) English words ll.YVo 9.4')~i - 16.8% 
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finer histogram and averaging along the histogram to 
obtain a smoother function. 

Processing times for the various algorithms were 
obtained on the Amdahl 470 via operating system 
software which could report the actual execution 
times. Preprocessing runs involving several hundred 
words each were executed in processor times ranging 
from 84 mS to 187 mS with an average value at about 
160mS per word. The time required to preprocess a 
word depends upon the length of the word. For 
example the 84 mS per word execution times were 
obtained on a vocabulary consisting only of four letter 
words. Execution times of 160-187 mS were obtained 
for vocabularies containing 3-9 character long words 
with an average length of about 5.6 characters per 
word. 

Thus, words can be preprocessed at a rate exceeding 
300 words per minute, which is typical of human 
reading rates. Much of the preprocessing could also be 
speeded up if special purpose hardware were designed. 
Furthermore, these operations can be pipelined with 
the recognition phase so that throughput is 
maximized. 

6. CONCLUSIONS 

A new preprocessing technique for cursive script has 
been presented. Results indicate that a significant 
improvement in recognition accuracy is obtained 
using the closed-loop preprocessing method which can 
handle preprocessing problems that were beyond the 
capabilities of the open-loop method. Verification of 
script location, height, width and orientation is easier 
to implement and more reliable than open-loop or 
single pass methods which require measurement of 
these parameters with greater accuracy. These meth- 
ods, in modified form, can be applied to hand printed 
text as well as cursive script and can offer significant 
improvement in performance while relaxing some of 
the measurement requirements normally associated 
with handwritten text preprocessing. 

S U M M A R Y  

Interest in cursive script processing and recognition 
has been increasing recently with the advent of rela- 
tively inexpensive processing hardware. In our at- 
tempts to develop a recognition system that was 
author-independent and placed no unreasonable con- 
straints on handwriting style we found a need to 
improve current preprocessing techniques. This paper 
discusses a new approach to cursive script preprocess- 
ing referred to as closed-loop preprocessing. 

Handwritten script is digitized by a Tektronics 
graphics tablet and is stored as a pattern vector. It is 
first translated and rotated to bring the baseline to a 
fixed location. Then the text is scaled to fit in a 
normalized window to enable size-independent rec- 
ognition. Curve smoothing is done to eliminate errors 
due to erratic hand motion and to reduce the amount 

of storage required for the pattern. Finally a deskewing 
operation is performed to remove the slant variation 
typically found in cursive script. 

These preprocessing techniques normalize script 
scale, orientation, position and slant. Closed-loop 
preprocessing uses techniques similar to those of open- 
loop preprocessing with the addition of information 
feedback from the results of previous transformations. 
In order to minimize the number of operations in 
closed-loop preprocessing a partial open-loop process 
is executed before entering the closed-loop prepro- 
cessor. This paper discusses the implementational 
aspects of these techniques. 

In order to study the performance of these tech- 
niques two cursive script testing sets were used. One set 
consists of 21 four letter words (not English words) 
chosen because they are difficult to distinguish be- 
tween by the recognition algorithms in use after 
preprocessing. The second set consists of 22 randomly 
selected English words chosen from a vocabulary that 
might be used in an interactive word processing 
system. Ten handwritten samples of each word were 
used in testing, yielding a total of 430 words. This new 
technique of closed-loop preprocessing was tested and 
compared against an open-loop version of the prepro- 
cessing method to determine the relative performance. 
The results indicate that closed-loop preprocessing 
yields a significant improvement in accuracy and 
consistency of the overall word recognition system. An 
analysis of the processing time shows that words can 
be preprocessed at a rate exceeding 300 words per 
minute, which is typical of human reading speeds. 
Further, these techniques in modified form can be 
applied to handprinted text as well and with special 
purpose hardware these operations can be pipelined 
with the recognition phase to maximize throughput. 
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