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ABSTRACT

INn THIS work we have studied the bifurcation and postbifurcation of elastic—plastic solids whose behavior
near the critical point could not be idealized as hypoelastic and thus the “hypoelastic comparison solid”
concept of R. Hill’s theory is no longer applicable. First a simple continuous model is considered in order to
illustrate the different possibilities in the stability behavior of the structures considered here. Next, a general
three-dimensional stability analysis for a broad class of rate independent elastic—plastic solids is presented. It
is found that for all the constitutive theories considered and for all possible prebifurcation solutions, the
bifurcation functional is a simple generalization of Hill’s. A completely different postbifurcation analysis is
needed, however, in the case where the “hypoelastic comparison solid” concept cannot be used.

1. INTRODUCTION

PrasTIC buckling has been the object of intensive investigations over a long period of
time. Of particular interest here is the work of HiLL (1956, 1958, 1961) who placed the
bifurcation criterion for elastic—plastic solids on a firm mathematical foundation which
embraces a broad class of rate independent constitutive laws. A fundamental
assumption, first introduced in a simpler context by SHANLEY (1947), in Hill’s
bifurcation analysis is that the plastic (or total) loading condition is satisfied
everywhere in the principal solution. This requirement, which is usually met by most
applications, permits the instantaneous identification at the onset of bifurcation of the
elastic—plastic solid with a “hypoelastic comparison solid” in Hill’s terminology. The
total loading condition (sometimes called the generalized Shanley criterion) also plays
an important role in the determination of the postbifurcation behavior of these
structures as shown by HurcHiNsoN (1973, 1974).

Interesting cases however exist, in which part of the prebifurcation solution of a
structure is in the elastic unloading regime, as, for example, in the bifurcation under
pure bending of a thick plate studied by TRIANTAFYLLIDIS, NEEDLEMAN and
TVERGAARD (1982) (see also, TRIANTAFYLLIDIS (1980)) or the puckering type of
instabilities encountered in deep drawing operations in sheet metals. There a
compressive buckling type of instability occurs on a part of the sheet (usually the part in
contact with the punch) which is partially under elastic unloading. More recently
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TVERGAARD (1982) investigated the buckling of axially compressed circular cylinders
with axisymmetric imperfections which cause considerable deviation of the prebifur-
cation solution from proportional loading.

Motivated by the aforementioned examples of practical importance, an attempt was
made to study the bifurcation of elastic—plastic solids under unloading and con-
sequently to generalize the corresponding analysis in order to incorporate all possible
prebifurcation histories. First, a simple continuous model is considered, similar to the
one used by HurcHINSON (1973), in order to illustrate the different possibilities in
postbifurcation behavior of the elastic-plastic structures considered here. 1t is found
that elastic reloading might occur in the postbifurcation regime in which case the
corresponding perturbation expansion depends critically on the yield surface charac-
teristics of the material.

Next, a general three-dimensional analysis for rate independent elastic-plastic
materials is presented which incorporates not only the more classical smooth yield
surface models but also the recently proposed phenomenological corner theories of
CHRISTOFFERSEN and HuTtcHINSON (1979). From the application standpoint, the most
interesting result is that the bifurcation functional for the broad class of rate
independent plasticity theories considered and for all possible prebifurcation paths,isa
simple generalization of Hill’s bifurcation functional. A completely different postbifur-
cation analysis is needed, however, in the case where the hypoelastic comparison solid
concept is no longer applicable. It is shown that, for this case, a “smooth” type
bifurcation occurs, i.e. not only the perturbation & of the solution tends to zero as the
time like parameter A approaches its critical value 4, but the rate & — 0 for 4 — 1, as
well.

2. SmvpPLE MODEL

In order to understand better the bifurcation and postbifurcation behavior of
elastic-plastic solids whose constitutive response cannot be idealized as hypoelastic in
the vicinity of the bifurcation point, we make use of a simple continuous model, much in
the spirit of the rigid T models employed by HUTCHINSON (1974).

Our model structure consists of a rigid rectangular plate AA'B'B of dimensions AB
= 2a, AA’ = 2b. A vertical rod OD of length L is rigidly attached to its center O as
shown in Fig. 1. The edges AB and A'B’ of the plate rest on a continuous line of elastic—
plastic springs with the following force (o)-displacement (g) response

E ife>0 and & <egy,,
[E+(E,—E)H(#)] otherwise, (E>E, >0},
where &,,,, denotes the maximum strain attained during the most recent loading cycle.
Here and subsequently () denotes differentiation with respect to some monotonically
increasing parameter A (also called a “time like” parameter) and H(x) is the Heaviside
step function (H(x) = 0 for x <0, H(x) = 1 for x > 0). From the kinematics of the
model it can be easily deduced that

g=u+x0+yy 22)

with u the vertical displacement of the plate’s center O and v, 8 the (small) rotations of
OD about the x and y axes.
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FiG. 1. Continuous model of a rigid rectangular plate resting on two lines of inelastic springs.

A vertical force Pis applied to the end D of the rod OD. In order to introduce into the
model the destabilizing effects of geometric nonlinearities that are usually present in
more complicated (and more realistic) structures, we have attached at point D two
springs with secant stiffnesses K, = sy/0L and K, = (K + A6)/L along the x and y
directions, as shown in Fig. 1.

The angle 6 has been chosen to play the role of the monotonically increasing “time
like” parameter A. Here it will be assumed that 8 > 0 and the issue of bifurcation with
respect to ¥ will be examined (the trivial solution to the equilibrium equations for the
rigid plate has = 0). It is not difficult to show that the geometric and material
properties of the structure can be chosen in such a way that a bifurcation with respect to
0 always precedes any bifurcation with respect to y, i.e. P§ < P§. Two cases will be
distinguished here.

Case 1. s # 0 (asymmetric structure)

Assuming no elastic reloading in the structure (the validity of this hypothesis will be
verified a posteriori), the incremental force equilibrium with respect to the vertical
direction gives

2(E+ E)ati+(E,— E)(a® +#® + 2b?) = P. (2.3)
Similarly, the incremental moment equilibrium with respect to the y axis yields
24a° T A .
(E+E,)—3— +(E—E)| —a*+y3b +? u = (PO+sy)L (2.9

and the corresponding moment equilibrium equation with respect to the x axis is
(E+ E)2ab*j +(E,— E)2b%j = [(P+ K + AOW] L. (2.5)
The following perturbation expansions for u, P, i are adopted:
P=Py+P =Py0)+ P2+ P34+ ...,
u=ug+i=uy(@+u,E2+uE34+ ...,
Y=0+y =04y, +y38+...; £=0-9, (2.6)
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where, here and subsequently, a quantity surmounted by a bar () will designate the
change of values of the quantity in question between the principal and bifurcated paths,
while a superscript or subscript zero indicates evaluation on the principal branch of the
solution. Moreover, a superscript or subscript (c) is used when a quantity is computed
at the onset of bifurcation.

Substitution of (2.6) in the incremental equilibrium equations (2.3)+2.5) and
expansion about the critical angle 6, up to order £ yields the following three equations:

[2a(E + E)+ 2u(E,~ E)]u, = P,, 2.7)
[(E,— E)(a® —1i2)Ju, —0.LP, = sLi,, (2.8)
b*[2a(E + E)+ 2u(E,—E)] = (P,.+ K + A6,)L, (2.9)

while the &2 term of (2.5) in combination with (2.9) gives
2(E,— EYo?[i, + 2u,] = 3(P.+ A)L. (2.10)

The bifurcation condition providing the critical angle 6, is given by (2.9) while from
(2.7), (2.8) and (2.10) the amplitude of the bifurcation mode ¥, is found to be

Vo= (0 g | E—Ey(—)
x [aZ—af +20cL<?_“§: a—uc>] = ;//TZ (—ii). (211)

The validity of the no elastic reloading assumption must now be verified. For s > 0 the
no elastic reloading condition is ensured if ¢ = §;+¢ < 0 in the unloading zone with
y = +b, ie. when

i+ (Quy + 1 )E+ X+ 20,bE+0(ED) <0, (—a < x < —i). (2.12)

Since the unloading zone in the prebifurcation solutionis —a < x < —i,atf = 6, no
elastic reloading will be encountered if the neutral loading point x = —u, continues to
unload after bifurcation and from (2.12) one deduces the condition

2u, +iiy+2y,b < 0, (2.13)

which, with the help of (2.7), (2.8), (2.10) and (2.11), can be equivalently rewritten as

i 3(P,+ A)L
S > Spin = I//z/l:mjl (214)

Using (2.11) it can be easily verified that s, > 0 since i, < 0, a > |i,| (in view of the
propagation of the unloading zone in the + x direction) and

(P,+ A)L > 2(E — E)(—1i,)b*

(which follows from (2.9)). For 0 < s < sy, elastic reloading will be present in the
postbifurcation solution and thus a reformulation of the governing equations (2.3)+2.5)
is needed.
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Case 2. s = 0 (symmetric structure)

As we have seen in the previous case, elastic reloading will be present in the
postbifurcation solution for any s < s,,;,- Without loss of generality we can assume ,
i > 0 near 6§, which in turn implies the presence of elastic reloading on the side AB
(y = -+b) of the plate (see Fig. 1). Let x,(#) denote the x coordinate of the neutral load-
ing point in AB and x,(#) denote the corresponding coordinate of the point separating
the elastic (x < x,) from the plastic (x > x,) reloading zone. The three incremental
equilibrium equations in this case assume the form

E—

zEt (xr—xn)z = Pa (215)

2E + E)aii+(E,— E)@*+ 1> +y*b¥) +

, 12 E—E .
(E+E‘)%a3+(E—El)<—a2+l//2b2+%—-)Li+ g L {x,— xa)2(2x,+ x,) = (PO)L,
(2.16)
E—E,

(E+ E)2abys +(E,— E)2b%ij + b(x,—x,)* = [(P+K+A46)y] L. (217
Notice that the above equations are similar to (2.3)}+2.5) with the addition of the
{x, —x,)? term due to the presence of elastic reloading. The perturbation expansions for
P, u, yr are still given by (2.6) {the only difference in this case being that P, = u, = 0, as
can be easily verified) and consequently the corresponding expansions for x, and x,
will assume the form

Xy = X0+ X, = xAD+x1E+ ...,

" T (2.18)

X, = X0+ %, = x0D+x1E+ ...
In the above expressions, x2(8) = x2(0), in view of the absence of the elastic reloading
zone in the prebifurcation solution. The coefficient x! in the expansion for %, is found
from the definition of x,, i.c. é(x,) = 0, in conjunction with (2.18), to be

x1 = —2,b. (2.19)

The determination of x} in terms of i, is a somewhat more complicated matter that
proceeds as follows. For a given point with coordinates (x,5), the maximum
displacement ¢, (x) achieved in the prebifurcation solution occurs when # = 0,(x), with
0..(x) satisfying

Up(Om)+x =0,  0,(x) = (i)™ (—x). (2.20)
The corresponding maximum displacement ¢,,,, (x) can be written as
em(X) = 1o 0(x)] + x0 (x). 2.2

Following the onset of a bifurcation (y > 0) the coordinate x, of the point separating
the elastic from the plastic reloading regions can be calculated by solving the equation
&(x,} = g,(x,) which, with the help of (2.21), (2.18), takes the form

g+ i+ 0(x0 +X,) + b = uo[0,,(x2 +%,)] + (0 + %,)0,(C + X,). (2.22)
Expanding (2.22) about the critical angle 6, and using (2.18)+2.20), one obtains, by
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collecting all the O(¢?) terms, the following expression for x;!:

Xy = —/20,b(—ii,). (2.23)

Using (2.23) together with (2.19) and (2.18) in the equilibrium equation (2.17), we obtain
from the O(&) terms the bifurcation condition

2b2[(E+E)a+(E,—E)i,] = [P,+ K + 46,]L, (2.24)

while from the O(¢?) terms the bifurcation mode amplitude ¥, is found to be

_ (=Y 3(P.+ A)L 1/2)2
ST {H[(E—Et)bZ(_.ac)““] } (2.25)

Note that the bifurcation condition (2.24) coincides with (2.9), as expected. Making use
of (2.24) and the assumption introduced in the beginning of this section that a
bifurcation with respect to 8 precedes any y bifurcation, i.e. P§ < P, = P,, K and A can
be always chosen so as to ensure the reality of i/, in (2.25). It is understood that the same
analysis could have been repeated for i < 0 providing the symmetric bifurcation
branch (Fig. 2).

Two interesting conclusions can be drawn from the study of the simple model
analysed here, for structures that violate the plastic loading condition in the
prebifurcation state.

First, the dependence of the eigenmode amplitude i on the time like parameter 6 is of
the type ¥ = ,(0—0.)* + 00 —06,)* which shows that, for this type of problem, not
only the displacements u (u = (u, 8, 1)) are continuous near the critical load 8, but the
rates du/df are also continuous at the same point. Notice the difference with the case of
plastic bifurcation from a total loading prebifurcation solution, whereu — u_ as ! — 6,
but du/df - du,/d6 as 6 — 0.,

The second conclusion is that elastic reloading is not necessarily present in the
postbifurcation solution (as seen in the case of the asymmetric structure with s > s,;,).
When elastic reloading is present in the postbifurcation state, the asymptotic analysis

17
S > Smax
‘VJ_/ 9
0 6
(a) ¢
1'%
=0
+ ]
0 6

(b}

F1G. 2. Typical bifurcation for the asymmetric (a) and symmetric (b) plate models.
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has to take into account the shape of the yield surface (g, in the case of the one-
dimensional model treated here). The results obtained thus far via the simplified plate
model will now be properly generalized for a three-dimensional elastic—plastic solid.

3. GENERALIZATIONS TO THREE-DIMENSIONAL CONTINUA

This section deals with the bifurcation and postbifurcation analysis of a wide class of
elastic—plastic solids whose constitutive response cannot, in general, be idealized as
hypoelastic in the vicinity of the bifurcation load. The basic ideas for the subsequent
analysis are drawn from the analysis of the simple model presented in the previous
section.

Consider a body occupying a volume V and bounded by a smooth surface 6V in
some reference configuration which will be kept fixed at all stages of the motion (full
Lagrangian description of the motion). To avoid indices, frame invariant dyadic
notation will be used for the rest of this section. In the interest of simplicity the first
Piola—Kirchhoff tensor T will be used as a stress measure and the deformation gradient
F = xV (where x denotes the current position vector of a given material point, and V is
the gradient operator with respect to the reference configuration) will play the role of a
deformation measure. A quantity surmounted by a (') denotes the derivative with
respect to some monotonically increasing parameter A {also termed “time like”). Most
of the rate independent theories of plasticity can be put in the form

TT = L(T,F,F.,q): F,t (3.1)

where the fourth rank tensor of incremental moduli L in general depends on the current
stress and deformation state, the deformation rate] as well as on a set of scalar
parameters ;g (i = 1,..., N), termed internal variables, that represent the past history.
Their current values can be determined via evolution equations of the type

4 = Q(T,F, T,F, jg). (3.2)

Usually, in most of the rate independent plasticity theories some additional structure in
the constitutive equations is available in view of the existence of a rate potential W
(homogeneous of degree 2 in F) with the property

_ @*W(T,F, F, ,9)

 oFoF
The symmetries in L implied by (3.3) will prove very helpful in the subsequent use of the
principle of virtual work for the general bifurcation analysis. Cases exist, as for example
in the corner theories of CHRISTOFFERSEN and HUTCHINSON (1979) where W is given as a
function of T instead of F and consequently the constitutive equation corresponding to
(3.1) appears in the form F = M(T, F, T, q): T". In principle the relation can be inverted
and put in the form of (3.1) but an explicit analytical expression is not possible except in

L (33)

+1n Cartesian coordinates: TF = Ly Fi
{ For rate independent theories of plasticity the L dependence on F is homogeneous of degree zero, i.e. L
depends on F/[F|.



506 N. TRIANTAFYLLIDIS

some special cases, as explained in CHRISTOFFERSEN and HUTCHINSON (1979).
Consequently, and without loss of generality, the constitutive equations (3.1) will be
used in view of the resulting simplifications in the algebraic manipulations.
Additionally, it should be mentioned that the dependence of L and @; on their
arguments is assumed to be sufficiently smooth to ensure a meaning for the operations
needed by the subsequent analysis.

Departing from the principle of incremental virtual work

j 5F:TT=J f'5x+f £+ ox, (3.4
Vv vV av
where fis the body force (per unit reference volume) and t the pseudotraction (per unit
reference area),t and expanding (3.4) about the principal branch of the solution, one
obtains, with the help of (3.1) and (3.2),
Ll . OL| . dL 1 J*L =\ =
SF < Lo+ —1| : — K+ = G+ =1l = FLF+...
L { R R R 0*“2![(@1?61?0 ) + ]
L i I A 10 316 U PR 07 O I I R R ™
b ————— ) LR} . cen RN g = *0X .
31| \\OF oF oF |, 0 . v

- JL
F4+) —
o Z dq

(3.5)
with the perturbations F, T and g satisfying
- - - JL| - ., =
Fo+F = x,V+aV; T3+TT=[LO+E :F+...]:[F0+F]
0
- 001 < 001 -

G°+.q=0° 2T+ 5 F+ . 3.6
iq +tq Qi+ 6T o + aF o + ( )

In analogy with (2.6), the following postbifurcation expansions for F, T, 4 will be used.
i=u, " +u,2+..., F=F 4+F 4.,
T = Tc{léal +Ta7_éa2+ LR RR) iq = iQQléal +iQazéa2 + ... >

where = A—21, and 1 <o, <&, < .... Introducing (3.7) into (3.5), (3.6) and
expanding about the critical value A, of the time like parameter, one obtains (using also
(3.3)) for the lowest order term O(&* ™ 1),

oL
: L ey
s

or, equivalently, in view of the homogeneous dependence of L on F (of degree zero),

(3.7)

'Fc]:FM =038 (3.8),

J OF:L..F, =0. (3.8),
14

T All external loads acting on the body are assumed to be dead loads.

* The Cartesian coordinates of the six rank tensor 0L/CF are dL;j,/0F ., those of the cight rank tensor
@*L/OF OF are dL,;,/0F ,, OF . and analogous expressions hold for the other derivatives.

§ The existence of some (additional) essential boundary conditions for y,, is tacitly assumed.
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The above equation provides the critical value of 4 at which bifurcation is possible as
well as the corresponding eigenmode u, (F,, = u, V). It can be shown that positive
definiteness of the self adjoint linear operator defined by the left hand side of (3.8)
excludes bifurcation from the reference state (A = 0) up until the lowest eigenvalue A, of
(3.8).

In order to specify the amplitude 4, of the eigenmode u,, as well as the exponents
®,0s,...,0ne takes the terms of next higher order in & in the expansion of (3.5) about 4.,

namely
T { F + iqa1> : Fc

Lf or: {[(21’11 (?F “
+a <<gll;> K +§Il; al]ém
| (5 ] 402 e o

+azl:<L ‘;II; Fc>:Fa2}§°‘21+..}=O, (3.9

with T, , .4,, given in terms of F,, by

_ 99
ay? iqu - aF .

6L

JL
T 0

¥ +L,

00.
T, =L.F :F,, 5% Ty, ; (F,, =u,V). (3.10)

34

By putting 6F = F, , the term in £*>~! vanishes in view of (3.8). Assuming that the

resulting coefficient of £*' =¥ is non zero, the perturbation analysis goes through only

if «; = 2(¢;—1) = 2. From (3.9), (3.10) and after making use of the homogeneous

dependence of L on F (i.e. (0L/0F):F = 0), the amplitude A, of the eigenmode u, is
N oL

found to be
- 1/dL| . JL L , , N
F,:| =l = : F,+ R :
e s ] ) e
,=—

AR ’
F2 | .F, |:F,

where @, is the eigenmode, normalized in some convenient fashion (F,,T,,
i correspond to #,). The postbifurcation analysis can be carried out to the higher
order terms in the following fashion. Assuming that the eigenmode u, is unique, put
F, = F,4+ A,F, (i > 2) where F, is orthogonal (in an appropriate sense) to F,. To
compute A4;, put SF = f?z in (3.9) and take the term of order & into account.
Thus, the postbifurcation expansion for @ can (in principle) be written as

(3.11)

0= Ay,8% + (A3l + 3)E3 + (A iy +0,)E + ... (3.12)

In the case where the denominator of (3.11) vanishes, the next possible choice in (3.9) for
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oy is oy = 3 (¢; — 1) = 1.5 and the corresponding expansion for u will take the form:
0= A, 50 &7+ (A0, 5+0,)8 + (A4, 58, 5+0, 5+ . (3.13)

In the last case we should note that, since the equation for 4, s is quadratic, we have the
possibility of nonreal bifurcation branches.

The first important implication of the preceding analysis is, following from (3.8), that
for all independent elastic—plastic materials (i.e. materials obeying a constitutive
equation of the type (3.1)), irrespective of the presence or not of a corner on the yield
surface and for arbitrary prebifurcation solutions, the bifurcation functional is still
given by

F(Av) = J (WV):Ly: (vW)dV,} (3.14)
Vv

where the incremental moduli L, are now evaluated on the principal branch of the
solution (Hill’s hypoelastic comparison moduli coincide with L, for total loading in the
principal solution). Similar arguments to those presented by HiLL (1956, 1958) show
that bifurcation becomes possible for the first time (as A increases from zero) when F
loses its positive definiteness.

The next important conclusion, which can be drawn from the form of the post-
bifurcation expansions (3.12),(3.13),is that in the general case when the material cannot
be idealized as a hypoelastic one at the onset of bifurcation, the bifurcation point is a
cusp point (see Fig. 2); this means that, in a generalized load-generalized displacement
diagram, the bifurcated branch of the solution emerges tangentially to the principal
one.

In contrast to the rather simple determination of the critical load A, (4. is given by
82F(4,,v) = 0) the determination of the coefficients in the postbifurcation expansionis a
very cumbersome task. The analysis presented in this section is valid under the
assumption that the incremental moduli tensor L depends smoothly on its arguments.
Unfortunately, in the case of the simplest plasticity theories, the F dependence of L is
singular ; for the simple one-dimensional case see {2.1). The corresponding generaliz-
ation of the incremental moduli tensor L for a three-dimensional elastic—plastic solid
with a smooth yield surface ¢ is L = L for ¢ < 0,and L = L¢+ H[d¢/0T): F](LP—L°)
otherwise, where L¢ and LP are the elastic and plastic branches of the incremental
moduli tensor. The presence of elastic reloading will complicate the analysis even
further, as seen from the simple one-dimensional example presented in the previous
section. The aforementioned complications are hardly surprising since, even for the
simpler case of the plastic bifurcation of a material with a smooth yield surface, from a
principal solution that does satisfy the total loading criterion everywhere, the
computation of the coefficients of all (but the first) terms in the postbifurcation
expansion involves laborious algebra (see for example, HUTCHINSON (1973)). Moreover,
the range of validity of the resulting asymptotic expansion is not known. In certain
physically interesting cases which will be referred to subsequently, the range of validity
of any postbifurcation expansion seems so limited as to make the whole post-
bifurcation analysis a futile mathematical exercise.

tv is an adequately smooth function satisfying the essential boundary conditions.
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Finally, a comment is made on an interesting subcase of the corner theory of
CHRISTOFFERSEN and HUTCHINSON (1979), for which the general bifurcation and
postbifurcation analysis presented in this section can be carried out without any of the
algebraic difficulties mentioned before. Recall that, for the aforementioned model, the
rate potential W can be put into the form

W = 1F:[L¢+f(6)C]:F, (3.15)

where LT, F) is the instantaneous elastic moduli tensor, C(T,F, q) is the plastic
moduli tensor for total loading and f(0) is a smooth monotonically decreasing function
of 8 (0 <0 < n) with f(0) =1, f(r) =0, where 6§ is a measure of deviation from
proportional loading with 8 a smooth function of T, F, T. If f(6) is taken to be a strictly
monotonic and adequately smooth function of 0, then the yield surface ceases to exist,
and thus the dependence of the incremental moduli L as well as the internal variable ;q
on their arguments is adequately smooth. Also, in this particular case and regardless of
the prebifurcation solution (we may even have proportional loading), a smooth type
bifurcation will be admitted by the equations. One such example can be found in
CHRISTOFFERSEN and HUTCHINSON’s (1979) analysis of the F.L.D. curve based on their
corner theory. Although not explicitly mentioned in that reference, it has been observed
(HutcHINsSON, 1981) that, in the particular case of the absence of a total loading cone in
the corner theory, the bifurcation branch of the solution is tangent to the principal
branch in a A— ||| diagram.

Quite recently, TVERGAARD (1982) investigated the nonaxisymmetric bifurcations of
a compressed circular cylindrical shell from an axisymmetric prebifurcation configur-
ation using the CHRISTOFFERSEN and HUTCHINSON (1979) corner theory. In most of
these calculations the total loading cone was absent (no yield surface). Moreover, in
view of the presence of axisymmetric imperfections in the undeformed state of the
cylinder, there are significant deviations from proportional loading in the prebifur-
cation solution (the deviation from proportional loading increases with increasing
values of the axisymmetric imperfection).

It was found that the smaller the imperfections, the bigger the difference between the
J, deformation and J, corner theory predictions. In all the calculations presented the
bifurcated branch of the solution appears to emerge tangentially from the principal
branch. Especially for large imperfections (significant deviations from proportional
loading prior to bifurcation) there is a clear indication of a cuspidal type bifurcation
(see Fig. 2) in view of the slow separation (as the load increases) between the bifurcation
and postbifurcation paths in a load-displacement diagram. For small axisymmetric
imperfections, the bifurcation branch, although emerging tangentially, turns very
rapidly away from the principal branch. It is this particular case, that justifies our
earlier remark about the caution in seeking postbifurcation expressions for these more
complicated plasticity theories.

4. CONCLUSIONS

In this work we have analyzed the bifurcation and postbifurcation of elastic—plastic
solids whose behavior near the critical point could not be idealized as hypoclastic (in
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view of the non-trivial dependence of the prebifurcation solution and/or the
incremental moduli on the strain rates).

The mathematical dependence of L on F dictates the type of the perturbation
expansion along the bifurcated branch of the solution whose main difference from Hill’s
theory is that both ||i] and ||| tend to zero as the time-like parameter A tends to its
critical value A_. For classical plasticity theories with smooth yield surface this type of
behavior is encountered when unloading is present in the principal branch of the
solution. In this case, using a simple example, we have shown the different possibilities
existing for the postbifurcated solution (elastic reloading may or may not present, one
or two symmetric bifurcated paths arise). We have also shown the applicability of our
theory to the most recently developed phenomenological corner theories.

The dependence of the constitutive behavior of metals on the strain rate (of different
type, of course, than the one adopted in (3.1)) can explain a number of stability related
phenomena such as necking retardation in stretched bars and sheets (see HurcHiNsoN
and NEAL, 1977) or the non-observability of corners in yield surface experiments (see
Pan and RICE, 1983). As a next step to explore further the effects of rate dependence on
the stability behavior of metals, it will be interesting to investigate some more realistic
constitutive equations using bifurcation analyses of the type presented in this work.
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