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I. INTRODUCTION 

A MATHEMATICAL theory of elastic materials valid for membrane like bodies has been presented 
in the treatise on non-linear elasticity by Green and Adkins [l]. This theory has been used 
extensively in solving specific boundary value problems. The same theory has also been 

employed to solve problems involving membranes of viscoelastic materials [2]. This theory is 
essentially two dimensional in that the governing equations, which hold on the middle surface in 
the limit of vanishing thickness, are assumed to hold even when the ratio of the thickness to a 
typical dimension is small but finite. This implies that the variation of the stretch ratios and 
related quantities are negligible along the thickness and are hence taken to be constant. 

There are several problems of practical interest of which the problem of filtration is one 
where a membrane theory for diffusion would be appropriate. It is our aim to develop such a 
membrane theory which would be applicable in the case of interacting continua. The membrane 
theory as developed by Green and Adkins [l] for elastic solids forms the basis for our work. It 
is, however, found that modifications have to be made to the theory if it is to be compatible with 
the theory of interacting continua. 

The problem of the diffusion of an ideal fluid through a spherical shell of non-linearly elastic 
material has been previously studied [3,4]. It was found that the stretch ratios were not 
constant in the radial direction. The gradient of the stretch ratio in the radial direction though 
small, was not negligible (about 10%). These gradients in the stretch ratios would be present 
even if the thickness of the shell were to become very small, i.e. in the membrane ap- 
proximation. This new feature is a consequence of the presence of diffusive body forces which 
depend on the gradients of the densities and stretch tensors. Hence, in this work, we develop a 
membrane theory which depends on the values at the deformed middle surface of physical 
quantities and their gradients in the thickness direction. In order to avoid the question of flow 
within the membrane middle surface due to gradients in this surface, we confine attention to 
the axially symmetric problem of the diffusion of an ideal fluid through a spherical membrane 
of a nonlinear elastic material. 

After a brief review of the notations and basic equations relevant to a mixture of interacting 
continua in Section 2, we introduce a specific constitutive relation which is useful in describing 
the behavior of rubber-like nonlinearly elastic solids in Section 3. The forms of the con- 
stitutive relations employed are obtained by incorporating expressions suggested in the kinetic 
theory of rubber elasticity (cf. Treloar [5]) for the specific internal energy function. The 
phenomenon of swelling is introduced in Section 4. The problem inherent to specifying the 
traction boundary condition for interacting continua is overcome by assuming that the swollen 
state of the mixture is a saturated state. This permits the use of a relation between the surface 
tractions and the amount of stretching in the saturated state and helps resolve the problem of 
specifying the boundary condition. The kinematical quantities and the associated geometric 
relations pertinent to the deformed state are developed in Section 5. The equilibrium equations 
for the two constituents and the membrane approximations are developed in Section 6. The 
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complete system of equations needed for the solution of the problem through a 
spherical 
Sections 7 and 8. The method of solution Section 9, and a specific problem 

Section 10. 

2. PRELIMINARIES 

For the sake of brevity, we shall refrain from a detailed discussion of the basic balance 
laws, the thermodynamic considerations and their consequence on the constitutive structure of 
the mixture. We refer the reader to [4] for details. 

A mixture of two continua, which are in motion relative to each other, is considered. The 
relative motion is caused by a fluid S2 diffusing through a solid S,. Let x = x,(X, t) and 
y = x2(Y, t) denote the motion of the solid and fluid, respectively. Let u, f and v, g denote the 
velocity and acceleration vectors of S, and Sz, respectively. 

The deformation gradient tensor for the solids S, is F= ax,/aX. The densities of S, and Sz 
at time t, measured per unit volume of mixture, are denoted by p, and pz, respectively. The 
mean velocity of the mixture and the total density of the mixture are then defined by 

PW = PIU + pzv, p = p, + p2. w,,2 

The appropriate form of the mass balance equation for the solid and fluid are 

p, det F = plo and z + div (p2v) = 0, (2h.2 

where plo is the mass density of the solid before forming the mixture. 
Let u and P be the partial stress tensors for S, and S2, respectively. Let b denote the 

diffusive body force. In the absence of external body force, the equations of motion for S, and 
S2 are 

div u -b = p,f, div n t b = p2g, (3h2 

and 

a+7r=aTtaT. (3)3 

For the sake of completeness, note that by setting b = grad 4 t 6, u = dl t 5, T = - 41+ ii, 
the form of eqn (3) in terms of (I;, ti’, 5) is the same as in terms of (b, u, n). The scalar 4 was 
introduced in [6] to simplify certain thermodynamic arguments. It plays no role here and will 
not be mentioned further. The remainder of the paper is concerned with (6, 0; ii). For 
notational convenience, the bar will be dropped. 

We assume that S, is an incompressible elastic solid and S2 is an incompressible ideal fluid. 
In their individual reference configurations, let S, and S2 have constant densities plo and pzo and 
volumes V, and V2, respectively. We shall assume that the volume of the mixture is V, + V,. It 
can be shown that the current densities satisfy the following equation (cf. Mills [7]): 

fot;o= 1. (4) 

Constitutive assumptions are presented in [4] for i,a and ii in terms of a mean specific 
Helmholtz free energy for the mixture A. We assume the following form for A: 

A = IN, - 3 + ln(1 - ~p21~20))1, 6) 

where K = RT/2M, and I, = tr C, C = FFT. Also, T is the absolute temperature, R is the gas 
constant and M, is the molecular weight between cross-links. It follows that 

oki = - p a 8.k t 2pKC 
PI0 ’ 

ku (6), 
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Tki = - p a &. + p fi k’ K& 

P20 ’ P20 PI ' 
(612 

(7) 

4. SWELLING AND SATURATION 

When a rubber-like nonlinearly elastic material is immersed in certain fluids (solvents), the 
rubber absorbs the fluid and undergoes dimensional changes. If the rubber is pre-strained and 

then immersed in the fluid, the amount of the fluid absorbed is generally different than in the 
unstrained case. In general, if sufficient amount of fluid is present, this absorption process 
carries on to the state where no further absorption is possible, that is, the mixture is saturated. 
Treloar [5] observes that “For an unvulcanized rubber in a good solvent the swelling may 

proceed to an unlimited extent, the rubber and the liquid being miscible or mutually soluble in all 
proportions.” In this analysis we shall restrict ourselves to mixtures with saturated and limited 
swollen states. 

Adkins [S] was the first to consider the problem of swelling using particular constitutive 
relations within the framework of the theory of mixtues. He considered an isotropic elastic 
cube surrounded by an ideal fluid undergoing uniform swelling. He did not consider problems 
which incorporated the constraint expressed by eqn (4) of our analysis. Also, he assumed that 
the surfaces of the mixture were free of traction. Two equations relating the stretch ratio of 

each side of the swollen cube, the density pl of the solid and density pz of the fluid can be 
obtained from the expressions for total stress and conservation of mass for the solid. Under 
these conditions, it is not possible to uniquely determine the swollen condition. However, if the 
swollen state is a saturated state we can supplement the above equations with an additional 
condition based on thermodynamic equilibrium arguments which renders the problem deter- 
minate. This additional condition is the well known Flory-Huggins equation (cf. Treloar [S]) 
which for a cube of material has the form, 

( 
tll + p2+ p3 

3 
+ps $=ln(l-v)+v+&t 

> 
F[;(A?t*it*;)-;I, (8) 

where A,, A>, A7 are the stretch ratios of the edges of the cube, v = I;‘” = (A,A?AJ’ is the 
volume fraction of the solid constituent and t’j = rii + niTii is the total stress. R, T and ‘MC are 
defined in Section 3, V, in the molar volume of the fluid, ps is the hydrostatic pressure of the 
surrounding fluid, and x is a constant depending on the particular rubber-fluid mixture. 

It is needless to go into a detailed derivation of eqn (8) at this juncture. However, it is 
important to emphasize here the departure from its usual application, namely its being 
employed as a boundary condition. The details regarding the departure in deploying eqn (8) as a 
boundary condition and the rationale for the same are provided in Section 8. 

5. GEOMETRICAL RELATIONS FOR THE DEFORMED MEMBRANE 

The undeformed state of the solid constituent is a hollow spherical shell of thickness ho 
which is assumed to be very small in comparison to the inner radius Ri. In the deformed state 
the region occupied by the mixture coincides with the region occupied by the swollen solid 
constituent. We shall assume that the thickness h of the solid constituent in the swollen state is 
small in comparison to the original radius so that the deformed configuration is yet essentially a 

membrane. t 
We refer the description of the problem to a spherical polar coordinate system. Let M 

denote the deformed middle surface of the fluid filled membrane and let P(O, 4) be the position 

of the point at (0, 4) on M. A particle originally at (R, O,$) is now at (r(R), 0, 4). It is a consequence 
of the symmetry of the problem that the (r, 8,4) directions are all principal directions of stress and 
stretch. 

+While one might start with a body which qualifies to be a membrane, in view of Treloar’s remarks on unrestrained 
swelling, it is possible that one might end up with a swollen body which cannot be considered as membrane. Of course, we 
shall preclude such an occurrence. 
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Let yJ denote the distance measured in the normal direction from the middle surface of the 
deformed membrane. The position vector of any point within the mixture is then defined 
through 

and 

r = if4 $) + Y3en 

r=aty3 

(9) 

(10) 

where a denotes the radius of the mid-surface in the deformed state. Let fi(B, 4) denote the 
position of a particle on the surface in the undeformed state at (0, 4) which corresponds to the 
middle surface in the deformed state. Then the position of a particle of the membrane in the 
undeformed state can be expressed as 

R = li(4 4) + f(y3h (11) 

and 

R = A + f(~31, 

where A denotes the radius of the surface in the undeformed state which corresponds to the 
middle surface in the deformed state. 

The principal stretch ratios given by A,, As and A, are defined by 

dr A,=dR’he=h,=;. (12) 

For reasons mentioned in the introduction, we shall express all quantities in the form of a 
Taylor series about r = a, and retain the linear terms. 

When y3 = 0, r = a and R = A, hence 

f (0) = 0. (13) 

Thus, one obtains that 

f(Y3) = CY3 -t NY:)? (14) 

where 

c E Pf (0) 
dy, ’ 

Substituting eqns (10) and (11) into the expressions for A0 in eqn (12), and then using the 
expansion in eqn (14), we obtain 

A0=~(1+~)(1t~y3+~(y~)-1=%[1+(~-~)y3]+0(y~) 

= A,,, + A,y,+ O(Y;). 

Following a similar procedure for A,, we obtain 

A, = ;+ c,y, + O(Y:) 

(1% 

(1% 

(16) 

where 
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Note that A, can be expressed in terms of h, = a/A and c. It also follows that 

1175 

;=c+O(h). (17) 

It will be convenient at this point to develop analogous expressions for the densities. Since the 
(r, 8, C#J) directions are principal directions, the mass balance equation for the solid constituent 
is 

;“&A;= 1. 

It follows that the densities are defined by 

(18) 

e. = Pm + Pp*Y3 + O(Y3, P = 192 

E"=Pm+P*Y3+ O(Y3. 

It now follows from eqns (18) and (19), that 

Pld~= G 

and 

P,~,?,+%&P,, +~,mLkc+s =O. 

From the volume additivity constraint condition (4), 

Plm +P?,n = l*Pl* + p2* = 0. 

(19)1.2 

(19), 

cm 

m2 

WI.2 

From (l)?, and (19),-(19),, it follows that 

p =p, tap m m 
PI0 2n" 

Wh 

P*=PI*+%b* 
PI0 . 

cm2 

For the present problem, eqn (2):, which expresses the conservation of mass for the fluid 
constituents, reduces to 

r’p2V = F, (23) 

where V is the radial velocity component for the fluid and F is the mass flux, a constant. 
Writing 

V = v,, + v*Y,+o(Y;), (24) 

eqns (19): and (20) give that 

a2P2mVln = F/p, and 2ap?,,,V,,, + a2p2,,,V* + a’pz* V,,, = 0. Ga.2 

6. EQUILIBRIUM 

In the example to be considered, the solid constituent is at rest. Since the flow of the fluid is 
assumed to be slow, we shall neglect the inertial terms occurring in the equations of motion for 
the fluid constituent. Let aii, rii and b’ denote the physical components of the partial stresses 
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and diffusive body force with respect to spherical coordinates. Because of the symmetry of the 
problem, the only equations that need to be considered are 

dn ” 2(7+7r”)+b=0 
-b=O,dr+ r (26h.2 

where b = b’. Since eqns (26),,, hold at each point in the deformed domain, they can be added 
to give an equation involving the total stress t” = (rii t nii, namely, 

” 
c&t 

2(t” - t**) = o 
r 

(27) 

The partial stress a”(r) which acts normal to the radial surface at radius r is measured per 
unit area of this surface. Let h”(r) denote a partial stress acting normal to the radial surface r, 
but which is measured per unit area of the deformed middle surface of radius a. It is defined by 
the relation 

G”(r) = o”(r)< 
a . 

(28) 

On integrating the first of eqns (26) in the thickness direction, one obtains 

a*[G”(r,,) - &“(ri)] = 1’” 2ra” dr t 1’” r’b dr, 
‘8 ri 

(2% 

where, by eqn (lo), r,, = a + h/2, ri = a - h/2. We also write 

G”(r) = &Al + &:‘yi t O(y:), (30)' 

where 

On substituting eqns (30),,2 into eqn (29), one obtains that 

&j’+O(h)=~/ 
hi2 

1 

h -hi? 
2(a t y3bZ2dyz+~ 

(30)2 

(31) 

In the limit as h + 0, eqn (31) becomes 

a6:’ = 2~7: + ab,, (32) 

where the subscript m denotes that a quantity is to be evaluated at the mid surface. Similarly, 

we obtain for the fluid constituent 

22 a+:’ = 27~~ - ab,. (33) 

Finally, if pl and p2 are the pressures at r, and ro, respectively, measured per unit area of the 
midsurface, then 

f”(rJ= -p2$, t”(r,)= -pl$. 
I 

(34) 

The corresponding equation for the total stress in the limit h + 0 is 

(35) 
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7. REDUCTION OF EQUILIBRIUM EQUATIONS 

In the previous section the equilibrium equations for the membrane approximation were 
developed in the general case. We now specialize the constitutive equations presented in 
Section 3 for use with these equations. In particular, we first obtain the equations in spheri- 
cal coordinates. Next, we eliminate the indeterminate scalar p and hence simplify the equations. 
Finally, we express the resulting relations in terms of the quantities defined on the deformed 
middle surface. 

For the current example, the only non-zero components of the stretch tensor C are C,, = A?, 
CZ2 = CX3 = Ai. The invariants of C are 

I, = A5+2A2,, I*= 2AfAit A", and I3 = AtA:. (36)1,2,3 

The physical components of the partial stresses with respect to the spherical coordinates are 
obtained from eqn (6). These are as follows: 

a,,=_pfi+Sii #=-nfi+rii nosumon 
PI0 ’ P20 ’ 

S” = 2pKA;, S22 = S33 = 2pKA2, 

(3713 

(38h.2 

7r II = *22 _ _ *33= PK&b 

PI P20’ 
(3@3 

The components of the total stress tensor can be now written as 

tii = _ n + Tii, Tii = Sii + #, no sum on i 

t’j = 0, i# j. 

(39h.2 

(39)3 

Finally, the components of the diffusive body force are given by 

b’=-f.(k) +B,b*=b’=O, 

where 

(37)~ 

We would like to eliminate the indeterminate scalar p from eqns (37),,* and (39),. Let eqn 
(35) be rewritten in the following form 

(41) 

Note that the first term on the r.h.s. is independent of the indeterminate scalar p. We next 
obtain an estimate for t/! by integrating eqn (27) from ri to a, 

t “(Cl) = t”(ri) - 
I 
0;Chiq;(t’1-12?dr. (42) 

It follows from eqns (35) (42) and the Mean Value Theorem, that eqn (41) can be rewritten as 

(43) 

IJES Vol. 21,No. IO-C 
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In the above equation, the subscript Q denotes that a(t22- t”)/r is evaluated at some point Q 
which lies between ri and a. Observe in eqn (43) that the last term on the r.h.s. is of order h/a 
compared to the first term. The 1.h.s. is of order (a/h)p,, while the second term on the r.h.s. is of 
order p,. Since a/h % 1, it follows that the first term on the r.h.s. is of order a/h, and the last two 
terms can be neglected in comparison. Hence, by virtue of eqns (37)-(39), (15) and (16), eqn (43) 
can be approximated by 

= 4p,&p, (A:-$). (44) 

Next, we consider eqn (32) for the partial stresses for the solid. We need to develop an 
expression for 6:’ and eliminate the scalar p which appears in the expressions for a2 and b,. 

From eqn (39),, -p = t” - T”. Substituting into the expression for ~7” given by eqn (37),, and 
then using the definition in eqn (28), we obtain 

(45) 

Next, using eqns (30) and (34), the following expression is obtained for the 1.h.s. of eqn (32), 

a($;’ = a 
h (PI - P2) Plm - 4 pl* (P, + PJ + a& + O(h), (46) I 

where 

For the particular choice of the HElmholtz free energy function A leading to eqns (38),_,, 
asA’ is found to be 

aS, = ploK 
[ 
4ac, PmP2m 

-+ $- 1 Qp,p2, + pmp2*a + p2,p*a) . 
C ( ) 1 (47) 

By eqns (37), and (39),, the r.h.s. of eqn (32) can be written as 

Zcrz,‘+ ab, = 2tzp,, + at:p,, + 2(Sz,‘- Tzp,,)+ a@, - Tip,.& (48) 

where use has been made of eqn (19), and the relation - p = t” - T” from eqn (39),. From eqn 
(42) and the corresponding result obtained by integrating from a to ro, 

(49) 

Using eqn (34), eqn (49) can be rewritten as 

t;= -;(p,+p3+;[(t”-r22),-(t1L-t22)o,]+O(h), 

= -;(p,+pJ+O(h), (50) 

where the subscript Q. (or Q,) denotes that (t ” - t22) is evaluated at some point Q. (or Q,) 
between a and r. (or between ri and a). 
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Substituting from eqns (46),,* and (48) into eqn (32), we obtain 
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;(P’-P*)Pl, -; (p, + p*)p,* + as*+ O(h) = 2tip,, + at!$,* + 2(S2,2- ?%I,,)+ a(& - c19P,*. 

The terms involving tt in eqn (51) can now be eliminated using eqn (41) and (50). Neglecting 
terms of O(h), we obtain 

2(tZ,Z- ti)p,, + a$* = 2(Sz,z- TipJ + a(B, - CP,,). (52) 

Note that by means of the term aB,,,, eqn (52) involves kinematic and density quantities 
evaluated at the midsurface in addition to their gradients. 

8. SATURATION CONDITION 

In this section we discuss the difficulties which one encounters in providing a clear definition 
of the boundary conditions for the partial stresses. The problem arises due to the fact that the 
total stresses, and not the individual partial stresses are specified on the boundaries. We 
indicated earlier that this difficulty could be overcome by utilizing eqn (8), provided the mixture 
is in a saturated state. We elaborate on the rationale for the same, below. 

Treloar [5] considers the swelling of a unit cube of crosslinked material when the forces are 
applied to its faces in such a manner that the cube is constrained to deform into a rectangular 
block of dimension I,, and other two edges remaining constant. Under a homogeneous strain, 
based on a thermodynamic requirement which governs equilibrium, namely that the Helmholtz 
free energy in a small displacement from equilibrium be equal to the work done by the applied 
forces, he obtains the following relation: 

where t, is the force on the face perpendicular to the direction of length change. A similar 
derivation when a unit cube is constrained to deform into a rectangular block by forces applied 
on its faces while it is immersed in a bath with pressure ps leads to eqn (8). 

Let us suppose that the spherical membrane under consideration has reached a saturated 
equilibrium state. The membrane is not in a state of homogeneous strain. However, consider an 
infinitesimal element on the surface of the membrane which is in contact with the diffusant. It 
we had a unit cube immersed in a bath at constant pressure and deformed it to the same 
homogeneous state of strain as the infinitesimal surface element, then eqn (8) would hold. Thus, 
as a first approximation, we could assume that eqn (8) holds at the infinitesimal element on the 
surface. Such an approximation is clearly in the spirit of much of what is done in mechanics in 
order to reduce intractable problems to be amenable to analysis. Moreover, such an approach 
has yielded results which are both quantitatively and qualitatively responsible in earlier work 
131. This condition, in addition to the total traction specified on the boundary makes the problem 
determinate. 

We shall now proceed to the appropriate form of eqn (8) for the membrane theory valid at 
both the inner and outer boundaries of the membrane. For the sake of brevity we outline the 
membrane theory approximation of eqn (8) which is valid at the inner boundary. A similar 
approximation can be derived for the outer boundary. It follows from definition of the total 
stress, eqns (37)-(39) that 

t” + t22+ t33 
3 

+P,=-P(ri)+PK~~+~PK(A:+2*~)+ql, 
P20 PI 

where the hydrostatic pressure of the fluid adjacent to the inner boundary is qr. (Note from eqn 
(34), that ql = pI (a’lr;)). The following expression for P(ri) can be obtained from eqns (34),, 
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(37)-W 

Substituting (53) and (54) into the Flory-Huggins eqn (8) one obtains 

4 
jpKj$(hi-ht)=In(l-v)t ~+&+p,~$, L 

I 
5 (/if+ ?A;)-;}. W) 

We now proceed to obtain the membrane approximation for the above equation, Observe 
that the volume fraction of the solid constituent at the inner surface is given by 

where 

and 

It follows from equations ( 15)z, (16), (56) and (57)1,2 that the boundary condition for the inner and 
outer boundaries are equivalent to the folfowing relations 

and 

9,S~MMARYOFVARIABLE~ AND EQUATIONS 

The membrane theory developed here involves 12 dependent variables, representing the 
values and radial gradients of the various physical quantities at the deformed middle surface. 
These variables are: (a) the radial and circumferential stretch ratios-3 variables, a/A, c, c*; (b) 
the fluid, solid and total densities-6 variables, pi,,?, plr+ P?,~,, pz*, p,,>, p*; (c) the fluid radial 
velocity-2 variables, V,,, V,; (d) the mass flux F-l variable. 

The 12 equations for these variables are given by: (a) conservation of mass for the solid-2 
eqns (20), and (20),; (b) conservation of mass for the fluid-2 eqns (25), and (2&; (c) volume 
additivity constraint-2 eqns (21), and (21)2; (d) total density definition-2 eqns (22), and (22)?: 
(e) the total stress equilibrium equation- 1 eqn (44); (f) the partial stress-diffusive body force 
equilibrium equation-1 eqn (52); and (g) the saturation conditions-2 eqns (58) and (59). 

This system of equations can be reduced to a lower order for h,, c, c* and F. To achieve 
this, we define the dimensionless pressure difference 

p = A(P, -PI) 
4k%lK 

Then, by eqns (15),, and (17). the total stress equilibrium eqn (44) can be written as 

(60) 



The diffusion of a fluid through a highly elastic spherical membrane 1181 

Next, substitute from eqns (44), (47), (38),,, and (40), into eqn (52). Let V,,, be eliminated in 

terms of F by using eqn (25),. On setting a = h,A and dividing through by p,&, eqn (52) 

becomes 

=4+$+‘)+A,,, [-p,,A-~~nl~(4A,A*A+~)-2p,,~-i.~], (62) 

where p is the dimensionless mass flux defined by the relation 

p= aF 
AP,oP,&’ 

(63) 

Now observe that pm, pl,,, and pzm can be expressed in terms of A,,, and c by eqns (20),, (21), 
and (22),. Since by eqn (15),,2 

A,A = (1 -A,c), (64) 

p*A, p,*A and p2*A can be expressed in terms of A,,,, c and c,A by eqns (20)*, (21), and (22),. 
Thus, eqn (61) is of the form 

I’ = 4,(L, CL (65) 

while eqn (62) is of the form 

$44,,, c, c,A, fi) = 0. (66) 

In view of the above remarks and definitions (57),,?, the saturation eqns (58) and (59) 
respectively can be seen to be of the form, 

d&m, cl = 0, 4&L,, c, cd) = 0. (67)~ 

Suppose the geometric properties of the undeformed membrane, the relevant properties of 
the solid and fluid constituents, and the pressure difference pI - p2, are given. Then A,,, and c 
are first found from eqns (65) and (67),. Next c,A is found from eqn (67), and then the mass flux 
P is found from eqn (66). 

IO. NUMERICAL EXAMPLE 

Calculations were carried out using the same data as was used in previous work [4], in which 
a rubber-toluene mixture was considered. For the rubber, the constant K was computed using 
T = 303.16”, M = 919 g/mole, R = 8.317 x 10’ dyne-cm/mole-“K, and density plo = 0.862 g/cm3. 
For toluene, V, = 106 cm3/mole and the molecular weight is 92.13g/mole, giving pzo = 
0.869 g/mole. The value of the constant x in the saturation eqn (8) was taken as 0.425. 

According to the results presented in [3], the gradient of A, or As with respect to R/R, is 
negative and has a magnitude of about 0.12, when P = 150. In order to compare this with the 
results in the present example, first note that the following relations are readily established. 

o &+A db dh .c& 
d(R/Ri) C ’ d(RIR,)= c ’ 

It was found that A,AIc = -0.104 and c*Alc = - 0.107, which is in very good agreement 
with the results in [4]. The terms in eqn (62) involving p*A, p,*A, p2*A were very small, 
whereas the term involving A,A and c,A was 36% of the term involving the dimensionless flux 
@. It is not clear whether the smallness of the density gradients is due to the data used in the 



1182 K. R.RAJAGOPAL et al. 

calculations, or is a natural result of the membrane theory. In the latter case, one could neglect 
these terms and simplify the equations. However, our results indicate that the terms in A,A and 
c,A cannot be neglected. 

Each solution of the system of eqns (65)-(67) represents an equilibrium state of the spherical 
membrane, in which the material particles have swollen with fluid to a fixed saturated state, and 
through which there is steady flow of fluid. When the dimensionless pressure P equals zero, it 
follows from eqn (65) (i.e. eqn 61) that A,,, = c-‘, and that each material element has undergone 
unconstrained swelling. The membrane radius has increased, with A, = 1.78. The midsurface 
stretch ratios A,,, and c-’ increase with P until A, = 2.5, then P begins to decrease with 
increasing A,,,. This interesting result is the extension to mixture theory of the well known lack 
of monotonicity in the relation between pressure and radius in the inflation of a neo-Hookean 
elastic spherical membrane. The gradients A, and c* increase with A, until A, = 2.3, when they 
decrease. The flux increases monotonically with A,,,. Plots of A,,, vs c-‘, P and F are shown in 
Fig. 1 and a plot P vs P is shown in Fig. 2. 

26 
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Fig. I. Variation of dimensionless pressure difference P, dimensionless flux @ and midsurface radial stretch 
ratio with the midsurface circumferential stretch ratio. 
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Fig. 2. Variation of dimensionless pressure difference P with dimensionless flux I? 
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